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A B S T R A C T

Present study provides a multiscale numerical approach based on representative volume elements (RVE) for the
finite strain analyses of materials reinforced with helical fibers. An RVE with wavy-like boundaries bioinspired in
the microstructure of tendon fascicles is proposed. Due to the unusual geometry of the RVE, a non-periodic mesh
mapping will likely occur, precluding the numerical implementation of the periodic boundary condition in a
straightforward manner. Moreover, it is verified that the others classical boundary conditions, namely, the linear
boundary displacements model and the minimally constrained model, seem not to be suitable choices for the
multiscale analyses of this class of RVEs. Motivated by these facts, two mixed boundary conditions allying
characteristics of both, linear and minimal models, are suggested. The kinematic constraints on the RVE are
enforced via variational principles and Lagrange multipliers. A displacement-controlled triaxial test performed
on a numerical specimen larger than the RVE is proposed as a reference solution for the multiscale responses of
the RVE. A set of numerical results concerning microscopic strain fields and macroscopic stress-stretch curves
points out that one of the proposed mixed models predicts with great accuracy not only the homogenized
quantities but also the kinematic fields developed within the specimen. The computational homogenization
strategy addressed in this manuscript can be extended to other fiber-reinforced materials composed of different
fiber arrangements also including dissipative effects. Moreover, the boundaries surfaces of the RVE are not
restricted to any particular layout and the finite element mesh do not require particular mappings nor additional
algorithmic handling.

1. Introduction

Helical shapes appear in the morphology of several biological struc-
tures at different length scales. They can be found from the molecular
level – DNA and collagen molecules – to macroscopic structures such as
seashells, horns and plant tendrils (Huang and Mei, 2015; Wang et al.,
2016). At microscopic scales, wood, bamboo and bone are examples of
composite materials that present helical characteristics in their structures
(Wang et al., 2016; Palombini et al., 2016). Similarly, helically oriented
collagen fibrils are observed within some connective tissues, e.g.: in
fascicles of tendons and in the lamella of the cornea (Kalson et al., 2015;
Bell et al., 2018). Such microstructural organizations provide tissues with
particular biomechanical and physiological behaviors, most of them re-
lated to load-bearing reinforcements and mechanotransduction me-
chanisms (Wang, 2006; Lavagnino et al., 2015).

Among the remarkable physical properties related to this kind of
biocomposites, those associated to their mechanical behavior have

received particular attention from the scientific community and have
been used as inspiration for the design of new structural materials
(Sanchez et al., 2005; Huang and Mei, 2015; Wang et al., 2016; Zhang
et al., 2016; Kravchenko et al., 2017). For example, seeking for im-
provements on mechanical properties, new materials composed of he-
lical carbon or polymer fibers have been thoroughly investigated
(among others, Ho et al., 2009; Yashima, 2010; Raghubanshi et al.,
2016; Deng et al., 2017). In view of the aforementioned facts, the un-
derstanding in what ways the helical substructures affect the macro-
scopic mechanical responses, and vice-versa, becomes a relevant subject
to both analysis and material design.

Computational multiscale approaches based on the homogenization
of representative volume elements (RVE) provide an appealing frame-
work to investigate the macro and micro mechanical behavior of this
class of materials (Blanco et al., 2014; de Souza Neto et al., 2015). In
this RVE-based theories, the classically used multiscale boundary con-
ditions are the linear boundary displacements model, the periodic

https://doi.org/10.1016/j.mechmat.2018.07.014
Received 6 April 2018; Received in revised form 19 July 2018; Accepted 25 July 2018

⁎ Corresponding author.
E-mail address: eduardo.fancello@ufsc.br (E.A. Fancello).

Mechanics of Materials 126 (2018) 75–85

Available online 01 August 2018
0167-6636/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01676636
https://www.elsevier.com/locate/mechmat
https://doi.org/10.1016/j.mechmat.2018.07.014
https://doi.org/10.1016/j.mechmat.2018.07.014
mailto:eduardo.fancello@ufsc.br
https://doi.org/10.1016/j.mechmat.2018.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechmat.2018.07.014&domain=pdf


boundary displacements model and the minimally constrained model,
also known as the uniform traction model (de Souza Neto et al., 2015).
However, to the best of the authors’ knowledge, previous works with
similar approach in this field are restricted to small strains (Messager
and Cartraud, 2008; Frikha et al., 2013), not covering a wide set of
cases in which this kinematic assumption is not supported (e.g., fibrous
soft tissues).

Based on this, the present work extends these efforts providing a
multiscale approach at finite strains for the numerical analysis of RVEs
composed of helical fibers. The microstructural equilibrium is cast
within a variational principle and the kinematic constraints are en-
forced with the aid of Lagrange multipliers (Miehe, 2003). Moreover,
the material phases of the RVE can be modeled within a variational
constitutive framework for general dissipative materials (Ortiz and
Stainier, 1999; Radovitzky and Ortiz, 1999).

