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Abstract. A formulation for error estimation is developed for the bending problem of com-
posite laminated plates based on the Mindlin-Reissner kinematic model discritized by the
Generalized Finite Element Method (GFEM). The error estimation process starts with an
upper bound in energy norm, which is obtained following the basic CRE (Constitutive Rela-
tion Error) framework of the Ladevéze formulation, that is, the estimate is obtained from a
statically admissible stress field computed at element level in a Neumann problem where the
element boundary forces are equilibrated. The authors have previously shown that an accurate
description of the in plane stresses in a laminate is essential to obtain an accurate approxim-
ation to the transverse shear stresses at the layers interfaces. Since important failure modes
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i laminated composite plates, like the delamination, are linked to the transverse stresses, it
15 essential to develop both, accurate post-processing procedures to compute improved trans-
verse stresses, and also estimate techniques for the discretization errors. The first condition
1s adequately satisfied by GFEM. Therefore, the aim of the present work is to extend the gen-
eral CRE technology to develop formulations to estimation of errors in Quantity of Interest
(QI) identified preferably with the stress field in the laminated plate problem.

One of the steps necessary in the CRE procedure is the computation of and admissible stress
field in each element, in a Neumann problem where the boundary forces have been previously
equilibrated. For a GFEM basis with high order enrichment, adequate procedures have to be
sought. Here we use one single higher order finite element, based on displacement FEM, to
obtain an approximation to the equilibrated field. The formulation is implemented for arbit-
rary degree of the basis, which allows an arbitrarily close approximation to the equilibrium
condition.

The sharpness of the QI’s error bounds is increased with the accuracy of the primal and dual
global energy norm of errors. In the present work we investigate the effectiveness of a local
GFEM p-enrichment as a tool to improve the approximability of the model in capturing the
local gradients which characterizes response of the dual loading. The GFEM p-enrichment is
implemented in a simple and straightforward way, as opposed to some other possible forms of
enrichment, e.g. local h-refinement or a sub-domain approach. Numerical tests are performed
to asses the effect of the different parameters in the modeling over the errors in the quantities
of interest.

Keywords: Strict error bounds estimation, Generalized Finite Element Method; Admissible
stress field, Element FEquilibrated Technique, Laminated plate Mindlin model.

1 INTRODUCTION

One of the goals of the Finite Element Method (FEM), or its generalized form (GFEM),
in the structural mechanics consists in providing relieble and accurate estimates to be used
in analysis and design in the different branches of industry, for example the automobilistic
industry, aeronautics, naval, power plants, etc. In the first years of the FEM development,
the community was satisfied of merely being able to obtain a numerical approximation of the
solution for the problem at hand, but soon after the 1980’s, investigations were started aimed
to estimate also bounds for the errors commited in the numerical models. More recently,
several industrial fields have already made mandatory the execution of an error estimate to
every numerical model. Coarse energy estimates have already become available in most large
commercial FEM codes.

Among the many techniques and procedures developed to estimate errors in FEM sim-
ulations, we can consider, possibly, only a few large families of methods: those based on
equilibrated residuals, [13], the patch-based fluz-free method, [14][1], and those based on
Constitutive Relation Error, [8], hypercircle, [17], besides many other variations and com-
binations. These forms have been, since their origin, based on consistent mathematic ana-
lysis. In parallel, there are the methods derived from the ZZ method (Zienkiewicz-Zu [18]),
associated with smoothing of stresses obtained in super convergent points. These methods
are more adequate to the post processing of low order finite elements and, only recently,
became object of improvements [6].

The Constitutive Relation Error method was first proposed by Ladevéze in 1975, initially
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for the post-processing of FEM results in linear problems, and have been developed further
for dynamic and material non linear problems ([10] in 1997,[15] in 1995, [9] in 2010 for
example. Apparently this was the first general purpose method to provide a strict upper
bound for the FEM error, although in 1947 Prager had already developed a method based
on hypercircle to give error estimates [17].

In laminated orthotropic plates it is known [11] that the transverse shear stresses are
poorly estimated by the low order FEM. The extraction method based on transverse stress
integration only provide acceptable transverse estimate if the in plane stresses are computed
from a FE basis of high order. The GFEM provides a straightforward and simple way to
generate p-enrichment in a coarse mesh. Therefore, the GFEM p-enrichment becomes in
important tool to generate high order approximation over the plate surface, which provides
improved estimates for the transverse shear stresses.

Some research have been done in the development of error estimators for homogeneous
isotropic plate FEM models. Benoit [2] in 1999 obtained error bounds in energy norm for
the Kirchhoff kinematic model. For the error estimates for Mindlin model, it can be noticed
the work of Carstensen [4] in 2006. Beirao da Veiga [3] in 2013 performed error analysis for
the MITC plate elements.

