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Abstract. For many practical applications in engineering, a complex structure shows linear 
elastic behavior over large areas, but exhibits confined plasticity contained in some small 
critical regions. For analysis of these cases it is proposed the modeling using the Ck-GFEM. 
The first goal of this study is to verify the GFEM implementation for two-dimensional 
elastoplasticity and, after that, introduce an investigation trying to enlighten some advantages 
of higher-regularity partitions of unity against conventional C0 counterparts. The enrichment 
is made with polynomial functions and global convergence measures are compared with 
analytical solutions. The irreversible response and hardening effects of the material is 
represented by the rate independent J2 plasticity theory with linear isotropic hardening of 
material and von Mises yield criteria, being considered only monotonic loading and the 
kinematics of small displacements and small deformations. The present results constitute the 
initial step of a larger work which aims to use the Ck-GFEM in the local problem of the 
Global-Local GFEM framework. 

Keywords: Generalized finite element method, smooth GFEM based approximations, 
Elastoplasticity, Convergence analysis. 
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1  INTRODUCTION 

Certain local characteristics of boundary value problems such as high gradient, 
singularities and discontinuities, can be successful modeled with the use of the classical 
generalized finite element method (C0-GFEM), since it uses a priori knowledge about the 
solution of a problem in the form of enrichment functions. However, the piecewise regular 
partition of unit functions used by this method may not to be efficient for some kinds of 
problems. In this context, the Ck-GFEM, which is quite similar to C0-GFEM, presents the 
high regularity of the approximation as an attractive feature, and the partition of unity 
property is retained. The importance of Ck-GFEM is also due to the fact that several kinematic 
plate models, such as Kirchhoff and Reddy, require solutions of continuity at least C1. 

Furthermore, studies have shown that GFEM has been used successfully in linear elastic 
fracture mechanics (Areias & Belytschko, 2005), (Belytschko, 2001), (Laborde et al., 2005). 
However, a real structure is a very complex body with stress states whose values based on the 
linear elasticity may exceed the elastic limits (Chen et al, 1988). 

The goal in this paper is to compare the Ck-GFEM and C0-GFEM performances in 
modeling two-dimensional problems involving elastoplastic fracture mechanics, 
contemplating problems with stress concentration (e.g. L-shaped), i.e. situations where the 
plasticized zone is confined to one or a few regions of the body. These kinds of problems are 
important because of the high gradient of deformation field that occurs in the boundary zone 
plasticized that is difficult to be represented with coarse meshes and conventional functions of 
FEM, and because of the ability of the approximation functions with Ck arbitrary inter-
element continuity to build continuous stress fields. 

 The irreversible response and hardening effects of the material is represented by rate 
independent J2 plasticity theory with linear isotropic hardening of material and von Mises 
yield criteria, being considered only monotonic loading and the kinematics of small 
displacements and small deformations. 

The present results constitute the initial step of a larger work which aims to use the      
Ck-GFEM in the local problem of the Global-Local GFEM (GFEMgl). This method combines 
the classic global-local FEM (technical "zooming" (Noor, 1986)) with the partition of unit 
structure, building enrichment functions numerically. Local boundary value problems are 
modeled in the neighborhood of local features such as cracks, where the solution exhibits high 
gradients or singularities (Kim et al., 2008). Local solutions, so-called global-local 
enrichment functions, are used to enrich the space of global approximation, based on the 
partition of unity structure. Thus, the proposed method does not depend on analytical 
solutions. 

The MEFGgl procedure involves three steps: 
(I) The solution of global problem, calculated on a coarse mesh, where cracks and yielding 
usually are not discretized. 
(II) The solution of local problems, with small subdomains extracted of the global domain, is 
evaluated taking the global solution as boundary conditions. 
(III) The solution of enriched global problem with the global-local enrichment functions, 
provided as the solution of the local problems. 

2  GENERALIZED FINITE ELEMENT METHOD (C 0-GFEM) 

The generalized finite element method (GFEM) is a combination of the standard finite 
element method (FEM) with concepts and techniques typical of meshless methods. This 
method presents an aspect of nodal enrichment that may not require refinement of the meshes, 
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making it very attractive for various analyzes. In case of problems with complex domain it 
presents good results with the use of simple meshes (Strouboulis at al., 2001). Its efficacy has 
been shown, for example, in problems domains with complex boundaries form (Babuska et 
al., 2004). 