Aiming at multiscale analyses of tendon tissues, an RVE bioinspired
in the microstructure of tendon fascicles is proposed. Briefly, tendon
fascicles are mainly composed of helical arrangements of bundles of
collagen fibrils, called collagen fibers, surrounded by tenocyte cells
(cellular matrix) (Kalson et al., 2015). Based on this morphology, RVEs
with helical (wavy-like) boundaries are required to account for the
important continuity of the fibers. Accordingly, due to the unusual
shape of the resulting RVE, the mesh generation must be able to provide
a consistent one-to-one mapping between nodes of the periodic
boundaries. On the other hand, if a non-periodic mesh is achieved,
weak approaches could be employed instead (Nguyen et al., 2012).
However, the numerical implementation of such approaches into a
conventional nonlinear finite element code is not straightforward.
Moreover, it was verified that the linear and minimal models are not
suitable choices for multiscale numerical analyses of this unusual RVEs.
On the other hand, mixed types of multiscale boundary conditions seem
to be a convenient alternative to the classical models. Generally, these
boundary conditions mix two types of the classical ones, where several
combinations are possible (see the works of Hazanov and Amieur, 1995;
Pahr and Zysset, 2008; Mercer et al., 2015, for example).

Motivated by these facts, the main contribution of this manuscript is
to propose an appropriate boundary condition capable to predict not
only the macroscopic (homogenized) quantities but also the kinematic
fields developed within the RVE. Therefore, two mixed boundary con-
ditions allying characteristics of the linear and minimal models are
suggested. A numerical strategy based on a displacement-controlled
triaxial test is proposed to verify the ability of such models to predict
the multiscale responses. In this case, homogenized stress-stretch curves
and strains fields developed on the RVE are investigated.

This manuscript is organized as follows. Section 2 describes the
theoretical and numerical methods employed in this work. An overview
of the multiscale theory at finite strains is shown in Section 2.1.
Section 2.2 addresses details about the proposed multiscale boundary
conditions and the solution strategy used. The numerical protocol em-
ployed to verify the ability of the proposed boundary conditions and
related multiscale approach are shown in Section 2.3. Results are re-
ported in Section 3 and discussed in Section 4. Conclusions of the main
achievements are listed in Section 5. Finally, further technical details
related to numerical implementations within a conventional nonlinear
finite element code are provided in the appendices.

2. Methods

2.1. Multiscale theory at finite strains

This section addresses the fundamental principles of a multiscale
theory based on RVEs and formulated in a variational framework at
finite strains. This approach leads to a class of multiscale models ex-
tensively discussed by many authors (among others, Miehe et al., 2002;
Miehe, 2003; Blanco et al., 2014; de Souza Neto et al., 2015; Saeb et al.,
2016) and its theoretical basis relies on two main concepts: kinematic

admissibility and energetic consistency between the macro and micro
scales.

2.1.1. Kinematic admissibility
In the present multiscale theory, the displacement u(X) and the

deformation gradient = +F I u
def

X at a macroscopic point X are re-

lated to theirs respective microscopic fields uμ(Y) and = +F I uμ μ
def

Y
through the following equations:

− = − =u u 0 F F 0, ,μ μ (1)

where the notation

∫=
V

V(·) 1 (·) d ,
μ

μ
def

Ω Y (2)

represents the volumetric average of the quantity ( · ) and Vμ is the
volume of the RVE in the referential (undeformed) domain Ω Y with
boundaries ΓY. The mapping defined in (2) is usually known as homo-
genization, being this nomenclature adopted in this manuscript.

In this theory, equations (1) represent constraints on the micro-
scopic displacement field, preventing translational and rotational rigid
body motions of the RVE, respectively. Based on this, only the micro-
scopic fields uμ that respect the postulates (1) are kinematically ad-
missible, motivating the definition of the so-called minimal space of
kinematically admissible microscopic displacements � ,u

min
μ which is

formally denoted as

� = − = − = ∀ ∈u F F 0 u u 0 Y{ ; ; Ω }.μ μ μu
min def

μ Y (3)

In view of (3), the corresponding minimal virtual space � u
min

μ can be
defined as

� �= = − ∈{ }w w w w w, .u u
min def

1 2 1 2
min

μ μ (4)

A fundamental assumption in this class of theories relies on the
expansion of the microscopic displacement field in the form

= + + ∼u u u Y u( ) ,μ μ
def

X (5)

in which u is a constant part, u Y( )X is a linear contribution and ∼uμ is
the displacement fluctuation field of the RVE, representing a high order
term.

Taking the expansion (5) into account, Blanco et al. (2014) and
de Souza Neto et al. (2015) redefine the space (4) in terms of the var-
iations ∼ud μ of the fluctuation field, and by rephrasing the classical Hill-
Mandel Principle of macro-homogeneity, they frame this multiscale
theory into an elegant variational structure. In this case, the afore-
mentioned authors show that the stress homogenization and the mi-
croscopic equilibrium equation are derived without a priori assump-
tions, as will be presented in the sequence.

It is important to mention that, since no inertial effects are con-
sidered in this work, the macroscopic displacement u in (3) is set to zero
(see de Souza Neto et al., 2015 for further details on inertial effects in
multiscale analyses). This assumption will be considered henceforward.

