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ABSTRACT

The first part of this research describes an attempt to develop a formulation to obtain 3D approximate solutions for the
heat conduction problem in highly heterogeneous materials, by a sequence of one-dimensional FEM problems generated
by the Proper Generalized Decomposition (PGD) technique. Here only the steady state problem is considered. Along
the PGD iterations, the separation of variables is done between the all three space coordinates, instead of the time as it
is usual in PGD applications. In this way, it is sought to obtain, iteratively, an accurate a-posteriori approximation of the
complex oscillation of the temperature, with a reduced number of modes.

The method involves an iterative sequence of global solutions, even in a linear problem. However, previous experiences
in the literature shows that the number of iterations and modes is small, and the total computational cost involved is
generally smaller than the cost of the single 3D analysis by 3D solid finite elements model. Also, if the process converges
adequately, it is expected that an accurate 3D solution can be well estimated in boundary layers and other regions with
high gradients in the solution.

Formulations for three complementary problems are developed. Firstly, a procedure to generate data for a material
property, for example thermal conductivity, is commented, in the frame of randomly distributed inclusions on a material
matrix, generating a highly oscillating function of the local property over the domain.

Second, a PGD formulation is developed to obtain a PGD description of a highly oscillatory local material property
data. This description is composed by a sequence of discrete modes uncoupled in each of the three Cartesian coordinates,
and are used in the third formulation. The third formulation is a homogenization problem for the heat conduction problem,
where the PGD formulation is applied in a regular representative volume to obtain the homogenized thermal conductivity
tensor of the material. All data (material property, heat source and Dirichlet and Neumann boundary condition functions)
are represented by their adequate PGD modes.

Keywords: Proper Orthogonal Decomposition, Tensor product
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1. INTRODUCTION

Along the last decades, the constitutive modeling in solids have concentrated with two large fami-
lies of methods, the multi-scale and homogenization ones. Among the classic works one can reference
[1–11].

In some fields like rock mechanics, one of the principal methods used to mechanical characteriza-
tion use samples of the material extracted from the region of interest in the soil, or oil reservoir [12].
The samples are removed from different positions of the field, at regular intervals, and from then
specimens are extracted, called plugs. The plugs are tested and the results generate an estimate of
the properties variation in the field. However, the tests are expensive, take time and need specialized
personal. Thus, in the last years, the techniques of analysis of digitalized images has gained prefer-
ence, because of lower costs involved. The images are obtained from the samples with a technique
of microtomography, which produces a tridimensional representation of the sample [13]. With the
geometric representation, it is possible to perform numerical simulations and obtain, for example,
homogeneous properties of the rock properties.

The homogenized properties at a point in the body are obtained by procedures that identify an
average value of the same property in the macroscale, and it is expected it represents the physical
response at the point considered. The need for the averaged properties is essential in multiphase
materials, natural or artificials. Each phase presents different values for the property and occupies a
given region in space, with characteristic size and shape in the microscale. The relative dimension of
the phase in general is several orders of magnitude smaller than the body size.

The classic formulation in solid mechanics, used in works of, for example, [14–16], are based in
a boundary value problem. The procedure consists, in short, in identifying a Representative Volume
Element, RVE, whose dimensions must be adequate to include a representative microstructure of
the material. Then, numerical tests are performed to obtain an homogeneous values of the required
properties.

Even though the homogezation strategies have become almost routine, there are still many limita-
tions in terms of computational cost. Let us consider the usual processing of a digitalized sample, in
a discretization of 6003 voxels, each voxel represents a cube of side 5,6 µm, generating a cube with
side 3360 µm. Considering a numerical thermal or mechanical analysis, by the finite element method,
a mesh which can be considered viable to be solved with a reasonable computation time in a common
computer can have between 30 and 100 elements along each direction. This means about 303 a 1003

elements, that is, between 27000 and a million three dimensional finite elements. However, the order
of magnitude of the geometry captured in the microthomography is much finer, and needs a quantity
of information of 600 values by direction. A finite element mesh adequate to model this geometry
would need a similar number of elements of the digital image, that is, 6003 = 216 million of nodes,
which is, nowadays, impossible in a routine analysis.