The GFEM provides a mesh that is used to define a partition of unit (PU) and a domain 
for the numerical integration over which the enrichment of the PU functions is performed. 
The set of PU functions is employed to ensure the inter-elementar continuity, providing 
conformity of approximations that are improved by nodal enrichment strategy. 

The enrichment functions are linked to the nodal points of the domain in order to improve 
the quality of approximation in the neighborhood of these points. Thus, one has the possibility 
to enrich the approximation only in a region of the problem domain, due to the compact 
support of PU, without mesh refinement (Duarte et al., 2000), (Barros et al., 2004). Moreover, 
the essential boundary conditions can be imposed exactly as in the standard FEM (Strouboulis 
at al., 2001).  

To build the GFEM approximation functions it is considered, for example, a conventional 

mesh of finite elements defined by N nodes with coordinates �������
�

 in the domain Ω. If the 

enrichment is performed with relation to node ��, a generic cloud �� ∈ 
 is defined as a union 
of finite elements adjacent to this node. The set of the interpolation functions belonging to 
each element associated with the node ��, compose the function �� on the support of the 
cloud ��. The enrichment functions related to the node ��, are denoted by 

�� = ����, ���	, … , ���� = ��������
�

 (with ��� = 1) and represent a set of q + 1 linearly 

independent functions. 
Thus, the GFEM approximation functions associated to the node �� 	 result of the 

enrichment of PU, i.e., multiplying the PU function with support in the cloud �� by 
components of �� (defined for each node �� with support in the cloud ��) 

��������
� = ����������

�
  (no sum on j). (1) 

The resulting approximation function ��� contains features of both functions, that is, the 
compact support of PU and the approximation feature of enrichment function. The structure 
of GFEM offers more freedom in the choice of approximation functions compared to the 
standard FEM. 

The generalized global approximation for the displacement on Ω∈ℜ2, denoted as 

����� = �������, ������� can be written as a linear combination of approximation functions 

associated with each node. The component  ���, for example, can be write as: 

������ = ∑ �������� + ∑ ������"���#
��� ����� ⇒ ������ = %&�, (2) 

where 

�&��� = ��� "�� ⋯				"��# ⋯ ��				"�� ⋯ "��#�, (3) 

where �� and "��# are nodal parameters associated respectively with PU functions �� and 

enriched functions �����. The full set of approximation functions can be teamed in vector 
form as 
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%& = ���				����� 		⋯				���#�� 			⋯					��				����� 		⋯				���#���. (4) 

The continuity of the function �� on the whole domain is guaranteed by the compact 
support of PU. 

2.1 Model elasticity problem 

Let a boundary value problem (BVP) defined in a linear elastic domain 
 ∈ ℝ*, where 
the strong form of equilibrium equations is given by  

∇&, + - = 0														em	

� = �1																												em	23, ∙ 5 = 6̅																							em	2�

 (5) 

where , is the vector containing the stress tensor components, - is the vector of body 
forces,	23 and 2�	�23 ∩ 2� = ∅� denote complementary parts of the boundary :
, where 
Dirichlet and Neumann conditions are defined respectively; �1 and 6̅ are prescribed 
displacements and tractions respectively, and 5 is the unit outward  normal to 2�. 

The variational form of this problem can be presented as: 
Find � ∈ ;�
� such that: 

<��, =� = >�=�												∀= ∈ @�
�, com		� = �1		em	23 (6) 

where ;�
� and @�
� are Hilbert spaces of degree 1 (standard Sobolev space of square 
integrable functions whose first derivatives are square integrable)  defined on the domain Ω. 
The variational operators are defined as: 

<��, =� = ∬ D&�=�,���E >F	GHGI (7) 

>�=� = ∬ =&-E >F	GHGI + J =&KL 6̅	>F	GM (8) 

where �& = ���, ���  is the vector of displacements, =& = �N�, N�� is the test function vector, 
D is the vector containing the strain tensor components, and 	>F  is the thickness of the elastic 
body (in the z reference direction) considered here as constant. 

