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Abstract. For many practical applications in engineeringcamplex structure shows linear
elastic behavior over large areas, but exhibits fowed plasticity contained in some small
critical regions. For analysis of these cases ipisposed the modeling using thE GFEM.
The first goal of this study is to verify the GFEMplementation for two-dimensional
elastoplasticity and, after that, introduce an istrgation trying to enlighten some advantages
of higher-regularity partitions of unity againstmeentional € counterparts. The enrichment
is made with polynomial functions and global cogegice measures are compared with
analytical solutions. The irreversible response admardening effects of the material is
represented by the rate independesntplhsticity theory with linear isotropic hardeniraf
material and von Mises vyield criteria, being coresigdl only monotonic loading and the
kinematics of small displacements and small deféong. The present results constitute the
initial step of a larger work which aims to use tBEGFEM in the local problem of the
Global-Local GFEM framework.

Keywords. Generalized finite element method, smooth GFEMedbaapproximations,
Elastoplasticity, Convergence analysis.
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1 INTRODUCTION

Certain local characteristics of boundary value bfgms such as high gradient,
singularities and discontinuities, can be succéssiodeled with the use of the classical
generalized finite element methodGFEM), since it uses a priori knowledge about the
solution of a problem in the form of enrichment dtions. However, the piecewise regular
partition of unit functions used by this method mayt to be efficient for some kinds of
problems. In this context, the*GFEM, which is quite similar to ©GFEM, presents the
high regularity of the approximation as an attrsetifeature, and the partition of unity
property is retained. The importance S§fGFEM is also due to the fact that several kinematic
plate models, such as Kirchhoff and Reddy, recsotations of continuity at least'C

Furthermore, studies have shown that GFEM has bsed successfully in linear elastic
fracture mechanics (Areias & Belytschko, 2005), lyBehko, 2001), (Laborde et al., 2005).
However, a real structure is a very complex body wiress states whose values based on the
linear elasticity may exceed the elastic limits ¢Glet al, 1988).

The goal in this paper is to compare theGFEM and E-GFEM performances in
modeling two-dimensional problems involving elasésgic fracture mechanics,
contemplating problems with stress concentratiag. (e-shaped), i.e. situations where the
plasticized zone is confined to one or a few regiohthe body. These kinds of problems are
important because of the high gradient of deforomafield that occurs in the boundary zone
plasticized that is difficult to be representedhngbarse meshes and conventional functions of
FEM, and because of the ability of the approxinmatfanctions with & arbitrary inter-
element continuity to build continuous stress feld

The irreversible response and hardening effecth@fmaterial is represented by rate
independent JJplasticity theory with linear isotropic hardeniio§ material and von Mises
yield criteria, being considered only monotonic dog and the kinematics of small
displacements and small deformations.

The present results constitute the initial stepadfrger work which aims to use the
C*-GFEM in the local problem of the Global-Local GFERFEM"). This method combines
the classic global-local FEM (technical "zoomindlopr, 1986)) with the partition of unit
structure, building enrichment functions numerigallocal boundary value problems are
modeled in the neighborhood of local features saascbracks, where the solution exhibits high
gradients or singularities (Kim et al., 2008). Lobcsolutions, so-called global-local
enrichment functions, are used to enrich the smdcglobal approximation, based on the
partition of unity structure. Thus, the proposedthnd does not depend on analytical
solutions.

The MEFG' procedure involves three steps:

() The solution of global problem, calculated ora@arse mesh, where cracks and yielding
usually are not discretized.

(II) The solution of local problems, with small sidmains extracted of the global domain, is
evaluated taking the global solution as boundanditmns.

(Il The solution of enriched global problem withe global-local enrichment functions,
provided as the solution of the local problems.

2 GENERALIZED FINITE ELEMENT METHOD (C °-GFEM)

The generalized finite element method (GFEM) isomlgination of the standard finite
element method (FEM) with concepts and techniqyescdl of meshless methods. This
method presents an aspect of nodal enrichmentrthginot require refinement of the meshes,
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making it very attractive for various analyzes.chse of problems with complex domain it
presents good results with the use of simple me@tesuboulis at al., 2001). Its efficacy has
been shown, for example, in problems domains witmmlex boundaries form (Babuska et
al., 2004).