2.1.2. The principle of the multiscale virtual work
The energetic consistency between the macro and micro scales is

established by the principle of the multiscale virtual work

�= ∀ ∈P F P F u: d : d , d ,μ μ μ uμ (6)

that represents a variational statement of the Hill-Mandel principle
(Blanco et al., 2014; de Souza Neto et al., 2015). The second order
tensors P and Pμ are the macroscopic and microscopic first Piola-
Kirchhoff stresses, respectively. In Equation (6), the variational space

� �= = − ∈w w w w w{ , }u u
def

1 2 1 2μ μ (7)

is defined, which depends on a proper space �uμ. The space �uμ is a
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kinematically admissible space that represents a set of multiscale
models (microscopic boundary conditions) according to the level of
imposed kinematic constraints on the RVE. In other words, any space
� �⊂u u

min
μ μ that satisfies the variational statement (6) defines an ad-

missible deformation field of the RVE. Among the broad range of ad-
missible spaces � ,uμ the classical multiscale boundary conditions
widely mentioned in literature are the following: the Taylor model (rule
of mixtures); the periodic boundary displacements model; the linear
boundary displacements model; the minimally constrained model, also
known as the uniform traction model (de Souza Neto et al., 2015).
Particularly, the minimally constrained model is represented by the
space (3) and the linear boundary displacements model is formally
defined as

� �= ∈ = ∀ ∈{ }u u u Y Y( ) ; Γ .μ μu u
lin def min

μ μ X Y
(8)

Finally, one can show that the stress homogenization

=P P ,μ (9)

and the microscopic equilibrium equation

�∫ = ∀ ∈VP u u: ( d ) d 0, d ,μ μ μ μ uΩ μ
Y

Y
(10)

are direct consequences of the variational relation (6) (Blanco et al.,
2014; de Souza Neto et al., 2015). It is important to note that the
equilibrium equation (10) is conveniently written in terms of the var-
iations of the microscopic displacements field duμ, rather than the
fluctuations ∼ud μ as shown in de Souza Neto et al. (2015).

2.1.3. Incremental microscopic equilibrium based on a minimum principle
The mechanical equilibrium of the microscale can be obtained from

the minimum principle

�
�

= =
∈+

+
u( ) arg inf Ψ, Ψ ,μ

u
opt def

μn
μn μu

1
1 (11)

where +FΨ( )n 1 is a macroscopic potential defined as the volumetric
average of the microscopic incremental potential �μ used in variational
constitutive approaches (see Ortiz and Stainier (1999) and Radovitzky
and Ortiz (1999) for further details on variational constitutive mod-
eling). In view this constitutive theory, the potential �μ assumes the
form of the Helmholtz free energy ψ if a classical hyperelastic behavior
is considered, i.e., � = ψμ .

Taking into account the principle (11), it is easy to show that the
stationarity condition of the potential Ψ - by means of the Gateaux
derivative - results in the incremental version of the equilibrium
equation (10), where further details can be found in Miehe (2003).
Moreover, the minimum principle (11) provides a convenient numer-
ical framework to solve the equilibrium equations. Accordingly, the
kinematic constraints �uμ can be considered into the problem by dif-
ferent optimization strategies, such as the Lagrange multiplier methods,
for example.

The present numerical strategy was employed in this work to for-
mulate and solve the microscopic equilibrium problem within a con-
ventional nonlinear finite element framework, where further details
will be presented in Section 2.2.2.

2.2. Multiscale approach for materials composed of helical fibers

The main objective of this work is to propose and investigate a
multiscale boundary condition suitable to represent the multiscale
mechanics of RVEs reinforced with helical fibers (similar to that shown
in Figure 1). Moreover, focus will be given to macroscopic loadings
aligned axially and transversely to helical fibers. However, the nu-
merical analysis of this class of RVEs under such conditions is not
straightforward due to a couple of issues that are discussed below.

1. On the one hand, the linear boundary displacements model imposes
considerable constraints on the kinematics of the RVE, over-
estimating the deformation of the matrix. On the other hand, the
minimally constrained model leads to heavily deformed mesh pat-
terns when the RVE undergoes finite macroscopic deformations (see
Figure 4).

2. Simple RVEs with straight boundary surfaces that account for the
important continuity of the helical fibers are unlikely to be de-
signed. Therefore, unusual helical (wavy-like) boundary surfaces are
required to account for the geometric characteristics of these RVEs
(see Figures 1 and 2d).

3. Even if the geometry of the RVE was designed to be a periodic
partition of the three-dimensional medium, their unusual boundary
surfaces preclude the use of standard techniques to enforce the
periodic boundary conditions in a strong manner. This issue is re-
lated with the mesh generation, which must be able to provide a
consistent one-to-one mapping between nodes of the periodic
boundaries. On the other hand, weak approaches could be employed
instead (Nguyen et al., 2012). However, the numerical im-
plementation of such approaches into a conventional nonlinear fi-
nite element code is cumbersome.

In view of the issues listed above, one can note that the classical
multiscale boundary conditions, i.e., the linear, periodic and minimal
models, seem not to be suitable choices for the class of RVEs discussed
herein. Therefore, new types of boundary conditions are required in this
case.