The Galerkin approximation in Eq. (6), similarly to FEM, results in: 

Find �� ∈ ;� such that: <���, =�� = >�=��												∀=� ∈ @�, (9) 

where ;�  and @� are O� subspaces of finite dimension, wherein the first space is generated 
by the approximation functions and the second one is of test functions; �� is obtained from 

Eq. (2) and the component N��, for example, of the  =� = �N��, N��� is given by: 

N����� = ∑ ������N� + ∑ ������P���#
��� ����� ⇒ N����� = %&=, (10) 

where = is a vector of nodal parameters similar to that shown in Eq. (3). 
The only difficulty in this implementation is that the partition of unity and the bases of 

spaces of enrichment functions can be linearly dependent, so that the system of equations 
resulting from Eq. (9) is positive semi-definite. The linear dependence occurs when using the 
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same kinds of PU and enrichment functions, such as polynomial functions. This problem can 
be avoided by careful choice of functions ��� (Oden et al., 1998), constraints in PU (Melenk & 
Babuska, 1996), or the system can be efficiently solved by numerical strategy proposed in 
Duarte et al. (2000) and Strouboulis at al. (2001).  

3  ARBITRARY CONTINUOUS FUNCTIONS (GFEM C K) 

Ck-GFEM is quite similar to C0-GFEM, except that it uses finite element meshes to build 
an arbitrarily smooth PU (arbitrary continuity) (Duarte et al., 2005), called Ck partition of 
unity based finite elements. This method is not meshless, but preserves several attractive 
features of meshless approximations, such as the high regularity of approximation and 
partition of unity property. The Ck-GFEM is also important because several kinematic plate 
models, such as Kirchhoff and Reddy, require solutions of continuity at least C1. 

The PU functions can also be built as C∞ functions only in clouds with convex support. In 
clouds with support not convex they are k-times continuously differentiable in the concave 
nodes, with k arbitrarily large, and infinitely differentiable in the rest of the domain. The 
technique used for the construction of Ck PU is described below. 

In a conventional finite element mesh defined by N nodes with coordinates �������
�

 in the 

domain Ω is considered a set of functions Q���� ⊂ S�TU��V, with  j = 1, ..., N, denoted by 
weighting functions. Each one is associated to a cloud �� as its compact support. Using 
Shepard’s formula is obtained: 

����� = W#���
∑ WX���X���

,						Y��� ∈ �Z ∶ 	Q\��� ≠ 0�. (11) 

It can be seen that the set ����������
�

 is such that ����� ⊂ S�TU��V, ^ ≥ 0 and 

∑ ����� = 1, ∀	H���� 	 ∈ 
 and whole compact subset of Ω intercepts only a finite number of 
supports. Therefore, ���H� is a partition of unity and its regularity depends only on the 
regularity of the weighting functions (Mendonça et al., 2011) constructed to ensure the 
continuity required. Thus, on each support appropriate Ck weighting functions are constructed 
and used in Shepard’s formula, creating the partition of unity.  

Thus, the resulting PU is at least k-times continuously differentiable, and the resulting 
approximation functions of the product of Shepard PU with the enrichment functions will 
have the same continuity since the enrichments are at least also Ck. Enrichment functions can 
be chosen as polynomial functions, harmonic, anisotropic or even functions that are part of 
the solution of the boundary value problem (Babuska et al., 2002; Stroubouliset al., 2000; 
Melenk & Babuska, 1996). It is noted that different choices of PU functions are possible (it 
depends on the choice of the edge functions (Mendonça et al., 2011)), leading to different 
kinds of approximation functions. An example of the edge function is showed in the section 
3.1. 

The building of weighting functions occurs differently depending on their supports 
convex or not convex. 

3.1 Weighting function with convex support 

The weighting functions with convex support can be built from the product of the cloud 
edge functions �̀,abca���d associated with the cloud �� and defined for each edge n of the 
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cloud. These functions vanish smoothly when approaching the edges and becoming greater 
than zero inside the cloud. All edge functions �̀,abca���d are built to have the same value at 
node �� of the cloud ��, where ca��� = 5a ∙ �� − fa�  is the distance between the position x 
and the edge n, fa is the edge midpoint, and 5a the normal vector to the edge directed into 
the cloud.  