Two procedures are commonly used in the finite element analysis. The first is the use of one or
more levels of multi-scale analysis of the sample. The other procedure is by the use of a mesh with a
viable density, such that each element has a quantity of voxels. Each voxel has associated a property
value, form example 0 and 1 in a two phase material. One can, for example, attribute a property 0 (or
1), if the density of 0 (or 1) in the voxels inside the element is more than 50 %. This is equivalent to
the famous mixture rule [17].

The use of PGD in the analysis of the RVE is a more recent and promising family of technique
to deal with the problem. It is one of the few methods capable to challenge the so called curse
of dimensionality. This curse is the exponential growth of the number of degrees of freedom in a
numerical model with the growth of the number of dimensions of the problem. In the present case,
the same accuracy that could usually be obtained only in a 2 D problem, becomes viable in three or
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more dimensions using PGD.
The basic mathematical structure of the formulation is described in section 2.. Some basic ref-

erences are seen in [18–20] for the separation of variables in space, time, geometric parameters or
material properties. With this, we seek to be able to model a sample with the a grid of the same re-
finement of the digitalized image, that is, advance from the approximately 100 elements by direction
in the sample, to about 600. As important as this, the development makes viable the modeling of
larger samples, which gives more representativity to the sample. The main focus of the present paper
is developed in section 3., and consists in the obtaining PGD representation of local properties in a
RVE, processing digitalized data obtained from any experimental process. As seen in section 2., this
is an essential requirement in the application of PGD method to the problem of heat transfer itself in
the RVE.

2. PGD in space for the heat conduction problem

Let us initially consider a body subject to adequate source load and boundary conditions, with
the geometric form of a regular volume Ω with dimensions Ω = Lx× Ly× Lz along the Cartesian
coordinates x= (x,y,z). The boundary Γ of the body is composed by the six faces, f1 to f6, designated
as Γ1, Γ2, · · · ,Γ6, where Γ1 and Γ2 have normals oriented along −x, +x, Γ3 and Γ4 normals along
−y, +y axis, respectively, and similarly for Γ5 and Γ6. The coordinates of the faces f = 1 and 2 are
x f = 0 and Lx, for faces f = 3 and 4 the coordinates are y f = 0 and Ly. Here we consider the strong
form for homogeneous and isotropic material, and steady state heat flux:

k∇
2
θ = −b, that is, kT, j j =−b (summation rule)

θ(x) = T̄ (x) for x ∈ Γu, (1)
q = k∇T = h(x) for x ∈ Γq,

where T̄ (x) and h are temperature and heat flux prescribed on parts of the boundary. We consider a
decomposition of the temperature field as

θ(x) = T (x)+G(x), for x ∈Ω, where
T (x) = 0 for x ∈ Γu, (2)
G(x) = T̄ (x), for x ∈ Γu,

The decomposition generates the following weak form: given G ∈ Kin, find T ∈Var

∫
Ω

∇û · (k∇T ) dΩ =
∫

Ω

ûb dΩ+
∫

Γq

ûh dΓ−
∫

Ω

∇û · (k∇G) dΩ, for ∀û ∈Var, (3)

where the sets of solution and of variations are the same:

Kin =Var =
{

f ∈ H1(Ω), such that f (x) = 0 for all x ∈ Γu
}
. (4)

Consider available the PGD representation of k(x) and b(x),

b(x) =
nb

∑
j=1

L jbx j(x)by j(y)bz j(z),

k(x) =
nk

∑
l=1

Dlkxl(x)kyl(y)kzl(z), (5)
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and consider also the PGD representation of the prescribed temperature and heat flux at the six faces,
f = 1,2, ...,6, of the boundaries:

T̄f (x) = δT f

ns

∑
s=1

JsG f xs(x)G f ys(y)G f zs(z),

h f (x) = δh f

nh

∑
r=1

Hrh f xr(x)h f yr(y)h f zr(z), (6)

δT f = 1 if Γ f ∈Γu and δT f = 0 otherwise. δh f = 1 if Γ f ∈Γq and δh f = 0 otherwise. One observe that,
since each face is orthogonal to one of the Cartesian directions, in each face of the representations (6)
one of the functions are absent. For example, if face f = 1 has prescribed temperature, Tf xp(x) = 1,
and T̄f (x) depends only on (y,z). In general, if f = 1 or 2, G f xs(x) = h f xr(x) = 1. If f = 3 or 4,
G f ys(x) = h f yr(x) = 1.