As pointed out in Section 2.1.2, any space � �⊂u u
min

μ μ that fulfills
the variational statement (6) is kinematically admissible. In other
words, a broad range of microstructural boundary conditions can be
proposed in view of the present multiscale theory. Among them, the so-
called mixed multiscale boundary conditions arise as a convenient op-
tion to overcome the drawbacks previously discussed. Generally, these
boundary conditions mix two types of the classical ones, where several
combinations are possible (Hazanov and Amieur, 1995; Pahr and
Zysset, 2008; Mercer et al., 2015). Particularly, those that combine the
linear boundary displacements model with the minimally constrained
model will be investigated in this work, where further details are dis-
cussed in the next section.

2.2.1. The proposed multiscale boundary conditions
The sketch shown in Figure 1 illustrates an RVE composed of helical

fibers embedded in a matrix. The helical fibers are preferentially
aligned in the direction Y1 and the boundary surfaces Γfront and Γback are
oriented transversely to them. It is important to mention that the
boundaries Γfront and Γback need not necessarily be straight planes or
perpendicular to the direction Y1. Moreover, in the present formulation,
the lateral boundaries of the RVE are not restricted to any particular
layout.

Fig. 1. Illustration of an RVE of a material composed of helical fibers embedded
in a matrix.
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In view of this class of RVEs, two mixed types of multiscale
boundary conditions are suggested, both of them allying characteristics
of the linear boundary displacements model and the minimally con-
strained model.

The first multiscale boundary condition investigated is called herein
the Mixed Linear Minimal Model (MLM), which is denoted by

� � ̂= ∈ = ∀ ∈{ }u u u Y Y( ) ; Γ .μ μu u
MLM def min

μ μ X
(12)

where ̂ = ∪Γ Γ Γ
def

front back. One can see from the space (12) that the mi-
croscopic displacements resulting from the linear boundary displace-
ments model are imposed only on boundaries Γfront and Γback. This
proposition aims to deal with the drawback related to the heavily de-
formed mesh patterns resulting from the minimally constrained model
(see item 1 of the previous section). Moreover, in order to avoid further
restrictions on the kinematic of the RVE, the remaining degrees of
freedom are treated by the minimally constrained model.

The second boundary condition proposed arises from a slightly, but
important, modification on the space (12). In this case, only the con-
tribution (uμ)1 of the linear boundary displacements model, which is
oriented axially to the helical fibers (see Figure 1), is imposed on
boundaries Γfront and Γback. This assumption leads to a kinematically
admissible space, namely, the Mixed Axial-Linear Minimal Model
(MALM), which is formally defined as

� � ̂= ∈ = ∀ ∈{ }u u u Y Y( ) [( ) ] ; Γ .μ μu u
MALM def min

1 1μ μ X
(13)

It is important to note that in the space (13), the transverse microscopic
displacements (uμ)2 and (uμ)3 on ̂Γ must respect the minimally con-
strained model. Therefore, one can verify that � u

MLM
μ is a more restricted

space than � u
MALM

μ .

2.2.2. Solution strategy
The solution of the microstructural equilibrium is guided by the

incremental approach discussed in Section 2.1.3. Therefore, the pro-
posed models � u

MLM
μ or � u

MALM
μ are considered into the equilibrium

through the following numerical strategy.

• Firstly, the kinematic constraints related to the minimal space � u
min

μ
are enforced by the Lagrange multiplier method in the minimum
principle (11), which in turns is formulated to be solved by the
classical Newton’s procedure.

• Secondly, after the finite element discretization, the prescribed

displacements resulting from the linear boundary displacements
model defined in � u

MLM
μ or � u

MALM
μ are imposed in the respectively

degrees of freedom of the nodes belonging to the boundary ̂Γ.

The strategies listed above are briefly detailed in the sequence. In
view of the minimum principle (11), the kinematic constraints defined
in � u

min
μ (see Equation (3)) are taken into account by means of the La-

grangian functional

� �= + −
−

+ + +

+

+

+

Λ
γ

x F F
u

( ) : ( )
· ,

n n n μ

n μ

1
def

inc
red

1 1

1

n

n

1

1 (14)

where =+ + ++ Λ γx u{ , , }n μ n n1
def

1 1n 1 is the set of unknown variables. The
second order tensor +Λn 1 and the vector +γn 1 are the Lagrange multi-
pliers. Consequently, the minimum principle (11) is replaced by the
unconstrained optimization problem

�=+ +
+

x x( ) arg stat ( ).n n
x

1
opt

1
n 1 (15)

The variational principle (15) is formulated to be solved by the classical
Newton’s procedure and the resulting nonlinear equations are dis-
cretized by the standard finite element method (further operational
details are shown in the appendices). Accordingly, a state related to a
current iteration +k( 1) of the Newton-Raphson algorithm is updated
by

= − = ++ + + +
+

+ +K x r x x xΔ , Δ ,n
k

n n
k

n
k

n
k

nT 1
( )

1 1
( )

1
( 1)

1
( )

1 (16)

where = Λ γx q[ ]T def T T T is the vector containing the nodal microscopic
displacements q and the Lagrange multipliers. The specific forms for the
residual vector r and the tangent matrix KT are provided in Appendix B.
The underlined variables ( · ) are arranged into a compact matrix no-
tation (Voigt mapping) generally used in finite element codes (see
Jog, 2007).