The edge functions must be at least Ck continuity, k ≥ 0, necessary for the construction of 
PU. Therefore, the Ck weighting function which also vanishes on the boundary of the cloud 
and greater than zero in its interior is constructed from the edge functions �̀,aU��V as follows: 

Q���� = ∏ �̀,a�ca�h#
a�� , (12) 

where i� is the number of edge functions to the cloud ��. It is important to prevent edge 
functions vary greatly from cloud to cloud, because numerical experiments show it is 
important to have functions with similar maximum values for all edges associated with a 
given node of the cloud. 

A kind of edge function is the polynomial of degree p, j ≥ ^ + 1,  such that the function 
and its k first normal derivatives approach zero when they reach their edge n. They are given 
by 

�̀,abca���d = kUca/ℎ�,aV
n if		ca > 0	

0	 otherwise, (13) 

where ℎ�,a is the normal distance from node j to the edge n. 
Another kind of edge function is the exponential with unitary value at node of the cloud 

and decay rate controlled by a parameter Y = �̀,a w�#,x* y / �̀,azℎ�,a{. For these two conditions, 

one can use the following function edge (Barcellos et al., 2009): 

�̀,abca���d = k|}~��x/��
�� if		ca > 0	0	 otherwise, (14) 

where	< = ℎ�,a �������~*\�
�
� and Y and Z are positive arbitrary constants. However, numerical 

experiments have shown that the most appropriate values are Y = 0.3 and Z = 0.6, as 
suggested by Duarte et al. (2006) and Torres (2012). Therefore, at cloud node the function has 
the value 

�̀,azcaUH�V{ = |}~�
����
����X�

��
 (15) 

which is the same for every edge n of the cloud �� and imposing the constraint  

�̀,azcaU��V{ = 1, one gets | = }~� ��������X�
��

. 
For convex supports this exponential edge function leads to weighting functions C∞ and, 

therefore, to C∞ PU. 

4  TWO-DIMENSIONAL PLASTICITY 

This section presents the equations that govern the classical plasticity in the two-
dimensional context, which can be found in Chen (1988), Simo & Hughes (1998) and Souza 
Neto et al. (2008). 
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The formulation adopted is based on the classical rate independent J2 flow theory for 
small strain. Its main features are: von Mises yield criteria, linear isotropic hardening of 
material, hypothesis of associativity to the hardening law and normality rule for plastic flow. 
The Newton-Raphson was the iterative and incremental scheme adopted. 

Initially the isotropic hardening will be used, however, kinematic hardening and cohesion 
models can easily be introduced to the algorithm. The plastic flow is regarded as an 
irreversible process and is characterized in terms of the history of the following variables: 
strain tensor D, plastic strain tensor Dn and isotropic hardening internal variable �, related to 
the evolution of plastic deformation. 

Considering the additive decomposition of the total strain tensor D = D� + Dn, the 
isotropic linear elastic constitutive tensor �, the deviatoric stress tensor s and the yield stress 
��, the equations that govern the model are: 
1) elastic stress-strain relationship: , = �bD − Dnd;  
2) von Mises yield criterion: � = ��* ‖�‖ − U�� + �V ≤ 0, where � = �′� and �′ is the 

modulus plastic of  isotropic linear hardening;  

3) flow rule: D�n = Z∂�� = Z��*5, where 5 = �
‖�‖; 

4) hardening law: �� = Z∂�� = Z; 
5) accumulated  plastic deformation rate: D� ¡n = �� ; 
6) Kuhn-Tucker complementary conditions: Z ≥ 0, ��,, �� ≤ 0, Z� = 0; 
7) consistency condition: Z���,, �� = 0 (se ��,, �� = 0�, where �� is the yield function rate. 

The parameter Z ≥ 0 is a nonnegative function, called consistency parameter, which 
represents the plastic flow rate satisfies the Kuhn-Tucker and consistency conditions.  