The objectives of the present paper are the following: (a) to formulate the global energy
error estimate for the laminated plate bending model, based on the Constitutive Relation
Error formulation, adapted to the GFEM technique; (b) to formulate the dual problem for
the error in quantity of interest. In both steps, it is sought to investigate the effects of
p-enrichment in several sub-steps involved, which are, for example, the enrichment of the
GFEM basis, of the 1-D polynomial basis used to represent the equilibrated tractions along
each element edges, the effect of the basis degree used in the solution of the finite element
model for the admissible stress field problem at elements level.

The overall main goal is investigation of the effectiveness of local GFEM p-enrichment
as a tool to improve the approximability of the model in capturing the local gradients which
characterizes response of the dual loading. The GFEM p-enrichment is implemented in a
simple and straightforward way, as opposed to some other possible forms of enrichment, e.g.
local h-refinement or a sub-domain approach.

Besides the evaluation of the p-enrichment in the dual problem, other evaluations are also
performed. The sensibility of the Constitutive Relation Error (CRE) method for a posteriori
error estimate in certain types of Quantities of Interest was also evaluated with respect to
the degrees polynomial reproducibility used in each of the hierarchic sets of basis functions
used in the different stages of the method. The basis degrees tested are the following: (1)
The degree d of the FEM basis of the triangle Lagrange functions used for the equilibrium
problem in each isolated element problem; (2) The degree e of the 1D polynomial function
used on the elements edges to represent the equilibrated resultant forces. All tests were
performed with QI’s defined as moments of a stress components over a given element. As a
novelty, these moments are not only average usually, but they are defined from polynomial
weight functions of arbitrary degree g. The tests were done with weights of degrees zero and
one.
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2 REFERENCE PROBLEM: THE LAMINATED PLATE
BENDING

Let us consider the general conditions of a static linear problem of a anisotropic laminated
plate occupying a volume V = Q x I € R? x R, where Q represents the reference (mean)
surface, with cartesian coordinates x = (x,y). The boundary of the reference surface is
designated as I'. I is the domain along the the transverse direction, defined as I = {z, such
that z € [-H/2, H/2]}, where H is the laminate thickness. The boundaries of the plate are
defined by the surfaces z = +H /2 and are designated as ST and S—, and the lateral surface
L, defined by (x, z) such that x € Q and z € I.

The plate is subjected to volumetric body load b = b(x, z), surface distributed load
q = q(x) applied over the upper surface ST, and lateral surface loads f applied at the part
of the lateral border L designated as Ly. Here we restrict the distributed load to have only
the transverse component, that is, in cartesian coordinates, q = {0,0,¢.). The rest of the
boundary conditions are: (a) free surface at S—; (b) Dirichlet boundary conditions u = @ at
the part of the lateral surface designated as L,,. The vectors b, f, q and u € R3.

The kinematic relations for the First Order Shear Deformation Theory (Mindlin’s Model)
can be represented as

U (%, 2) = (%) + 200(x), uy(x,2) = uy(x) + 20 (x),  us(x, 2) = w(x). (1)

Where u° and ug are generalized in plane displacement components of a point in the reference
surface, v, 1, are warp functions and w is the transverse displacement of the reference
surface. The tests described in this paper can be done more clearly, without loss of generality,
restricting the model to simple bending, that is, transverse loading on symmetric laminate.
Therefore, the finite element solution of the equilibrium bending problem is: given
@, Xm and Q,, , obtain [}, that satisfies

/Fh-Eh(u,’fL) dQ—/q'u;‘L dQ)— [ t-u, dU =0, for any uj, € Vary, (2)
Q Q

Ly

where the symbols were adapted from the general problem to the bending case as

M.
o I . Mh . v o Qy
Eh{%}’ Fh{Qh }; Mh* jj\yy ) Qh{Qx }h7
xry h

g B Qn w
q=+< 0 , t=¢ X,, and u, =< Y, . (3)
O Ym ¢y h

The constitutive relation for the laminate, when restricted to bending, will be represented
in compact form as F = CX where C is the constitutive matrix for the laminate at the
reference surface coordinate x.
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3 GFEM DISCRETIZATION

Let us consider an usual FEM regular mesh of elements of domain 2, defined such that
Q. C Q2 and U, = Q. The mesh is defined by a set of nodes n = 1,...,nno of coordinates
X, = (Tn, Yn), and define the patch P, as the union of all elements that share node n, whose
domain is Qp, Let us define a set of partition of unity (PoU) functions ¢(x) = {¢1, ¢2,
oy Ony oy Onnot, Where ¢, is associated with patch P, such that ¢,(x,) = 1 and it has
compact support on p,.