Finally, the prescribed displacements resulting from the linear
boundary displacements model defined in � u

MLM
μ or � u

MALM
μ are enforced

in the degrees of freedom of the nodes belonging to the boundary ̂Γ into
the linear system (16).

Regarding to numerical implementation, it is important to mention
that the models � u

MLM
μ and � u

MALM
μ , in contrast to the periodic boundary

condition, do not require particular mappings nor additional algo-
rithmic handling.

0.6

0.6
2

X2 X1

X3 RVE and Sample

c)

5.8

5.8

12

d)

b)a)

Y2 Y1

Y3

Sample

Fig. 2. Geometry of the numerical specimen of a
composite material reinforced with helical fibers. (a)
Inner region shape designed to follow the helical
geometry of fibers. (b) Sketch emphasizing the
sample located in the centroid of the specimen. (c)
View of the external finite element mesh and di-
mensions of the numerical specimen. (d) Geometry,
finite element mesh and dimensions of the sample
and RVE. Illustrative representation of the parallel
distribution of the helical fibers. The black arrows
represent the local directions of fibers following the
tangent of the helical equation (unit vectors mY).
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2.3. Verification of the multiscale approach

One of the difficulties to assess the effectiveness of an RVE-based
homogenization procedure is the availability of a reference solution. A
possible one can be obtained by performing a numerical test on a
specimen sufficiently large in comparison to the size of the RVE. The
solution fields found at the inner part of the specimen are expected to
be representative of what should be obtained on the RVE when sub-
mitted to appropriate homogenization procedures. This approach is
explored in the sequence.

2.3.1. The constitutive model
Aiming at multiscale investigations of tendon tissues, one considers

a hypothetical material bioinspired by the microstructure of tendon
fascicles. Briefly, tendon fascicles are mainly composed of helical ar-
rangements of bundles of collagen fibrils, called collagen fibers, em-
bedded in a cellular matrix (tenocytes) (Kalson et al., 2015). Based on
this morphology, the material considered in present study is composed
of an isotropic matrix reinforced with helical fibers. In order to keep the
simplicity of the proposed verification strategy, the matrix and fibers
are modeled by a fiber-reinforced hyperelastic model. This model is
based on the fourth invariant = =I λC A: ( ) ,Y4

def
f

2 where =C F F
def T is the

right Cauchy-Green tensor, λf is the stretch of fibers that respect the
mapping =λ m Fmy Yf and = ⊗A m mY Y Y

def
is the so-called structural

tensor. The unit vectors mY and my represent the local directions of the
helical fibers in the referential and spatial configuration, respectively.
Such models are well established in the literature and further details
can be found elsewhere (Schröder and Neff, 2003; Ehret and Itskov,
2007; Holzapfel and Ogden, 2009).

In view of this invariant-based constitutive theory, the following
strain energy is used:

= +ψ ψ ψ ,
def

m f (17)

in which ψm is the isotropic contribution (generally assigned to the
matrix or matrix/fibers interactions) and ψf is an additional energy
associated to the stretch of fibers. In present modeling approach, the
local vector bases mY are assumed to follow the tangents of the helical
fibers (see the black arrows in Figure 2d). Accordingly, the contribution
of the tensile response of fibers varies at each integration point of the
finite element mesh, rendering to a non-homogeneous material dis-
tribution.

The response of the matrix is considered by the Neo-Hookean
function

= − − +ψ
μ

μ J κ JC
2

[tr( ) 3] ln( )
2

[ln( )] ,m
def 2

(18)

where μ and κ are the constitutive constants and =J Fdet( )
def

is the vo-
lumetric Jacobian. The fibers are modeled by the polynomial form

= ⎧
⎨⎩

< <
− + − ≥

ψ
λ

k I k I λ
0 if 0 1

( 1) ( 1) if 1
,f

def f

1 4
2

2 4
3

f (19)

in which k1 and k2 are the material parameters. One can see in (19) that
the mechanical response of fibers is activated only for tensile states.

In order to consider fibers stiffer than the matrix, the values of {μ, κ,
k1, k2} = {0.5, 5, 17, 585}× 103 were assumed for the material con-
stants.

2.3.2. The specimen and the proposed RVE
One considers a hexahedral numerical specimen (Figure 2) made of

the material described in Section 2.3.1. The helical shape, although not
classical, is suitable for structured hexahedral meshes. In order to
achieve an appropriate balance between numerical costs and perfor-
mance to accomplish the main objectives addressed in present in-
vestigation, low order 8-nodes linear elements were used.

Helical fibers have a crimp length of 1.0 and diameter of 0.1. Fibers
are distributed parallel to one another and they are axially aligned in
the direction X1. This specimen contains three mesh regions. A first
external mesh layer, with straight boundary surfaces (see the mesh of
Figure 2c) surrounds a second internal mesh designed to follow the
helical geometry of fibers (see the helical wavy-like pattern shown in
the inner region of Figure 2a). The third region consist on a small sample
located on the centroid of this specimen (see Figure 2b and 2d).