5  NUMERICAL RESULTS 

In this section, two numerical experiments are conducted. The goal is to compare the Ck-
GFEM and C0-GFEM performances by two-dimensional elastoplastic problems. The 
formulation was numerically implemented considering regular and uniform domain in which 
only convex clouds occur.  The domain was partitioned in triangular elements with three 
nodes and straight edges. Thus, in the implementation of the Ck-GFEM was used the PU with 
continuity C∞ on the whole domain, generating stress approximations with inter-element 
continuity. The enrichment is made with polynomial functions of degrees p =1 to 4. The 
integration quadrature applied in the elements was Wandzura’s symmetric quadrature in 
triangles (Wandzura & Xiao, 2003) with 175 points. The same quadrature was used by the      
Ck-GFEM and C0-GFEM for comparative purposes. For integrations in the Neumann 
boundary we used the Gauss-Legendre quadrature with 25 points, for each elementary edge. 
The irreversible response and hardening effects of the material is represented by the rate 
independent J2 plasticity theory with linear isotropic hardening of material and von Mises 
yield criteria. It is considered only monotonic loading and the kinematics of small 
displacements and small deformations. The entire computational implementation was done 
via user code using the MATLAB® 10. The program used for this simulation was built from 
Ck-GFEM program for linear elastic analysis, developed by Torres (2012) during their thesis 
development. Internally pressurized cylinder 

The first example is the simulation of behavior of a long thick-walled cylinder subjected 
to a gradually increasing internal pressure. The dimensions of the problem, the material 
parameters and the finite element mesh adopted are shown in Fig. 1. The cylinder is 
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discretized by 64 axisymmetric elements. The maximum pressure, P, used to this problem was 
0.18 GPa. Nine uniform pseudo time steps were used for incremental analysis. 

 The aim of this problem is to verify the Ck-GFEM and Ck-GFEM implementations in 
elastoplastic analysis. The numerical solutions obtained were compared with the analytical 
solution of Hill (1950).  

Figure 2 shows the radial displacement at outer face of the cylinder versus applied pressure 
computed by the C0-GFEM and Ck-GFEM. Figure 3 shows the norm of the relative error of 
the radial displacement at outer face versus degrees of freedom obtained via C0-GFEM and 
Ck-GFEM.  These values are presented in the Table 1 for b = 1, 2, 3 and 4, that represents the 
polynomial degree of reproducibility of the proposed GFEM approximation subspace. The 
respective values of b for specific values of degrees of freedom also are shown in the Table 1. 
In this case, b = p +1 to C0 PU and b = p to Ck PU, where p is the degree of the polynomial 
enrichment, as suggested in Mendonça et al. (2011).  

The relative error of the radial displacement is given by }¢ = ��£~�¤¥
��£ , where ��� and � n 

are the exact and approximated displacements, respectively.  
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
Figura 1: Internally pressurized cylinder. Material  properties and finite element mesh adopted. 

 
The C0-GFEM and Ck-GFEM results are close to the analytical value and exhibit similar 

errors for the same values of b (see Table 1). As expected, the worst values of the 
approximations of displacement occur for b = 1. According to Fig. 2, the approximation of the 
displacement worsens from the yielding pressure, 0.103 GPa according to the analytical 
solution (Souza Neto et al., 2008), for b = 1. This suggests that for this problem (choice of 
mesh, PU, enrichment function) both methods do not approach well the plasticized solution 
when b = 1. 

The circumferential stress obtained at integration points for P = 0.1 GPa (elastic solution) 
and P = 0.18 GPa (elastoplastic solution) are plotted for b = 2, 3 and 4 in Fig. 4 and Fig. 5 
respectively, together with Hill’s solution. The C0-GFEM and Ck-GFEM results are very close 
to the analytical solution. The worst results occur for C0-GFEM when b = 2, where p = 1. For 
the complete loading in case of P = 0.18 GPa, the plastic front reaches approximately    

 Von Mises Model 

Young’s modulus:        E = 210 GPa 
Hardening modulus:               �′ = 0  
Poisson ratio:                        ν = 0.3 
Uniaxial yield stress: 	�� = 0.24 GPa  

100 mm 

200 mm 

P 
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1000 mm 
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159.79 mm (radius of plasticization analytic). The transition from elastic to plastic zone can 
be visualized by a change in slope of the curve shown in Fig. 5.   