The GFEM general foundation consists in obtaining a set of approximation functions
by enriching the PoU set by adequate functions. In many cases these are singular or high
gradient regular functions defined around a localized region on the domain. However, for the
goals of this paper, it is more adequate to use the most traditional setting of GFEM, based
on enrichment given by a simple complete set of monomials defined in global coordinates.
In this way the tests will give results more clearly in a controlled set of problems. Therefore,
we use the set of nodal monomials &, = {1, 7, ¥, 2, 7y, ¥*, T, Z°y...}, where T and ¥ are
normalized coordinates, arbitrarily defined as z = (v — x,,)/ Ly, and § = (y — y»)/ Ly, and
L., and Ly, are characteristic lengths of the patch P,. The set of all nodal monomials is
E={&, &, ....,&ny oy Enno}- A set of enriched approximation functions is generated as

N(X) = ¢(X)5 = {(blgl; ¢2827 T 7¢n8n7 T 7¢nnognno}- (4)

Non homogeneous enrichment can be easily defined, using a different set &,, for each patch.
The set N(x) is used to discretize the generalized displacement components uy, for example,
w(x) = N(x)W, where W is a convenient set of nodal coefficients of the approximation.
After that, the usual displacement based FEM formulation follows naturally.

It is possible to prove that the set of approximation functions N (x) is capable of approx-
imating precisely any complete polynomial equation up to degree p, over a patch P,, if the
patches of all the nodes ¢ in P, are enriched with complete sets &, of monomials of degree
p. Throughout the text, we will refer to a set of GFEM basis degree p.

The usual form of the PoU used is the C°(€2) shape functions used in FEM. Most com-
monly, the linear piecewise functions. This gives origin to what we call C°-GFEM, in opos-
ition to the smooth versions, called C*-GFEM, [12][11] where the PoU functions are C*(Q)
continuous, where k is a positive integer. The formulation for error estimate described here
is adequate for both GFEM forms.

4 CONSTITUTIVE RELATION ERROR ESTIMATOR

Let us consider three pairs of solution:

1. The pair (e, F ¢), which is the exact solution of the complete set of conditions: the
equilibrium condition (2), the constitutive equations and the kinematic relations eq.(1)
and u € Kim;

2. The approximate FE solution pair (uy, F ), with u, € Kimy, and Fj such that M, =
Dk(uy,) and Qp, = Ev°(uy). Thus, the discretization error is defined as e, = u., — uy;

CILAMCE 2016
Proceedings of the XXXVII Iberian Latin-American Congress on Computational Methods in Engineering
Suzana Moreira Avila (Editor), ABMEC, Brasilia, DF, Brazil, November 6-9, 2016



F. Author, S. Author, T. Author (Please edit this authors field!)

3. An admissible solution (fiy,, f 1,), that can be derived from (uy, F 1,). It is admissible in
the sense that @, € Kimy, (it is kinematically admissible) and f, satisfies (2) (it is
statically admissible).

It is considered two measures of the discretization error: a global error, based on the
energy norm and a local one defined with respect to a given quantity of interest. The global
error is defined as

Eg = HeuHKmQ = [|Fex — FhHS,Q (5)

where the norms are defined as

[P (/Q CX(e) : (o) dQ)UQ and  ofgq = </Q. :Cle dQ)1/2. (6)

The Constitutive Relation Method (CRE) adopted in this work uses an admissible solu-
tion to derive a strict, computable upper bound of the global error Ey. First, the quantity
Ecre(v,F) is defined as

1/2
Ecrp(V.F) = (% H,r—cz:(v)HgQ) for V(v,F). (7)

It is proved in [8] that

||ue:1: - ﬁh”im,g + HF&'E - I:_hHZ,Q = 2Eé’RE<ﬁhalﬁ_h>7 (8>

such that Fcrp produces an upper bound as Ey < ﬂECRE(ﬁh,ﬁ ). The computation
of [}, can be performed by different techniques, but probably the most versatile are the
element equilibration technique [8] and the flux-free technique [14],[6]. For the admissible
displacement, usually one simply takes @, = uy,.

5 UPPER AND LOWER BOUNDS ON ERROR OF
QI - from CRE

Consider that the quantity of interest (QI) is a linear functional £(u) of the displace-
ment field, defined in the form

Q(u) = L(u) = /Q (o0 ew) + £y 2 Su) +F-u) de ()

where &y, [y and fg are operators (called extractors) with dimensions of stresses, resultant
stresses and force respectively, arbitrarily chosen to provide the quantity one has interest,
and can be given in explicit or implicit form. f 5 is adequate to identify quantities of interest
of generalized deformation of the reference surface, that is, {k., Ky, Kuy, Vyzs Va2 )’ s Ox 1S
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adequate to identify deformation components, that is, {&., €,, Yay, Vyzs Yoz} . and fs. identifies
generalized displacements of a point in the reference surface, that is, {w, 1., ¥, }*. In the
next section they will be adapted to identify the more useful quantities of interest of stresses,
{04, Oyy Tuy, Tyzs Tez}’ at a given point (x,z) in the volume, resultant stresses {M,, M,
My, Qy, Q. }" and distributed forces {q, m,, m,}", respectively.