The GFEM provides a mesh that is used to definaratipn of unit (PU) and a domain
for the numerical integration over which the enment of the PU functions is performed.
The set of PU functions is employed to ensure titerielementar continuity, providing
conformity of approximations that are improved loglal enrichment strategy.

The enrichment functions are linked to the nodahisoof the domain in order to improve
the quality of approximation in the neighborhoodfladse points. Thus, one has the possibility
to enrich the approximation only in a region of fw®blem domain, due to the compact
support of PU, without mesh refinement (Duartel e2800), (Barros et al., 2004). Moreover,
the essential boundary conditions can be imposadtigxas in the standard FEM (Strouboulis
at al., 2001).

To build the GFEM approximation functions it is smfered, for example, a conventional

mesh of finite elements defined bynodes with coordinate{sc]-}?'=1 in the domain. If the

enrichment is performed with relationnodex;, a generic cloud; € (2 is defined as a union
of finite elements adjacent to this node. The d$dahe interpolation functions belonging to
each element associated with the naglecompose the functiop; on the support of the
cloud w;. The enrichment functions related to the noag, are denoted by
L ={Lj0,Lj1,...,L]-q}={Lﬁ}fzo (with Lj; =1) and represent a set of q + 1 linearly
independent functions.

Thus, the GFEM approximation functions associatedtite nodex; result of the
enrichment of PU, i.e., multiplying the PU functiomith support in the cloudo; by
components ol; (defined for each node; with support in the cloud;)

{¢ﬁ}?=0 = ‘Pj{Lﬁ}?:O (no sum on). @)

The resulting approximation functiapy; contains features of both functions, that is, the
compact support of PU and the approximation feadfirenrichment function. The structure
of GFEM offers more freedom in the choice of appretion functions compared to the
standard FEM.

The generalized global approximation for the disptaent onQOO? denoted as

u,(x) = {uxh(x),uyh(x)} can be written as a linear combination of appraion functions
associated with each node. The componeyy, for example, can be write as:

U, (1) = X 0, + X7 Lii(0)byi} = uy, (x) = @7, )
where
ET(x)={u1 biy - blqj oo Uy bygo e qu]-}, 3)

wherew; and b;,; are nodal parameters associated respectively RtitHfunctionsg; and

enriched functionsp;L;;. The full set of approximation functions can banted in vector
form as

CILAMCE 2013
Proceedings of thEXXIV Iberian Latin-American Congress on Computaidviethods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pireno6polis, G&azil, November 10-13, 2013



Convergence analysis of <GFEM applied to two-dimensional elastoplastic peshs

¢T={<P1 Li1pq - L1qj<P1 @Oy Lyioy Lqupr}- 4)

The continuity of the functiomt;, on the whole domain is guaranteed by the compact
support of PU.

2.1 Model elasticity problem

Let a boundary value problem (BVP) defined in @dinelastic domai® € R?, where
the strong form of equilibrium equations is given b

Vie+b=0 em 2
u=1u em [ (5)
on=t em [y

where ¢ is the vector containing the stress tensor commuisn® is the vector of body
forces, I, and Iy (I, NIy = @) denote complementary parts of the boundafy where
Dirichlet and Neumann conditions are defined reSpely; u and t are prescribed
displacements and tractions respectively, mmsithe unit outward normal Q.

The variational form of this problem can be presdrds:
Findu € U(2) such that:

B(u,v) = l(v) Vv eV(2), com u=u emIp (6)

where U() and V() are Hilbert spaces of degree 1 (standard Sobglacesof square
integrable functions whose first derivatives araasg integrable) defined on the domain
The variational operators are defined as:

B(w,v) = [, € (w)o(w)l, dxdy (7)
I(v) = [[, v"bl, dxdy + er vitl,ds (8)

whereu” = {u,,u,} is the vector of displacements, = {v,, v, } is the test function vector,

€ is the vector containing the strain tensor compts)eand!, is the thickness of the elastic
body (in thez reference direction) considered here as constant.
The Galerkin approximation in Eq. (&milarly to FEM, results in:

Find u, € Uh such thatB(uh,vh) = l(vh) Vvh € Vhi (9)

whereU, andV, areH! subspaces of finite dimension, wherein the fipstce is generated
by the approximation functions and the second snef itest functionsu,;, is obtained from

Eg. (2) and the component, , for example, of they;, = {Uxh' vyh} is given by:

Ve, (0 = T 0,0y + T Li(0)cji} = v, (x) = @7, (10)

wherev is a vector of nodal parameters similar to thaixshm Eq. (3).