The proposed RVE is a separate mesh, outside the specimen, con-
ceived to follow the exact geometry of the previously defined sample. In
this way, both, sample and RVE shapes ensure the continuity of the
helical fibers (this issue was highlighted in Section 2.2). Further details
related to the geometry, mesh and distribution of fibers within the
sample and RVE are depicted in Figure 2d. It is worth mentioning that,
despite a smother geometry and discretization on the RVE could be
used, specimen, sample and RVE share identical meshes, and thus nu-
merical results are comparable in a consistent manner.

It is important to state that the RVE is composed of a single material
phase, whose behavior depends locally on the directions of fibers (see
Section 2.3.1). Since these directions change with the helical wave-
length which is much smaller than the structural scale, the RVE thus
comprises a non-homogeneous material distribution.

2.3.3. The numerical experiment on the specimen
The numerical experiment consists of a displacement-controlled

monotonic triaxial test on the specimen shown in Figure 2. In order to
keep the main loadings aligned axially and transversely to helical fibers,
the specimen is subjected to an elongation of 20% in the direction X1

and a compression of 6% in the directions X2 and X3. The prescribed
displacements are assigned to the degrees of freedom perpendicular to
the boundary surfaces while those transverse to the prescribed direc-
tions are allowed to deform freely.

The loadings of interest in fiber-reinforced materials are usually
those aligned to the helical axis of fibers. According to this, the first
Piola-Kirchhoff stress component (P)11 that will be used as the reference
value of the specimen is computed by the ratio between the resulting
axial force and the undeformed cross section area of the specimen.

2.3.4. The numerical experiment on the RVE
Based on the boundary conditions imposed on the hexahedral spe-

cimen, the tensor

=
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

λ
λ

λ
F

0 0
0 0
0 0

,
1

2

3 (20)

with stretches =λ λ λ( , , ) (1.20, 0.94, 0.94)1 2 3 represents the homo-
genized deformation gradient to which the whole specimen is sub-
mitted. This tensor is then used as input data to perform the homo-
genization procedures described in Section 2.1 on the RVE of Figure 2d.
Once these procedures are completed, the corresponding homogenized
first Piola-Kirchhoff stress tensor is obtained directly from Equation (9).

3. Results

In order to verify how the kinematics of the RVE are affected by the
multiscale boundary conditions, the deformation of the mesh and the
von Mises measure of the logarithmic strain field on the RVE are
compared to the corresponding fields observed on the sample (see
Figure 3).

Similarly, Figure 4 compares the deformed meshes and von Mises
strains obtained on the sample and RVE for a macroscopic axial stretch

=λ 1.121 . It is important to mention that no solution was achieved with
the minimally constrained model for macroscopic stretches beyond
1.12 due to excessive mesh deformation (see Figure 4e).
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Figure 5 illustrates the evolution of the directions (arrows) and the
stretch values of fibers λf at different stages of the macroscopic de-
formation in a lateral view of the RVE for the mixed-axial linear
minimal model (MALM). The arrows represent the spatial base
vectors my.

Axial stress-stretch curves calculated from the specimen and those
predicted from the homogenization procedures, for each of the multi-
scale boundary condition tested, are plotted in Figure 6a. Figure 6b
displays the axial stress-stretch curves computed from the specimen and
those predicted from the homogenization procedures with the MALM
model for three sets of the material properties of fibers: Prop.1 = {k1 =
34, k2 = 1170}×103; Prop.2 = {k1 = 17, k2 = 585}×103; Prop.3 =
{k1 = 8.5, k2 = 292.5}×103. The set of parameters Prop.2 is twice
softer than the set Prop.1 and twice stiffer than the set Prop.3. For these
analyses, the material parameters of the matrix are kept fixed.

Figure 7 compares the axial component of the macroscopic stress
(P)11 with the transverse stresses (P)22, (P)33 for the mixed-axial linear
minimal model (MALM). Due to the contrasting stiffness between the
axial and the transverse stresses, Figure 7b emphasizes only the me-
chanical response of the transverse stresses.

4. Discussion

According to the mesh patterns and the strain fields shown in
Figure 3, the following observations are pointed out.

Firstly, the MALM model is the one that provides the closest results
to those of the sample for all the evaluated axial stretch amplitudes. The
second best results are those of the MLM model. Although the

equivalent strain fields obtained with this boundary condition present
suitable distributions beyond =λ 1.10,1 the shape of the deformed mesh
are slightly different from those of the sample (see the bow-like shape of
the mesh depicted in Figure 4c). These results show that, while the
space � u

MLM
μ over-restricts the RVE, the linear constraint on the single

axial displacement component defined in the space � u
MALM

μ releases the
RVE to find a better deformed configuration.