Next, the following adjoint problem is defined, which uses £(u) as a weak form loading;:
find the displacement-resultant stress pair (,F ) which satisfy

Kinematic conditions: 1 € Kin and a(x) =0, for Vx € Ty,
Equilibrium condition: / F-X(u*)dQ = L(u*), for Vu* € Uy,
Q
Constitutive relation:  F (x) = CX(1(x)) for vx €. (10)

The structure of the adjoint problem is the same as the reference problem, but with a
different loading. At this point, one has two problems, with two approximate solutions, and
it is necessary to estimate the discretization errors on each approximation. Using the CRE
methodology, one obtains FE approximations for each problem, which does not satisfy local
equilibrium, and from then, one generates admissible solutions, which satisfyes all conditions
except the constitutive relation. Diagrammatically, one has:

Reference problem: (up,Fp) (FE approx.) — ( ) (admissible),

[ h
Adjoint problem: (u,F 1) (FE approx.) — (ﬁhfh) (admissible). (11)
The admissible stresses are computed from the prolongation condition which, for the

adjoint problem is the left equality of:

/ Fr-3(u")dQ = / Fr-3(u")dQ = L(u"). (12)
Q Q

With the two approximate admissible solutions of (11), the Theorem 1 below is stated,
as a modification of a theorem in ref. [9] that was enunciated in the frame of linear elasticity
and here it is adapted to relate quantities of interest of stresses and resultant stresses which
are characteristic of the laminated plate model. Thus, the bounds for the discretization
error in quantity of interest are estimated from the following theorem.

Theorem - Consider ()., the unknown exact value of the QI and @), the computed FE
approzimation of it. One has the following inquality:

|Qee — Qn — Quil < Ecre(tn,F 1) Ecre <ah>lﬁh)7 where (13)
*/_/ /
B ~
E

~m -~

. ~m > 1 =
th = / (Fh — CE(ﬁh)) 'Cith dQ—i—E(ﬁh—uh) and Fh = 5 <Fh + CE(ﬁh)> . (14)
Q
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The inequality (13) can be written as

‘Qex_Qh_th‘SE Ea
—F ESQex_Qh_thSE E?

Qi —FE E<Qu—Qn<E E+Qu (15)
L U
nQ Q

such that one obtains the desired bounds né and ng for the discretization error of the
quantity of interest. Also, one can obtain bounds for the QI itself: né +Qn < Qer < ng + Q.
From (15), the average of the error in the QI is

(16 +n6) = Qnn- (16)

N | —

(Qeac - Qh)m =

This shows explicitly the role of @y, as the center of the range between the lower and
upper bounds of the error, which is given by the product £ E. This term, E E, is the only
one present in the previous error estimate formulations prior to the work [9] in 2010, which
included the term @)p,,. Part of the goals of the present work is to investigate the efficiency
of this estimation.

6 SOME DETAILS ON THE USE OF THE EXTRACT-
ORS

Consider that we want to have an error estimate of a given resultant stress component,
F1(x), at all x €Qy, where Qx C Q is an arbitrary region of the domain, for example, a
chosen finite element of the mesh or some smaller region in the element or still a region
encompassing a group of elements of partes of then. The definition in (9) makes use of an
integral over the domain. This formal structure can be adapted in the following way. Let
us consider, for the sake of clarity of description, only two of the three extractors in in (9),
the in plane components of &y, and fy;, and decompose 75, with help of the material property
matrix

Q(u)zﬁ(u)E/Q<§g-a(u)—l—f'g'u> ). (17)

o ={04, 04, Tuy}? are the in plane stresses at a point (x,z) in the volume and S* is the
material matrix of the layer k£ which contains the coordinate z. For bending, ¢ = zx. Let
us consider a set of continuous basis functions defined over sy, represented as N(x) =
{fi, fo, s frs -+, fu}, where fr(x) has compact support on Qx. If we are interested in the
error estimate of a given stress component of o, that is, 0, p = 1,2, 3, we define a set of n
deformation extractor vectors &k s 9 =1,2,---,n, such that its only non zero entry is fr(x),
at position p. For example, for o,, p = 1, the set becomes
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5121 = {f1<x)7070}T7 5122 = {fQ(X)’()?O}T? 5129 = {fk(X),O,O}T7
: (18)
EL = {fu(x),0,0}", etc, if x =(z,y)€ Ny and f, = 0 if (z,y)¢ Q..