The only difficulty in this implementation is th#tte partition of unity and the bases of
spaces of enrichment functions can be linearly depet, so that the system of equations
resulting from Eq. (9) is positive semi-definitenellinear dependence occurs when using the
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same kinds of PU and enrichment functions, sugbofgiomial functions. This problem can

be avoided by careful choice of functialys (Oden et al., 1998), constraints in PU (Melenk &
Babuska, 1996), or the system can be efficientlyesbby numerical strategy proposed in
Duarte et al. (2000) and Strouboulis at al. (2001).

3 ARBITRARY CONTINUOUS FUNCTIONS (GFEM C )

C*-GFEM is quite similar to EGFEM, except that it uses finite element meshémuuttnl
an arbitrarily smooth PU (arbitrary continuity) (&te et al., 2005), calle@* partition of
unity based finite element3his method is not meshless, but preserves desdractive
features of meshless approximations, such as te regularity of approximation and
partition of unity property. The "@€GFEM is also important because several kinematitepl
models, such as Kirchhoff and Reddy, require sohstiof continuity at least'C

The PU functions can also be built a&fGnctions only in clouds with convex support. In
clouds with support not convex they d#imes continuously differentiable in the concave
nodes, withk arbitrarily large, and infinitely differentiablen ithe rest of the domain. The
technique used for the construction &fRL is described below.

In a conventional finite element mesh defined\oyodes with coordlnate[sxj}j=1 in the

domainQ is considered a set of functiob§(x) c C{(w;), with j = 1, ...,N, denoted by
weighting functions. Each one is associated tooaicth; as its compact support. Using
Shepard’s formula is obtained:

wi(x)

W, ,B(x) € {]/ : Wy(x) F 0} (11)

fpj(x) =

It can be seen that the s&pj(x)}y:l is such thatg;(x) c C¥(w;), k=0 and

Z?’zl pj(x) =1, Vx € and whole compact subset@fintercepts only a finite number of
supports. Thereforep;(x) is a partition of unity and its regularity depenaisly on the
regularity of the weighting functions (Mendonca at, 2011) constructed to ensure the
continuity required. Thus, on each support appetert weighting functions are constructed
and used in Shepard’s formula, creating the pantitif unity.

Thus, the resulting PU is at ledstimes continuously differentiable, and the resigfti
approximation functions of the product of Shepatd With the enrichment functions will
have the same continuity since the enrichmentsitaieast also € Enrichment functions can
be chosen as polynomial functions, harmonic, aropat or even functions that are part of
the solution of the boundary value problem (Babuskal., 2002; Stroubouliset al., 2000;
Melenk & Babuska, 1996). It is noted that differehbices of PU functions are possible (it
depends on the choice of the edge functions (Megal@t al., 2011)), leading to different
kinds of approximation functions. An example of #age function is showed in the section
3.1.

The building of weighting functions occurs diffetgndepending on their supports
convex or not convex.

3.1 Weighting function with convex support

The weighting functions with convex support canbiodt from the product of theloud
edge functiong; ,[&,(x)] associated with the cloud; and defined for each edgeof the
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cloud. These functions vanish smoothly when appriogcthe edges and becoming greater
than zero inside the cloud. All edge functiens[$,(x)] are built to have the same value at
nodex; of the cloudw;, where, (x) = n,, - (x —b,) is the distance between the position
and the edge, b,, is the edge midpoint, andg, the normal vector to the edge directed into
the cloud.

The edge functions must be at leabt@ntinuity,k > 0, necessary for the construction of
PU. Therefore, the Oneighting function which also vanishes on the htary of the cloud
and greater than zero in its interior is constriétem the edge functions,, (x;) as follows:

Wi(x) = 1.2, &n(En), (12)

where M; is the number of edge functions to the claud It is important to prevent edge
functions vary greatly from cloud to cloud, becaus@merical experiments show it is
important to have functions with similar maximumlues for all edges associated with a
given node of the cloud.