Let us consider that there are already available nu PGD modes, and we seek the next mode
Tnu+1(x). Thus, we have the following representation with variation separation:

T (x) =
nu

∑
m=1

Txm(x)Tym(y)Tzm(z)︸ ︷︷ ︸
T0(x)

+Tx(x)Ty(y)Tz(z)︸ ︷︷ ︸
Tnu+1(x)

, that is, T (x) = T0(x)+Tnu+1(x). (7)

where T0(x) is known and we seek Tnu+1(x). We proceed to a spatial discretization of Tn(x):

Tx(x) =
px

∑
p=1

Txpφxp(x) = Φx(x)T x, for x ∈ [0,Lx],

Ty(y) =
py

∑
p=1

Typφyp(y) = Φy(y)T y, for y ∈ [0,Ly], (8)

Tz(z) =
pz

∑
p=1

Tzpφzp(z) = Φz(z)T z, for z ∈ [0,Lz].

These functions must satisfy:

Tx(x) ∈Varx, Ty(y) ∈Vary, Tz(z) ∈Varz,

where the spaces are:

Varx =
{

f ∈ H1(Ωx), such that f (x) = 0 for all x ∈ Γx
}
,

Vary =
{

f ∈ H1(Ωy), such that f (y) = 0 for all y ∈ Γy
}
, (9)

Varz =
{

f ∈ H1(Ωz), such that f (z) = 0 for all z ∈ Γz
}
.

Ωx = (0,Lx) and Γx = {0,Lx} are the domain in the x dimension and its boundary. Similarly for
Ωy, Ωz, Γy and Γz. Each set of functions φxp(x), etc is a set of piecewise continuous finite element
basis functions, one-dimensional, associated with a given mesh, and T x, T y etc, are unknown nodal
coefficients for the n-th PGD mode of the temperature. In the present formulation, Tx(x) ∈ Varx but
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not all basis component φxp(x) are required to belong to Varx. Nodes p span the entire domain Ω̄x.
Thus, the condition Tx(x) = 0 on x ∈ Γx is satisfied adjusting the adequate nodal value in T x and in its
variation T̂ x. The same holds for φyp(y) and φzp(z).

The temperature gradient is discretized by

∇T = ∇T0 +∇Tn, i.e.,

∇T = ∇T0 +


(Φx,xT x)(ΦyT y)(ΦzT z)
(ΦxT x)(Φy,yT y)(ΦzT z)
(ΦxT x)(ΦyT y)(Φz,zT z)

 . (10)

The variation of the temperature is

T̂ (x) = T̂n(x) = T̂xTyTz +TxT̂yTz +TxTyT̂z, (11)

Taking the variations separately we have the following cases.
Case I - only T̂x 6= 0, that is, T̂y = T̂z = 0. From (11),

T̂ (x) = T̂n(x) = T̂xTyTz = [TyTzΦx]1×Px
T̂ x = NxT̂ x,

δ∇T =

 TyTzΦx,x
Ty,yTzΦx
TyTz,zΦx


3×Px

T̂ x = BxT̂ x. (12)

Case II - only T̂y 6= 0, that is, T̂x = T̂z = 0. From (11),

T̂ (x) = T̂n(x) = TxT̂yTz = [TxTzΦy]1×Py
T̂ y = NyT̂ y,

δ∇T =

 Tx,xTzΦy
TxTzΦy,y
TxTz,zΦy


3×Py

T̂ y = ByT̂ y. (13)

Case III - only T̂z 6= 0, that is, T̂x = T̂y = 0. From (11),

T̂ (x) = T̂n(x) = TxTyT̂z = [TxTyΦz]1×Pz
T̂ z = NzT̂ z,

δ∇T =

 Tx,xTyΦz
TxTy,yΦz
TxTyΦz,z


3×Pz

T̂ z = BzT̂ z. (14)

2.1 Weak forms

2.1.1 Case I - only T̂x 6= 0, given Ty(y) and Tz(z)

From (7), the approximate temperature at the new mode n is in the form

T (x) = T0(x)+ [Ty Tz Φx]T x,
= T0(x)+NxT x.
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and the gradient,