The functions fi(x) must form a complete set, whether polynomial, trigonometric or
other. The set &%, , broduce n moments of the QI:

L,(u) = /Q 2, - S*e(u)dfy,
- / égg 'U(u>dQE, g=1,2,--- n. (19)
955

It is clear that £,(u) is the QI of the moments of o, (x) with respect to the function f,.
If one computes FE approximations for all of these moments, and the respective bounds of
error accordingly to (15), one has, in simplified notation, for a given moment k,

Ly < | f, Ao, d2s < U, (20)

955

A0, (x) =(0pex — Ozp) is the unknown pointwise error in the stress component. It is possible
to arbitrate another set of basis functions N(x) = {f1, fa,- -+, fy, - -+, fm} to discretize the
error in the stress component, such that, for any x € Qgy,

AGL(X) = Opew — Tun ~ N(x)AS,
= fix)AS, [1=1,2,..,n, (21)
where N(z,y) is a set of m basis functions on Qy, and AS is the correspondent set of unknown

coefficients.
Substituting this approximation in (20) and performing the integration, one obtains

L < {Q ngng} AS < UZ, forg=1,2,...,n,
>z
Lg? S [ o fg ]Fl dQZ:| ASZ S Ug, [l = 1,...7?,,
>
Gy
Ly <G AS; < UP, (22)

Lo <G AS < Uy, (in vector form)

G is a n X m matrix, whose components are

Gy = fo fi dQs. (23)
Qx
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(If the set of functions chosen for f, and f; are the same and linearly independent, G will
be square, symmetric and positive definite.) Equation (22) defines two algebraic problems
G AS =Ly and G AS = Ug. If n > m, the solution is unique and (22) becomes

p< AS<q, (24)

where p = G_lLQ and q = G_lUQ are coefficient vectors of the errors bounds, associated
with the basis N.

These coefficients are next used to combine the terms in the basis N to generate the
pointwise error of Aoy:

Np < N AS < Naq,
fim < fi AS; < Ny, (25)
Lq(x) < Aoy(x) < Ugp(x).

In this way, we have obtained Lg(x) and Ug(x), the bounds for the pointwise error of
the component o, at the point x € 25. It should be noted that, even if the bounds for the
error in each moment of QI are strict, the same cannot be said from the bounds in (25), due
to the approximation done on the error of the stress, eq. (21), whose accuracy is dependent
of the size of basis N. In all tests we used the triangular Lagrangian basis functions for both
N and N. It is possible to obtain bounds for the pointwise error of a stress component, at
any position in an arbitrary region €25;. The region is taken here to be an entire arbitrary
element in the mesh.

7 ASPECTS ON THE EQUILIBRATED ELEMENT
TECHNIQUE

The equilibrated element technique for the FEM is well established after some decades,
[13] and [8], but here we summarize some of its main steps in order to be able to describe
some particularities of its application to the GFEM when it is implemented with hierarchic
polynomial enrichment.

Given the FEM or GFEM results, the general steps for construction of an equilibrated
resultant force field, £, (x), x € Q, are the following.

1. For each element E, construction of a resultant forces field on the element edges which
satisfies interelement continuity with neighboring elements, and is it equilibrated with
the loading and internal forces in the element;

2. For each element E, construction of an statically admissible resultant force field f, (x),
X EQE.

The core of the technique is the prolongation condition which, in the laminated plate
problem can be expressed in the following way. Given an approximate solution My, Qp
obtained by the displacement based finite element method, with an approximation basis
functions set ¢;;(x) where ¢ = 1,2, ...number of approximation functions in direction j, for
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j =1,2,3 for w, 0,, 0, respectively. One seeks an equilibrated field f;, = {Mh,Qh}, as
a prolongation of the finite element solution in the sense: For any approximation function
©i;(x) of the finite element model, and for any element E of the mesh, it is imposed that

[ onm ) aste = [ Fu s (o)) dsi (26)
Qg Qp

where j indicates the components of the triad of generalized bending displacements in 1:
ut = {w*, w*, HZ}T. In this way, the equilibrated forces in the element are set to have the
same deformation energy in bending as the the FEM approximation, due to the linearity
of (26) with respect to ¢;;. Observe that ¢i1 = {©:;;0;0}" or @iz = {0;¢;;0}" or i3 =
{0;0; 051"

Then we obtain an expression for the boundary tractions

/ Tou (pg) dr = / Fo- S (pu)) d€s — / q- u (pu) dO. (27)
NE Qg 1975]

4

D (i,k)

where, to simplify, we consider only transverse distributed load ¢, such that q = {q., 0, 0}*
and boundary tractions T on the element are related to the generalized force by

M,
Qn Ty ny My

T=<{ X, = | n, Ny M,, . (28)
Ym OF Ny Ny Qx

n, and n, are the cartesian components of the normal vector on the boundary, outward to
the element.