A kind of edge function is the polynomial of degee > k + 1, such that the function
and itsk first normal derivatives approach zero when thegch their edga. They are given

by
£ nl€n(0)] = {(fn/gj,n)p if §0> 0 (13)

otherwise

whereh; ,, is the normal distance from nops the edge.
Another kind of edge function is the exponentialhwinitary value at node of the cloud

and decay rate controlled by a paramgtes «; , [h’Z—”] /&n|hin]- For these two conditions,
one can use the following function edge (Barcedtoal., 2009):

~E/BY
£inlEn ()] = {4€ Hen>0, (14)
0 otherwise

1

whereB = h; , (ll"‘_g;f )V and g andy are positive arbitrary constants. However, nunaéric

experiments have shown that the most appropriateesaarefs = 0.3 and y = 0.6, as
suggested by Duarte et al. (2006) and Torres (201@&refore, at cloud node the function has
the value

e [60()] = Ae~aed) (15)

which is the same for every edge of the cloud w; and imposing the constraint
(127
g nlén(x;)] =1, one getst = e )
For convex supports this exponential edge fundianls to weighting functions™Gand,
therefore, to CPU.

4 TWO-DIMENSIONAL PLASTICITY

This section presents the equations that governctassical plasticity in the two-
dimensional context, which can be found in Cher889Simo & Hughes (1998) and Souza
Neto et al. (2008).

CILAMCE 2013
Proceedings of the XXXIV Iberian Latin-American @ass on Computational Methods in Engineering
Z.J.G.N Del Prado (Editor), ABMEC, Pirendpolis, GBrazil, November 10-13, 2013



A. Freitas, P.T.R. Mendonca, C.S. Barcellos, D.Adires

The formulation adopted is based on the classai@ independent, Ylow theory for
small strain. Its main features are: von Misesdyietiteria, linear isotropic hardening of
material, hypothesis of associativity to the hamgrhaw and normality rule for plastic flow.
The Newton-Raphson was the iterative and increrheokteeme adopted.

Initially the isotropic hardening will be used, hewver, kinematic hardening and cohesion
models can easily be introduced to the algorithrhe Pplastic flow is regarded as an
irreversible process and is characterized in tesithe history of the following variables:
strain tensok, plastic strain tensa® and isotropic hardening internal varialdgrelated to
the evolution of plastic deformation.

Considering the additive decomposition of the totaiain tensore = €® + €P, the
isotropic linear elastic constitutive tendrthe deviatoric stress tensoand the yield stress
gy, the equations that govern the model are:

1) elastic stress-strain relationshep= C[e — €P];

2) von Mises yield criterionf = \E”S“ — (ay + q) <0, whereq = H'a and H' is the
modulus plastic of isotropic linear hardening;

3) flow rule:e? = yo,f = y\/gg, wheren = ﬁ;
4) hardening lawe = yo,f = v;

5) accumulated plastic deformation ratf; = a;

6) Kuhn-Tucker complementary conditions= 0, f(a,q) <0, yf = 0;

7) consistency conditiorx.f (a,q) = 0 (sef(a,q) = 0), wheref is the yield function rate.

The parametey > 0 is a nonnegative function, callembnsistency parametewhich
represents the plastic flow rate satisfies the Klihoker and consistency conditions.

5 NUMERICAL RESULTS

In this section, two numerical experiments are cotetl The goal is to compare th& C
GFEM and G-GFEM performances by two-dimensional elastoplagiioblems. The
formulation was numerically implemented consideniagular and uniform domain in which
only convex clouds occur. The domain was partdtmn triangular elements with three
nodes and straight edges. Thus, in the implementafi the ¢-GFEM was used the PU with
continuity C* on the whole domain, generating stress approximatiwith inter-element
continuity. The enrichment is made with polynomiiahctions of degreep =1 to 4. The
integration quadrature applied in the elements Wé&sdzura’'s symmetric quadrature in
triangles (Wandzura & Xiao, 2003) with 175 pointhie same quadrature was used by the
C-GFEM and G-GFEM for comparative purposes. For integrationsttie Neumann
boundary we used the Gauss-Legendre quadrature2@ifioints, for each elementary edge.
The irreversible response and hardening effectthefmaterial is represented by the rate
independent JJplasticity theory with linear isotropic hardeniio§ material and von Mises
yield criteria. It is considered only monotonic didg and the kinematics of small
displacements and small deformations. The entirapcational implementation was done
via user code using the MATLAB10. The program used for this simulation was Huilm
C*-GFEM program for linear elastic analysis, developgdrorres (2012) during their thesis
development. Internally pressurized cylinder