Following the same reasoning, the linear boundary displacements
model provides worse results than previous ones. Since it imposes a
linear deformation pattern to all nodes belonging to the boundaries of
the RVE (see Figure 3 and 4d), this model overestimates the local
strains on the matrix due to the uncoiling of fibers within the RVE.
Finally, the minimally constrained model provides reasonable results
for stretches up to =λ 1.051 . However, when the RVE undergoes mac-
roscopic axial stretches larger than =λ 1.05,1 heavily deformed mesh
patterns are verified, as shown in Figure 3 and detailed in Figure 4e. In
the present case, the finite element analysis fails to converge at

=λ 1.121 . The failure of the numerical analysis is due to the excessive
mesh deformation (see the bottom elements of Figure 4e), leading to ill-
conditioning of the tangent matrix (poor representation of the Jacobian
matrix), which in turns strongly affects the convergence of the Newton’s
procedure. It is worth to mention that similar mesh behavior (heavily
deformed) was also reported by Miehe et al. (2002) for this particular
boundary condition.

Comparing Figures 3 and 5 for the MALM model, one can see that,
up to a global stretch =λ 1.05,1 fibers do not exceed local stretches of

=λ 1.004f (0.4% of strain). On the other hand, the matrix experiences
(equivalent) strains of ~10%. This observation reinforces the known
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0.000
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Mixed linear 
minimal (MLM)
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Fig. 3. von Mises measure of the logarithmic strain at the sample and the same field on the RVE for different multiscale boundary conditions. No solution was
obtained with the minimally constrained model for a stretch beyond 1.12 due to high mesh deformation.
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concept that during the initial macroscopic stretch stages, fibers are not
intrinsically stretching, but uncoiling their helical structure. This fact is
directly related to the shape of the homogenized stress-stretch curves.
As can be seen in Figure 6a, a low stiffness is verified at the beginning of
the curves (up to =λ 1.051 ), behavior that is mainly ruled by the matrix.
Beyond =λ 1.05,1 an increasing of stiffness is verified due to stretching
of fibers (compare Figure 5 and 6a). This particular macroscopic be-
havior is usually observed in experimental tensile tests on tendon fas-
cicles, since this RVE was bioinspired by this tissue (Haraldsson et al.,
2005; Legerlotz et al., 2010; Svensson et al., 2010).

One can see in Figure 6a that the MALM model was able to accu-
rately predict the stress-stretch response of the specimen. The MLM
model, on the other hand, slightly overestimates the stiffness of the
referential curve. Similar behavior is also observed from the linear
boundary displacements model. The minimally constrained model re-
sults in a softer response and, as comment earlier, it fails to converge at

=λ 1.121 .
At this point an important issue must be highlighted. Despite both

MLM and linear models present relatively good behaviors for the
homogenized stress-stretch curves, they do not satisfactorily predict the
local kinematics of the RVE. These differences are of major importance
when the focus of the model is not its macroscopic output (stress-strain
curves) but the local strain and stress fields among the composite
constituents.

In order to investigate the sensitivity of the homogenization pro-
cedure regarding the stiffness of fibers, Figure 6b displays the homo-
genized stress-stretch curves computed from the specimen and those
predicted from the homogenization procedures with the MALM model

for three sets of the material properties of fibers. From these analyses
one can verify that the mechanical response of fibers rules the macro-
scopic stress-stretch behavior, since fibers were considered much stiffer
than the matrix. Moreover, the homogenized results retrieved from the
MALM model still present good agreement with the reference solutions
obtained from the specimen.

Another important issue for discussion concerns the homogenized
transverse stress-stretch curves plotted in Figure 7; they let clear that
the proposed tests do not represent a one-dimensional macroscopic
stress state. This is a direct consequence of imposing an a priori trans-
verse stretch in (20), related to a macroscopic Poisson’s ratio

= − − − = − − − =ν λ λ λ λ( 1)/( 1) ( 1)/( 1) 0.32 1 3 1 (see Section 2.3.4).
Since achieved homogenized transverse stresses are positive (see
Figure 7b), a Poisson ratio greater than =ν 0.3 should be imposed to
reduce their values. Moreover, a direct consistent way to achieve null
transverse stresses is tailoring mixed multiscale models that combine
strain-driven homogenized boundary conditions (like the present case)
with stress-driven ones. For example, an efficient approach consists of
embedding the macroscopic uniaxial stress constraint (stress-driven)
and an appropriated kinematic constraint (strain-driven) within the
variational principle (11). This is subject of further developments fo-
cusing on biological fibrous materials.

As have been pointed out throughout the manuscript, a practical
application of the present computational homogenization approach
concerns multiscale analyses of tendon fascicles. At this tissue scale,
helical arrangements of collagen fibers embedded in a cellular matrix
are found. Due to the complex geometrical and mechanical interactions
between the load-bearing structures (fibers) with the cellular material
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0.000

a) Sample

b) RVE - MALM

c) RVE - MLM

d) RVE - Linear

e) RVE - Minimal

Fig. 4. Lateral views emphasizing the mesh deformation and the von Mises
logarithmic strain at the macroscopic stretch of 1.12.
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Fig. 5. Lateral views of the RVE showing the evolution of the axial directions
(arrows) and stretch values of fibers within the RVE for the mixed-axial linear
minimal model (MALM).
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phase, unusual mechanical behaviors are observed. For example, tensile
tests in tendon fascicles report Poisson’s ratios ranging from 0.7 to 4,
indicating volume reduction under tension (Cheng et al., 2007; Reese
and Weiss, 2013). As discussed previously, the local kinematics of he-
lical fibers under tensile states may lead to large Poisson’s ratios.
However, in what ways these large transverse strains affect the local
kinematics of cells and induce physiological changes in tissue home-
ostasis, is still an open research issue. According to this, an appropriate
numerical prediction of the deformation fields on the RVE is a first step
to a better understanding on how the biomechanical environment affect
the physiological behaviors of the tissue, investigating, for example,
strain localization, local damage processes and mechanotransduction
mechanisms (Wang, 2006; Lavagnino et al., 2015; Popov et al., 2015).