The right hand side of (27) is known and is represented by D% (i, k). Due to this de-
coupling of ©/, eq.(27) generates three algebraic equations, one for each direction j, which
produces the values of the corresponding component of the equilibrated boundary traction
T; in the element E. Then (27) can be written as

/ Tj%k dl' = Dg(i,j, k), for node i, component j, element E. (29)
OF

For a triangular element, all functions ¢;;, are zero on the edge opposite to the node .
Therefore, th integral at the left hand side, on the boundary of the E,-th (n =1,2,--- | N)
element connected to the node 7, is defined only by the two edges issuing from node i. The
value on each edge r = 1,2 is designated by 0 (i, k) (interface density projection), that
is

b (i, g, k) = / Tipu dT (30)
FT

En
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where I'y, , for r = 1,2, are the edges of the element E, connected to the node i. Also, the
right hand side of (29) is

D, (1,4, k) = / oS0 (o)) d% — / a- u () d (31)

Qg
2\]

™ W, :
. 3

Target element TEL

X

Figure 1: GFEM mesh in the laminate, showing the target element TE1 for QI and the
associated surrounding subdomain ;. In the detail, local node numbers of TE1.

2

18 —
16
g
S14 /

12

] p:2’e:5
1

2 3 4 5 6
d

Figure 2: Estimated energy norm of error in primal problem from CRE versus the degree
d of the FEM basis in the equilibrium problem. ecrp = V2Ecrp, and Egx is the exact
energy norm of error. p = 2, e = 5.

8 RESULTS

The test problem chosen is the classical problem of the square laminated plate, simply
supported, subjected to a transverse distributed load, with symmetric layer stack. The
advantage of this model is that it possesses complete exact solution for the Mindlin kinematic
model, [7], for all types of response: displacements, stress components and strain energy.
The data are the following: sides a = b = 200 mm, total thickness H = 50 mm, three
equal orthotropic layers oriented at [0°,90°/0°] of equal thicknesses h, and elastic properties
E1 =175 GP&, E2 =7 GP&, G12 = G13 = 3.5 GPa, G23 =14 GP&, Vig = Vg3 — 025,
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k = 1.0, where the subscripts 1 and 2 indicate the principal orthotropic material directions,
such that direction 3 coincide with global axis z and 1 with z in layers 1 and 3. The applied
load is transverse sinusoidal distributed load given by ¢(z,y) = qo sin(wz/a) sin(7y/b), with
go = 0.001 N/mm?.

A single mesh is used, with three noded triangular elements, shown in Figure 1. For the
purpose of the tests, the quantity of interest is defined over one single element, denominated
target element, TE1, indicated in the figure. The region designated as 2; around TE1l
is enriched for the approximate solution of the dual problem. The definition of the QI is
made with use of weight functions which are selected as the triangular Lagrangian functions
associated with the TE1. The results are shown only for constant and linear weight functions,
which are associated with the intrinsic nodes 1,2 and 3 shown in Figure 1 for TEL.

14
i 3/9,/—9—/—5
12 //E
E [Cl,node&s'gma\( 1
Zﬁ 0=5p=2¢=5g9g=1
@ 1 g © (E EZ bound
6& | LE-—EI—E Upper boundJ
9\ +—+—+ Average
0.8 ~¢
- )\S\e 4

0.6
2 3 4 5 6
d

Figure 3: QI for node 3 of the target element TE1, defined with linear weight function, for
oy, versus the degree d of the FEM basis in the equilibrium problem. D =5, p =2, e = 5.

The goal of the present paper is to evaluate the sensibility of the Constitutive Relation
Error (CRE) method for a posteriori error estimate in certain types of Quantities of Interest,
with respect to the degrees polynomial reproducibility in each of the hierarchic sets of basis
functions used in the different stages of the method. These basis degrees are the following:

1. p = 2,3,...,9 is the degree of the GFEM basis in the primal global problem. An
uniform enrichment is adopted to simplify the observations;

2. D = 2,3,4,5 is the degree of the GFEM basis in the dual problem, at the region
around the QI element (subdomain €; indicated in Figure 1). (Here there are results
only for QI target element TE1, of Figure 1, not for TE1).

3. d = 2,..,9 = FEM basis degree (triangle Lagrange functions) for the equilibrium
problem in each isolated element problem;

4. g = 0,1 = degree of the set of polynomials used as weight functions in the definition
of the QI, the functions fi(x) in (19).

The first test is the the effectivity index for the primal problem, shown in Figure 2,
for ecrp/Erx versus d, where ecrp = V2E¢gE is the estimated upper bound of error in
energy norm of the primal problem normalized by Egx, the exact GFEM error in energy
norm. It was kept fixed the degree p = 2 in the GFEM model and degree e = 5 in the
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1D polynomial for the equilibrated resultant forces on the element edges. It is seem that
ecre/Epx grows asymptotically to abound about 1.8. Small values of d seems to generate,
in this specific problem, more accurate approximations, although it is known that only the
asymptotic value is a guaranteed upper bound. Different problems show that small values
of d produce effectivity indices smaller than one.