The first example is the simulation of behavioradbng thickwalled cylinder subjected
to a gradually increasing internal pressure. Theedisions of the problem, the material
parameters and the finite element mesh adoptedsfaoen in Fig. 1. The cylinder is
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discretized by 64 axisymmetric elements. The marinpuessure, P, used to this problem was
0.18 GPa. Nine uniform pseudo time steps were fsadcremental analysis.

The aim of this problem is to verify theé“GFEM and -GFEM implementations in
elastoplastic analysis. The numerical solutionsaioled were compared with the analytical
solution of Hill (1950).

Figure 2 shows the radial displacement at outex édcthe cylinder versus applied pressure
computed by the ®GFEM and ¢-GFEM. Figure 3 shows the norm of the relative eobr
the radial displacement at outer face versus degreéreedom obtained via®@GFEM and
C*-GFEM. These values are presented in the Table i o1, 2, 3 and 4, that represents the
polynomial degree of reproducibility of the propdseFEM approximation subspace. The
respective values dif for specific values of degrees of freedom alscsawvn in the Table 1.
In this casep = p +1 to & PU andb = p to C PU, wherep is the degree of the polynomial
enrichment, as suggested in Mendonca et al. (2011).

The relative error of the radial displacement i\gegibye, = z

-Uu,
2 % whereu,, andu
ex ap

ex

are the exact and approximated displacements, cexsglg.

Von Mises Model -

Young's modulus: E =210 GPa
Hardening modulus: H=0
Poisson ratio: v=03
Uniaxial yield stresso,, = 0.24 GPa

)

200 mm
! 1000 mm

100 mm 100 mm
Figura 1: Internally pressurized cylinder. Material properties and finite element mesh adopted.

The @-GFEM and ¢-GFEM results are close to the analytical value extuibit similar
errors for the same values of (see Table 1). As expected, the worst values ef th
approximations of displacement occur ior 1. According to Fig. 2, the approximation of the
displacement worsens from the yielding pressurg&D3.GPa according to the analytical
solution (Souza Neto et al., 2008), fo= 1. This suggests that for this problem (choite o
mesh, PU, enrichment function) both methods doapproach well the plasticized solution
whenb = 1.

The circumferential stress obtained at integrapiomts for P = 0.1 GPa (elastic solution)
and P = 0.18 GPa (elastoplastic solution) are giiotorb = 2, 3 and 4 in Fig. 4 and Fig. 5
respectively, together with Hill’s solution. Th8-GFEM and ¢-GFEM results are very close
to the analytical solution. The worst results odourC’-GFEM whenb = 2, wherep = 1. For
the complete loading in case of P = 0.18 GPa, tlstip front reaches approximately
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159.79 mm (radius of plasticization analytic). Tthensition from elastic to plastic zone can
be visualized by a change in slope of the curvevsha Fig. 5.

B

£ 0,164 o Co(b=1)
o O Co(h=2)
5 A CO(b=3)
2 m Ck(b=1)
5] e Ck(b=2)
© A Ck(b=3)
£ 0,08 * Ck(b=4)
g —e— Analytical
)]

& 0,04

=

k%)

©

T 0,004

©

©

x T T

: . : . : :
0,00 0,05 0,10 0,15 0,20
Internal pressure (GPa)

Figure 2. Radial displacement versus increasing pssure for the problem of Fig. 1.

0,06

0,05

0,04
—=— CO (P = 0.18 GPa)
—e Ck (P=0.18 GPa)
0,03

ler(u)l

0,02+

0,01+

0,00-+——F—7FT 7T T T T
0 180 360 540 720 900 1080 1260 1440
DOF

Figure 3. Norm of relative error for the radial displacement at outer face
versus degrees of freedom for the problem of Fig..

Table 1. Error values for the radial displacement onsidering different degrees b
for the problem of Fig. 1.