5. Conclusions

An RVE-based multiscale numerical approach for the finite strain
analysis of materials composed of helical fibers embedded in a matrix
was presented. An unusual helical (wavy-like) RVE was proposed

bioinspired by the morphology of tendon fascicles to account for the
important continuity of the helical fibers. Due to the unusual
boundary geometry of the RVE, the numerical implementation of the
periodic boundary displacements model within a conventional finite
element code is cumbersome. Moreover, it was verified that the others
classical boundary conditions, namely, the linear boundary displace-
ments model and the minimally constrained model, seem not to be
suitable choices for the multiscale analyses of this class of RVEs. As a
consequence, two new models called Mixed Linear Minimal Model
(MLM) and Mixed Axial-Linear Minimal Model (MALM) were proposed
mixing appropriate features of the linear and minimally constrained
boundary conditions.

A numerical strategy based on a displacement-controlled monotonic
triaxial tests on specimens larger than the RVE served as a reference to
validate the proposed models.

Results concerning microscopic strain fields and homogenized
stress-stretch curves on the RVE point out the MALM model as the one
that predicts with great accuracy not only the homogenized quantities
but also the kinematic fields within the specimen.
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Fig. 6. (a) Comparison between the stress-stretch curves computed from the specimen with those predicted from the homogenization procedure for different
multiscale boundary conditions. The numerical analysis with the minimally constrained model fails for macroscopic stretches beyond 1.12. (b) Stress-stretch curves
computed from the specimen with those predicted from the homogenization procedure with the MALM model when the material parameters of fibers take values
twice stiffer (Prop. 1) and twice softer (Prop. 3) than those used in (a) (Prop. 2).
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Fig. 7. Homogenized stress-stretch curves for the mixed-axial linear minimal model (MALM) emphasizing the contrasting stiffness between the axial stress com-
ponent (P)11 with the transverse stresses (P)22 and (P)33.
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Appendix A. Linearizations

A.1. Stationarity condition

The stationarity condition of the Lagrangian (14) is defined through the variation � =d 0, which results in the following nonlinear system of
equations:
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For the sake of clarity, the time-discrete notation +(·)n 1 is not shown in the above variables and will be omitted henceforward.

A.2. Linearization of the equilibrium equations

The Newton-Raphson procedure requires the second variation of the Lagrangian � . In this case, the Gateaux derivatives of (A.1) in the directions
of the increments Δuμ, ΔΛ and Δγ result in
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The fourth order tensor � = P Fd /dμ μ μ
def

in (A.2) is the microscopic consistent tangent modulus (Simo and Taylor, 1985).

Appendix B. Numerical implementation

The underlined variables ( · ) shown in this section are arranged into a compact matrix notation generally used in finite element codes (see
Jog (2007) for further details on this topic).

B.1. Finite element discretization

Employing the standard finite element procedure (Bathe, 2006), the microscopic fields duμ
(e) and Δuμ

(e) and theirs respectively gradients ud μ
e( )

Y
and uΔ μ

e( )
Y are approximated in a finite element (e) as follow:

≈ ≈u N q u N qd d , Δ Δ ,μ
e e e

μ
e e e( ) ( ) ( ) ( ) ( ) ( )

(B.1)

≈ ≈u G q u G qd d , Δ Δ ,μ
e e e

μ
e e e( ) ( ) ( ) ( ) ( ) ( )

Y Y  (B.2)
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where = ⎡
⎣⎢

⋯ ⎤
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q q q qe e e
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1
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2

( ) ( )T T T T is the nodal microscopic displacement vector and n is the number of nodes of the element. The matrices N(e)

and G(e) contain the interpolation functions and their gradients, respectively.

B2. Residual and tangent matrix of the Newton-Raphson algorithm

Substitution of the approximations (B.1) and (B.2) into the nonlinear system (A.1) and its derivatives (A.2-A.8), leads to the residual vector
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and the tangent matrix
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respectively. In Equation (B.4) ϵ is a zero matrix. However, a perturbation is introduced in all elements of ϵ in order to avoid ill conditioning of the
tangent matrix KT. In a double precision code, no numerical problems have been verified with = −ϵ 10 14.

In equations (B.3) and (B.4) the following quantities are defined:
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where � is the finite element assembly operator. It is worth to mention that fint and K are the same internal force vector and the stiffness matrix
obtained from standard nonlinear finite element procedures.
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