 

 
Figure 2. Radial displacement versus increasing pressure for the problem of Fig. 1. 

 
Figure 3. Norm of relative error for the radial displacement at outer face 

 versus degrees of freedom for the problem of Fig. 1. 

 
Table 1. Error values for the radial displacement considering different degrees b  

for the problem of Fig. 1. 

DOF 

C0-GFEM Ck-GFEM 

b |er(u)| b |er(u)| 

90 1 0.05492 (5.49%)   

270 2 0.005871 (0.58%) 1 0.03653 (3.65%) 

540 3 0.006327 (0.63%) 2 0.005545 (0.55%) 

900 4 0.006915 (0.69%) 3 0.006337 (0.63%) 

1350   4 0.006915 (0.69%) 
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Figure 4. Circumferential stress versus radial coordinate to P = 0.1 GPa 
 (elastic solution) for the problem of Fig. 1. 

 

 

Figure 5. Circumferential stress versus radial coordinate to P = 0.18 GPa  
 (elastoplastic solution) for the problem of Fig. 1. 

 

5.1 L-shaped domain 

The L-shaped domain is a classic problem in the theory of elasticity for which an 
analytical solution is known (Szabo & Babuska, 2011). However, an elastoplastic version of 
this is considered herein aiming to verify the evolution of a process zone at the reentrant 
vertex neighborhood. The loading used in this example is correspondent to Mode I opening. 
The analysis is carried out assuming plane strain conditions. The domain of the problem is 
discretized by 96 elements. The dimensions, material parameters and the finite element mesh 
used are shown in Fig. 6. Ten uniform pseudo time steps was used for incremental analysis. 
Surface forces applied on the edges AB, BC, EF and EF have been calculated according to the 
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stress components corresponding to the term of Mode I the asymptotic expansion of the 
displacement field (Szabo & Babuska, 2011) 

�� = ¦�§�¨©�~�zU2 − «��§� + 1�VP¬M�§� − 1� − �§� − 1�P¬M�§� − 3�{ 
�� = ¦�§�¨©�~�zU2 + «��§� + 1�VP¬M�§� − 1� − �§� − 1�P¬M�§� − 3�{ 
®�� = ¦�§�¨©�~�zU�§� − 1�VM¯°�§� − 3� + «��§� + 1�M¯°�§� − 1�{ 

where «� = 0.543075579, 	§� =	0.544483737 and ¦� is a arbitrary real number, considered 
here as	¦� = 1.0. The force applied to this problem was multiplied by constant c = 2500.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 6. L-shaped domain. Material properties and finite element mesh. 

The strain energy, U��� = �
*∬ D&���,���E >F	GHGI,  is used as global convergence 

measure to compare the elastoplastic solution to that of the elastic problems, checking 
numerical implementation. According Rice & Rosengren (1968), crack problems result in the 
same order of singularity in the product of stress and strain for both elastic and plastic cases. 
Thus, we suppose that the integrating of the strain energy keeps the same relationship of  
singularity for both elastic and plastic problems.  

Table 2 shows values of the strain energy for b = 4 obtained by Ck-GFEM for 
approximated elastic end plastic solutions for c = 1000 e 2500. The values are compared with 
the analytical solution. The table indicates that the approximated strain energy values for the 
plastic solutions are greater than the elastic solutions; and the approximated elastic solutions 
are lower than the analytical solution. The approximated plastic solution is closer to the 
analytical solution for c = 1000. A reason for this is that the applied loading is inherent of the 
elastic problem, thus, for a greater plasticized zone, the difference between these strain energy 
values will be greater, since the applied surface load distribution does not correspond to the 
plasticity exact solution once such solution is unknown. 