C’-GFEM C-GFEM
DOF b le(u)] b |e(u)]
90 1 0.05492 (5.49%)
270 2 0.005871 (0.58%) 1 0.03653 (3.65%)
540 3 0.006327 (0.63%) 2  0.005545 (0.55%)
900 4  0.006915 (0.69%) 3  0.006337 (0.63%)
1350 4 0.006915 (0.69%)
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1,8x16
] 0 CO(b=2)

< i O CO(b=3)
% 1,6x10 A CO(b=-4)
= 1 m Ck(b=2)
9 1,4x10 - ® Ck(b=3)
= : A Ck(b=4)
% 1,2x16 - —— Analytical
g ]
L 1,0x16
Q2 ]
5 5040
o 80407 p_g1Gpa
s ]

6,0x10 -

—
100 120 140 160 180 200
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Figure 4. Circumferential stress versus radial coatinate to P = 0.1 GPa
(elastic solution) for the problem of Fig. 1.

2,4x10
< P =0.18 GPa
o
e 2,0x10
[}
[}
o
»
B 1,6x10
= O CO(b=2)
g O Co(b=3)
£ A CO(b=4)
= 1,2x101 B Ck(b=2)
c ® Ck(b=3)
(@) A Ck(b=4)
—*— Analytical
8,0)(16 T T T T T T

—
100 120 140 160 180 200
Radial coordinate (mm)

Figure 5. Circumferential stress versus radial coattinate to P = 0.18 GPa
(elastoplasticsolution) for the problem of Fig. 1.

5.1 L-shaped domain

The L-shaped domain is a classic problem in therthef elasticity for which an
analytical solution is known (Szabo & Babuska, 20However, an elastoplastic version of
this is considered herein aiming to verify the ewoin of a process zone at the reentrant
vertex neighborhood. The loading used in this exangpcorrespondent to Mode | opening.
The analysis is carried out assuming plane stramditions. The domain of the problem is
discretized by 96 elements. The dimensions, majeaiameters and the finite element mesh
used are shown in Fig. 6. Ten uniform pseudo titapsswas used for incremental analysis.
Surface forces applied on the edges AB, BC, EFEdhtlave been calculated according to the
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stress components corresponding to the term of Motihee asymptotic expansion of the
displacement field (Szabo & Babuska, 2011)

or = a7 (2 = Q1 (A4 + 1))cos(A, — 1)0 — (A, — Dcos (A, — 3)6)]
oy = a; v (2 + Q; (A + 1)) cos(A; — 1) — (4, — Dcos(A, — 3)6]
Tyy = 77 ((A4 — D))sin(A; — 3)0 + Q1(A; + 1)sin(A;, — 1)6)]

where Q; = 0.543075579,4, = 0.544483737 and, is a arbitrary real number, considered
here ast; = 1.0. The force applied to this problem was mukiglby constant = 2500.

Von Mises Model

Young’'s modulus:E = 210 GPa Uniaxial yielcess: o, = 620 MPa
Hardening modulus?’ = 10.5 GPa Domain dimension: a =100 mm
Poisson ratiov = 0.3 Thkress constant and unitary, = 1 mm

— ey
%

A B

|<— a —>|<— a —>|

.
]
l
I

Figure 6. L-shaped domain. Material properties andinite element mesh.

The strain energylJ(u) =%fo e’ (u)o(u)l, dxdy, is used as global convergence

measure to compare the elastoplastic solution & ¢ the elastic problems, checking
numerical implementation. According Rice & Rosemg(&968), crack problems resuitthe
same order of singularity in the product of strasd strain for both elastic and plastic cases.
Thus, we suppose that the integrating of the stemiergy keeps the same relationship of
singularity for both elastic and plastic problems.

Table 2 shows values of the strain energy o= 4 obtained by EGFEM for
approximated elastic end plastic solutionsder 1000 e 2500. The values are compared with
the analytical solution. The table indicates tlnat approximated strain energy values for the
plastic solutions argreaterthan the elastic solutions; and the approximatedtiel solutions
are lower than the analytical solution. The apprated plastic solution isloser to the
analytical solution for ¢ = 1000. A reason for tlighat the applied loading inherentof the
elastic problem, thugor a greater plasticized zone, the difference betwhese strain energy
valueswill be greatersince the applied surface load distribution dodscoorespond to the
plasticity exact solution once such solution isnmkn.