∇T = ∇T0 +

 TyTzΦx,x
Ty,yTzΦx
TyTz,zΦx


3×Px

T x = ∇T0 +BxT x. (15)

The approximate weak form (3) becomes

T̂ T
x

(∫
Ω

kBT
x BxdΩ

)
T x = T̂ T

x

(∫
Ω

NT
x b dΩ+

∫
Γq

NT
x h dΩ−

∫
Ω

kBT
x ∇T0dΩ−

∫
Ω

kBT
x ∇GdΩ

)
(16)

that is, KxT x = Fx, where Kx has dimensions Px×Px.

2.1.2 Case II - only T̂y 6= 0, given Tx(y) and Tz(z)

Using expressions analogous to (15), gives

T (x) = T0(x)+ [Tx Tz Φy]T y,
= T0(x)+NyT y.

and the gradient,

∇T = ∇T0 +

 Tx,xTzΦy
TxTzΦy,y
TxTz,zΦy


3×Px

T y = ∇T0 +ByT y. (17)

the weak form (3) becomes

T̂ T
y

(∫
Ω

kBT
y By

)
T y = T̂ T

y

(∫
Ω

NT
y b+

∫
Γq

NT
y h dΩ−

∫
Ω

kBT
y ∇T0dΩ−

∫
Ω

kBT
y ∇GdΩ

)
(18)

that is, KyT y = Fy, where Ky has dimensions Py×Py.
Analogously, for the case III, where only T̂z 6= 0, given Tx(y) and Ty(z), the weak form (3) becomes

(with T (x) = T0(x)+ [Tx Ty Φz]T z)

T̂ T
z

(∫
Ω

kBT
z Bz

)
T z = T̂ T

z

(∫
Ω

NT
z b+

∫
Γq

NT
z h dΩ−

∫
Ω

kBT
z ∇T0dΩ−

∫
Ω

kBT
z ∇GdΩ

)
(19)

that is, KzT z = Fz, where Kz has dimensions Pz×Pz.

2.2 Separation of integration in the stiffness matrices

Taking the stiffness matrix from eq.(16), and taking the composition of Bx from (12) we have

Kx =
∫

Ω

kBT
x BxdΩ,

=
∫

Ω

(
kT 2

y T 2
z Φ

T
x,xΦx,x + kT 2

y,yT 2
z Φ

T
x Φx + kT 2

y T 2
z,zΦ

T
x Φx

)
dΩ, (20)
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and introducing the PGD decomposition of k from (5), we will obtain Kx as summation:

Kx =
nk

∑
l=1

DlKl
x (21)

where

Kl
x =

(∫
x
kxlΦ

T
x,xΦx,x dx

)(∫
y
kylT 2

y dy
)(∫

z
kzlT 2

z dz
)

+

(∫
x
kxlΦ

T
x Φx dx

)(∫
y
kylT 2

y,y dy
)(∫

z
kzlT 2

z dz
)

+

(∫
x
kxlΦ

T
x,xΦx,x dx

)(∫
y
kylT 2

y dy
)(∫

z
kzlT 2

z,z dz
)

(22)

Analogously, we have

Kl
y =

nk

∑
l=1

DlKl
y and Kl

z =
nk

∑
l=1

DlKl
z, (23)

where

Kl
y =

(∫
x
kxlT 2

x,x dx
)(∫

y
kylΦ

T
y Φy dy

)(∫
z
kzlT 2

z dz
)

+

(∫
x
kxlT 2

x dx
)(∫

y
kylΦ

T
y,yΦy,y dy

)(∫
z
kzlT 2

z dz
)

+

(∫
x
kxlT 2

x dx
)(∫

y
kylΦ

T
y Φy dy

)(∫
z
kzlT 2

z,z dz
)

(24)

and

Kl
z =

(∫
x
kxlT 2

x,x dx
)(∫

y
kylT 2

y dy
)(∫

z
kzlΦ

T
z Φz dz

)
+

(∫
x
kxlT 2

x dx
)(∫

y
kylT 2

y,y dy
)(∫

z
kzlΦ

T
z Φz dz

)
+

(∫
x
kxlT 2

x dx
)(∫

y
kylT 2

y dy
)(∫

z
kzlΦ

T
z,zΦz,z dz

)
. (25)