Next we start with the evaluations for the QI’s. In all results only one entity is chosen,
the stress component o, integrated over the target element TE1. In some of the results the
weight function fi(x) in (19) is the unity constant, that is, a polynomial of degree g = 0, and
other in other results ¢ = 1 is used, where the polynomial is one of the linear Lagrangean
functions associated with one of the three nodes of the element TEL.

B e=—F-——F ===
Ql, node 1 - sigmaY
125 BF— T N S p=2e=5g9g=1
L h b QI1GFEM
_Eﬁ 3 © —OQlLBound,d=6
o 1 — !E- H —1QI UBound, d=6
= - = = - T TH[A~ A —AQlaverage, d=6
o I’ © QI LBound, d =2
E—HE—+E1Ql UBound, d=2
0.75 < ©—0—@Q aveage d=2
05 9——;_9____()__——0
2 3 4 5
D

Figure 4: QI of the target element TE1, defined with linear weight function for node 1, for
oy, versus the degree D of the dual GFEM basis. p = 2, e = 5.

Figure 3 shows the evolution of the QI defined with linear and constant weight functions,
for oy, versus the degree d of the FEM basis in the equilibrium problem. The estimates are
normalized by Qlgx, the exact value of the QI. It is observed and asymptotic behavior of
the bounds with growth of d, similar for both types of weight functions, with ¢ = 0 or 1. In
both cases the range of the bounds with respect to the average is about £30 %. The curve
indicated as “Average” is obtained directly as the average of the upper and lower bound
values. Considering (15), the results denoted as QI upper and lower values are computed as

Ql,=Qn+Qu—E E,
Qly =Qn+ Qu+ E E, (32)
such that the average is
1
QL, = 5 (Ql + Qly) = Qn + Qnn- (33)

The results in Figures 3 and the ones that follows show a striking accuracy of the estim-
ation of the QI by the average of the bounds, for all values of d. This is a direct result of the
term )y of the formulation, which issues from the framework of the hypercircle theorem.

Figure 4 evaluates the effect of D, the degree of the GFEM basis in the region around
the target element TE1 in the dual problem. Also, the influence of values of d, the degree of
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the FEM basis in the element equilibrium problem. Two extreme values are tested, d = 2
and 6, with linear weight function associated to node 1 of the TE1 in the QI definition.

The results consistently show good approximation with the exact solution of the values of
QI obtained from the average of the error bounds, for all values of D. It must be noticed that
the values shown for D = 2 means that the basis used in the dual problem is the same used
in the primal problem. Even in this case we can obtain meaningful results for the bounds
and for the average estimate of the QI. This case corresponds to the most inexpensive option
for the analysis, that is, the stiffness matrices for both primal and dual problems are the
same and need to be factorized only once.

Figure 5 searches the asymptotic behavior of the bounds with d, where, differently from
the other graphs, the equilibrium problem on each element is solved with polynomials of
degrees extending up to d = 9. It is seen that a basis degree d equal to about 6 is reasonably
sufficient to approximate well the equilibrated stress field in each element. Results for d =1
are only illustrative, because the primal problem is solved in this case using GFEM of
degree p = 2, and the equilibrated resultant forces on each element’s boundary represent a
loading which is clearly too complex to to allow a FEM solution that approximates well an
equilibrated stress field using a FEM basis of degree only d = 1. Thus, the bounds are set
much more apart than the cases of larger values of d. However, even in this case, the average
value is well behaved.

m
as

B—H

q/E|———EE)—E

QI node 3-Sgmay
D=5p=2e=1g=1
GFEM
0.3 G © LBound
,Z E—H=—+1 UBound
@ @ -0 Average

O T 1 T 1
1 3 5 7 9
d

Figure 5: QI defined with node 3 weight function over the target element TE1, for o, versus
the degree d of the FEM basis in the equilibrium problem. D =5, p = 2.

The range of the error bounds are equal to the product £ E between the CRE energy
norms of error estimates in the primal and dual problems respectively. Figure 6 show the
evolution of both contributions along the basis degree of the equilibrium problem d. For the
dual problem, the loading is for a QI associated with a linear weight function for local node
3 of the TE1. On the right vertical axis the errors are normalized by EXpp 4per and ESppa0e,
respectively for tha primal and dual problems, which are defined as

EgREAver = ECRE<ﬁh7ﬁ;zn)? and EgRE'Aver = ECRE (ﬁhaﬁh> ) (34)

where Egrp in both cases are computed according to (7) and 7 and [, are the averages
of equilibrated resultant forces computed according to (14) as
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Fr= % (ﬁh + CE(ﬁh)> . and [, = % (Ul + cz(ﬁh)) . (35)

The errors for primal and dual problems are several orders of magnitude different. For
example, for d = 9, we obtain the following values for the primal problem: Efp, = 8.11 -
1074V Nmm, Ef ;5 sper = 11.9-1073v/Nmm, such that L,/ EL ppaver = 0.0677, and for the
dual problem: El,. = 63.5vVNmm, E-pp 4,0 = 78.6V/Nmm, such that B2y 5/ Elppaver =
0.807.