 Table 3 shows values of the strain energy obtained by the Ck-GFEM and C0-GFEM for  
b = 1, 2, 3 and 4 and c = 2500. We can see that these values are close to the analytical 
solution, considering a considerable plasticized zone (see Fig. 7). 
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Von Mises Model 

Young’s modulus:  E = 210 GPa                        Uniaxial yield stress: 	�� = 620 MPa  
Hardening modulus: �′ = 10.5 GPa                  Domain dimension:  a = 100 mm 
Poisson ratio:  ν = 0.3                                         Thickness constant and unitary:   >F = 1 mm 
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Table 2. Values of the strain energy obtained by the Ck-GFEM 
 for b = 4 and c = 1000 and c =2500, for the problem of Fig. 6. 

c Solution U��� 

1000 

Analytical elastic 2.9812x103 

Approximated elastic  2.9077x103 

Approximated plastic 2.9159x103 

2500 

Analytical elastic 1.8626x104 

Approximated elastic 1.8173x104 

Approximated plastic 2.0736x104 
 
 

Table 3. Values of the strain energy for b = 1, 2, 3 and 4 and c = 2500 for the problem of Fig. 6. 
 

  
U���  

Analytical 
elastic 

solution 
b 1 2 3 4 - 

Ck-GFEM 1.8077x104 1.9814x104 2.0446x104 2.0736x104 1.8626x104 
C0-GFEM 1.7645x104 2.0172x104 2.085x104 2.1270x104 1.8626x104 

 

Table 4 lists the number of iterations in the Newton-Raphson scheme required in each 
loading step obtained by C0-GFEM and Ck-GFEM. The results are showed for b = 1, 2, 3 and 
4. The table indicates that the total numbers of iterations required for the two approaches are 
almost the same. The respective numbers of degrees of freedom used in C0-GFEM and       
Ck-GFEM analyses for different values of b are shown in Table 5.  

The process zone geometry is identified in Figure 7 that shows the points of integration 
distribution for which the yield condition was reached on L-shaped domain for b =1, 2, 3, 4 
for the maximum loading level. This figure compares the Ck-GFEM and C0-GFEM 
performances considering the high gradient of deformation field that occurs in the zone 
plasticized. The results suggest the ability of the approximation functions with arbitrary inter-
element continuity to represent the zone plasticized.  

Table 4. Number of iterations required at each loading step for b = 1, 2, 3 and 4. 
 

 Number of iterations 
b 1 2 3 4 

Load step C0-GFEM Ck-GFEM C0-GFEM Ck-GFEM C0-GFEM Ck-GFEM C0-GFEM Ck-GFEM 
1 1 1 1 1 1 1 1 1 
2 1 1 1 1 1 1 1 1 
3 1 1 1 1 3 1 4 3 
4 1 1 3 2 4 4 4 4 
5 1 3 4 4 4 5 4 5 
6 1 5 4 5 5 8 4 5 
7 6 5 5 5 5 7 5 5 
8 5 5 5 5 5 6 6 5 
9 6 6 5 5 7 6 5 6 
10 6 6 5 5 6 6 6 6 

Total 29 34 34 34 41 45 40 41 
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Figure 7. Locus of integration points for which the yield condition was reached, for the problem of Fig. 6. 
 
 

Table 5. Numbers of degrees of freedom for b = 1, 2, 3 and 4. 
 

 C0-GFEM Ck-GFEM C0-GFEM Ck-GFEM C0-GFEM Ck-GFEM C0-GFEM Ck-GFEM 
b 1 2 3 4 

DOF 130 390 390 780 780 1300 1300 1950 

6  CONCLUSION 

The aim of this study was to verify the GFEM implementation for two-dimensional 
elastoplasticity and, after that, compare through numerical experiments the Ck-GFEM and   
C0-GFEM performances in problems with confined plasticity based on J2 plasticity theory. 
For the two problems analyzed such comparison was performed using local and global 
convergence measures, respectively. The results presented for the pressurized cylinder 
problem show that the quality of the stress is almost the same for both C0-GFEM and Ck-
GFEM, for the same degree of the approximation b. That is expected considering that this 
problem is essentially one-dimensional. On the other hand, the results presented for the        
L-Shaped problem suggest that the Ck-GFEM represents better the plasticized region when 
compared with C0-GFEM. These are the first exploratory results that constitute the initial step 
of a larger work which aims to use the Ck-GFEM in the local problem of the Global-Local 
GFEM (GFEMgl). One of the steps of future research is to keep the process of checking of the 
L-shaped problem, where another investigations will be even performed. The effect of 
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different meshes in the solution of the problem and comparing the result with that found via 
ANSYS® (2010) with a very refined mesh, are some most immediate investigations to the 
work. 
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