Table 3 shows values of the strain energy obtabyethe -GFEM and G-GFEM for
b=1,2 3 and 4 and ¢ = 2500. We can see thatthakies are close to the analytical
solution, considering a considerabplesticized zone (see Fig).
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Table 2. Values of the strain energy obtained by thC-GFEM
for b = 4 andc = 1000 andc =2500, for the problem of Fig. 6.

C Solution U(u)
Analytical elastic 2.9812x£0
1000 Approximated elastic 2.9077x18
Approximated plastic 2.9159x10
Analytical elastic 1.8626x10
2500 Approximated elastic 1.8173x10
Approximated plastic 2.0736x10

Table 3. Values of the strain energy for b = 1, B and 4 and ¢ = 2500 for the problem of Fig. 6.

Analytical
U(u) elastic
solution

b 1 2 3 4 -
C*-GFEM | 1.8077x16| 1.9814x10 | 2.0446x10 | 2.0736x10 | 1.8626x10
C’-GFEM | 1.7645x1b | 2.0172x16 | 2.085x10 | 2.1270x10 | 1.8626x18

Table 4 lists the number of iterations in the NawRaphson scheme required in each
loading step obtained by’@GFEM and ¢&-GFEM. The results are showed foe 1, 2, 3 and
4. The table indicates that the total numberseashitons required for the two approaches are
almost the same. The respective numbers of degideedom used in ®GFEM and
C*-GFEM analyses for different valuestfre shown in Table 5.

The process zone geometry is identified in Figutbat shows the points of integration
distribution for which the yield condition was réad on L-shaped domain for=1, 2, 3, 4
for the maximum loading level. This figure comparte -GFEM and G-GFEM
performances considering the high gradient of deétion field that occurs in the zone
plasticized. The results suggest the ability ofdpproximation functions with arbitrary inter-
element continuity to represent the zone plastitize

Table 4. Number of iterations required at each loathg step forb =1, 2, 3 and 4.

Number of iterations
b 1 2 3 4
Load step| C>-GFEM | C*-GFEM | C’-GFEM |C*-GFEM | C"-GFEM |C*-GFEM |C"-GFEM |C*-GFEM
1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1
3 1 1 1 1 3 1 4 3
4 1 1 3 2 4 4 4 4
5 1 3 4 4 4 5 4 5
6 1 5 4 5 5 8 4 5
7 6 5 5 5 5 7 5 5
8 5 5 5 5 5 6 6 5
9 6 6 5 5 7 6 5 6
10 6 6 5 5 6 6 6 6
Total 29 34 34 34 41 45 40 41
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C’-GFEM
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Figure 7. Locus of integration points for which theyield condition was reached, for the problem of Fj. 6.

Table 5. Numbers of degrees of freedom fdy =1, 2, 3 and 4.

C’-GFEM |C*-GFEM | C°-GFEM | C*-GFEM | C"-GFEM | C*-GFEM | C’-GFEM | C*-GFEM
b 1 2 3 4
DOF 130 | 390 390 | 780 780 | 1300 1300 195(

6 CONCLUSION

The aim of this study was to verify the GFEM imptmation for two-dimensional
elastoplasticity and, after that, compare througmerical experiments the*GFEM and
C°-GFEM performances in problems with confined pkistibased on 2Jplasticity theory.
For the two problems analyzed such comparison veafonned using local and global
convergence measures, respectively. The resultsemied for the pressurized cylinder
problem show that the quality of the stress is ainthe same for both®@FEM and ¢&-
GFEM, for the same degree of the approximatioThat is expected considering that this
problem is essentially one-dimensional. On the rothend, the results presented for the
L-Shaped problem suggest that theGFEM represents better the plasticized region when
compared with &EGFEM. These are the first exploratory results tuatstitute the initial step
of a larger work which aims to use th&GFEM in the local problem of the Global-Local
GFEM (GFEM"). One of the steps of future research is to khepptocess of checking of the
L-shaped problem, where another investigations Wwél even performed. The effect of
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different meshes in the solution of the problem aaohparing the result with that found via
ANSYS® (2010) with a very refined mesh, are some most édiate investigations to the
work.
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