Considering the Ecrpaver as reference, it can be seen that the global GFEM discretization
error in the dual problem is one order of magnitude larger than the primal one. The degree
used in the GFEM basis in the dual problem is D = 5 only over the region €2; around the
target element TE1 (the gray region shown in Figure 1). The global error depends on the
discretization in the region around the target element where the localized dual loading is
applied. In Figure 7 we test the effect of applying especial enrichment over regions of two
sizes around the element. The first is on the nodes of the 2; and in the second case, the
enrichment of degree D is applied only on the three nodes of the TE1. In the second case,
the transition region is composed by all elements around TE1, that is, on this vicinity, the
basis functions of approximation are not able to represent completely polynomials of degree
D, because the nodes that are not in TE1 are enriched only with the polynomials of the
primal problem, in the present case, of degree p = 2. First, we observe the higher rate of
convergence when the enriched region is larger. Second, the relative errors are smaller, as
expected.
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Figure 6: CRE energy norms of error estimates for primal and dual problem associated
with node 3 of the target element TE1, for o,, versus the degree d of the FEM basis in the
equilibrium problem. D =5, p = 2.

The lower and upper bounds for the set of Qs issued from the three linear weighting
functions associated with the target element are used to obtain pointwise values of the stress
component used in the definition of the QI, o, in the present case, over all points on the target
element. We obtain (a) an estimate from the lower bound, that is, o,(x) = Ug(x) + on(x),
(b) an estimate from the upper bound, that is, o,(x) = Lg(x) 4+ 04(x), (c) and, similarly, an
estimate from the average of the bounds: o,(x) = 3[Lo(x) + Ug(x)] + o4(x), for Vx € Qrp;.
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Figure 7: CRE energy norms of error estimates for dual problem with QI associated with
node 3 of the target element TE1, for 0,. d = 6, p = 2, g = 1. Results for enrichment of
dual problem over subdomain €2; and over only element TE1.

9 CONCLUSIONS

A formulation for error estimation in quantity of interest was developed for the bending
problem of composite laminated plates based on the Mindlin-Reissner kinematic model dis-
critized by the Generalized Finite Element Method (GFEM). The error estimation is based
on upper bounds in energy norm obtained by the basic CRE (Constitutive Relation Error)
framework, that is, the estimate is obtained from a statically admissible stress field computed
at element level in a Neumann problem where the element boundary forces are equilibrated.
For a GFEM basis with high order enrichment, an adequate procedures had to be sought,
consisting in the use of one single higher order finite element, based on displacement FEM, to
obtain an approximation to the equilibrated field. The formulation is implemented for arbit-
rary degree of the basis, which allows an arbitrarily close approximation to the equilibrium
condition.

The strategy used to sharpness the QI’s error bounds was to model the dual problem
using a GFEM p-enrichment with polynomial enrichment functions over a local region around
the dual loading in the same mesh used in the primal numerical problem. Therefore the
additional cost to solve the dual problem with respect to the primal one is small, because the
factorized initial stiffness matrix can be re-used. The GFEM p-enrichment is implemented
in a simple and straightforward way, as opposed to some other possible forms of enrichment,
e.g. local h-refinement or a sub-domain approach. Results showed that this strategy can
be effective to obtain accurate estimates for the average of the quantity of interest obtained
from the estimates of upper and lower bounds. The bounds themselves are not ideally
sharp. The size of their range is due to the difficulty of the p-enrichment to approximate
well concentrated solutions with high gradients.

Besides the evaluation of the p-enrichment in the dual problem, the sensibility of the
Constitutive Relation Error (CRE) method for a posteriori error estimate in certain types
of Quantities of Interest was also evaluated with respect to the degree d of the Lagrangian
triangular function basis used in the FEM for the equilibrium problem in each isolated
element problem. Results show that for all degrees above 1, the estimated energy norm
of the error is larger than the exact error norm. Small values of d seems to generate, in
this specific problem, more accurate approximations, although it is known that only the
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asymptotic value is a guaranteed upper bound. The asymptotic value for the estimated
error norm seems to be reasonable attained with degrees d = 4 or 5. It is worth noticing
that the use of a single displacement based finite element of high order seems to be very
effective to obtain acceptable admissible stresses to be used in the upper bound computation.
Although the displacement based FE cannot produce perfectly equilibrated stress fields, a
simple hierarchic coding can provide stress fields arbitrarily close to the local equilibrium in
the element. This seems to be much simpler option than the hybrid formulations.

All tests were performed with QI’s defined as moments of a stress components over a
given element. These moments were not only average, as usually it is done, but defined
from polynomial weight functions of arbitrary degree g. The tests were done with weights
of degrees zero and one.
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