3. Generation of PGD representation of data

Consider a scalar material property, like thermal conductivity component ki j(x), (or elastic modu-
lus component Ei j(x)) or thermal source b(x), heat flux at a region of the boundary h(x), etc. Consider
its variation on the domain highly oscillatory or random, as in an heterogeneous non-periodical ma-
terial. Consider a PGD representation for k(x):
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k̃(x) =
nk

∑
l=1

Dlkxl(x)kyl(y)kzl(z)︸ ︷︷ ︸
k0(x)

+ kx(x)ky(y)kz(z)︸ ︷︷ ︸
kn(x)

, that is, k̃(x) = k0(x)+ kn(x). (26)

where k0(x) is known and we seek kn(x). The coefficients Dl are determined in a second step of the
method. In the first step, it is considered known, generally arbitrated as unitary. We define a squared
error functional as

E(kx,ky,kz) =
∫

Ω

[k(x)− (k0 + kxkykz)]
2 dΩ. (27)

where k(x) is the given data of the property. The variations of the error functional are

δEx(kx,ky,kz) =
∂E
∂kx

δkx = 2
∫

Ω

[
k(x)− k̃

]
δkxkykz dΩ = 0,

δEy(kx,ky,kz) =
∂E
∂ky

δky = 2
∫

Ω

[
k(x)− k̃

]
δkykxkz dΩ = 0,

δEz(kx,ky,kz) =
∂E
∂kz

δkz = 2
∫

Ω

[
k(x)− k̃

]
δkzkxky dΩ = 0, (28)

We proceed to a spatial discretization for kn(x):

kx(x) =
nx

∑
p=1

Qxpφxp(x) = Φx(x)Qx,

ky(y) =
ny

∑
p=1

Qypφyp(y) = Φy(y)Qy,

kz(z) =
nz

∑
p=1

Qzpφzp(z) = Φz(z)Qz. (29)

where Qx, Qy and Qz are row vectors of nodal values of the approximation. Eq.(28)1 gives

∫
Ω

[k(x)− k0]kykzδkx dΩ =
∫

Ω

kxk2
yk2

z δkx dΩ. (30)

The variation δkx is represented from (29)1

δkx = Φx(x)Q̂x. (31)

Thus, (30) becomes

Q̂
T
x

∫
Ω

Φ
T
x [k(x)− k0]kykz dΩ︸ ︷︷ ︸

Fx

= Q̂
T
x

[∫
x
Φ

T
x Φxdx

∫
y
k2

ydy
∫

z
k2

z dz
]

︸ ︷︷ ︸
Kx

Qx, (32)
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KxQx = Fx, (33)

where Kx is a symmetric mass-matrix like, which is obtained from three independent 1D integrals.
However, at this point, Fx requires coupled integration in all three dimensions, due to the physical
data k(x).

Analogously, we obtain y and z systems:

KyQy = Fy and KzQz = Fz, (34)

where

Ky =
∫

x k2
x dx

∫
y Φ

T
y Φy dy

∫
z k2

z dz Fy =
∫

Ω
Φ

T
y [k(x)− k0]kxkz dΩ,

Kz =
∫

x k2
x dx

∫
y k2

y dy
∫

z Φ
T
z Φz dz Fz =

∫
Ω

Φ
T
z [k(x)− k0]kxky dΩ.

(35)

Algebraic systems (33)-(34) are coupled and nonlinear. Their solution can be done using the
successive iteration method.

The force term in (32) can be decomposed using the PGD separated representation of k0 = ∑
nk
l=1

Dl kxl(x) kyl(y) kzl(z):

Fx =
∫

Ω

Φ
T
x [k(x)− k0]kykz dΩ,

=
∫

Ω

Φ
T
x k(x)kykz dΩ−

∫
Ω

Φ
T
x k0kykz dΩ,

=
∫

Ω

Φ
T
x k(x)kykz dΩ−

nk

∑
l=1

Dl

(∫
x
Φ

T
x kxl dx

)(∫
y
kylky dy

)(∫
z
kzlkz dz

)
, (36)

=
∫

Ω

Φ
T
x k(x)kykz dΩ−

nk

∑
l=1

F l
x

= Fk
x−F0

x .

Analougously,

Fy =
∫

Ω

Φ
T
y k(x)kxkz dΩ−

nk

∑
l=1

Dl

(∫
x
kxlkx dx

)(∫
y
Φ

T
y kyl dy

)(∫
z
kzlkz dz

)
,

Fz =
∫

Ω

Φ
T
z k(x)kxky dΩ−

nk

∑
l=1

Dl

(∫
x
kxlkx dx

)(∫
y
k2

yl dy
)(∫

z
Φ

T
z kzl dz

)
, (37)

that is,

Fy = Fk
y−F0

y and Fz = Fk
z −F0

z . (38)

Therefore, the parts F0
x , F0

y and F0
z can be integrated separately in each direction, and only Fk

x, Fk
y and

Fk
z must be integrated in coupled form.
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3.1 Data generation for tests

We consider here two types of property data for use in the PGD tests: continuous harmonic func-
tions and a two phase material (which gives a discontinuous property distribution). Both forms can
be made random or can generate properties with sharp gradients.

3.1.1 Harmonic variation

We consider the following description

k(x) =
nm

∑
m=1

(
Am sin

imπx
Lx

sin
jmπy
Ly

sin
kmπz

Lz
+Bm cos

imπx
Lx

cos
jmπy
Ly

cos
kmπz

Lz

)
, (39)

with m, im, jm, km ∈ N, and Lx, Ly, Lz ∈ R, are the dimensions of the domain. Am, Bm and im, jm, km
can be arbitrated or obtained from a generator of random numbers.

This representation has uncoupled coordinates. Substituting it in Fk
x =

∫
Ω

Φ
T
x k(x)kykz dΩ of (36)

one obtain

Fk
x =

nm

∑
m=1

Am

(∫
x
Φ

T
x sin

imπx
Lx

dx
)(∫

y
ky sin

jmπy
Ly

dy
)(∫

z
kz sin

kmπz
Lz

dz
)
+

nm

∑
m=1

Bm

(∫
x
Φ

T
x cos

imπx
Lx

dx
)(∫

y
ky cos

jmπy
Ly

dy
)(∫

z
kz cos

kmπz
Lz

dz
)
, (40)

and analogously,

Fk
y =

nm

∑
m=1

Am

(∫
x
sin

imπx
Lx

dx
)(∫

y
Φ

T
y ky sin

jmπy
Ly

dy
)(∫

z
kz sin

kmπz
Lz

dz
)
+

nm

∑
m=1

Bm

(∫
x
cos

imπx
Lx

dx
)(∫

y
Φ

T
y ky cos

jmπy
Ly

dy
)(∫

z
kz cos

kmπz
Lz

dz
)
, (41)

Fk
z =

nm

∑
m=1

Am

(∫
x
sin

imπx
Lx

dx
)(∫

y
ky sin

jmπy
Ly

dy
)(∫

z
Φ

T
z kz sin

kmπz
Lz

dz
)
+

nm

∑
m=1

Bm

(∫
x
cos

imπx
Lx

dx
)(∫

y
ky cos

jmπy
Ly

dy
)(∫

z
Φ

T
z kz cos

kmπz
Lz

dz
)
. (42)

3.1.2 Power variation

We consider the following description

k(x) =
nm

∑
m=1

Am xim y jm zkm , (43)

with m, im, jm, km ∈ N. Am and im, jm, km can be arbitrated or obtained from a generator of random
numbers.
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This representation has uncoupled coordinates. Substituting it in Fk
x =

∫
Ω

Φ
T
x k(x)kykz dΩ of (36)

one obtain

Fk
x =

nm

∑
m=1

Am

(∫
x
Φ

T
x xim dx

)(∫
y
kyy jm dy

)(∫
z
kzzkm dz

)
, (44)

and similarly for Fk
y and Fk

z .

3.1.3 Two phase material

Consider the heterogeneous material constituted by a matrix of property km and inclusions of
property ki. Both matrix and inclusions are considered isotropic homogeneous. Consider that each
inclusion p has its geometric center located at coordinate xp and be spherical or cubic with radius/side
rp as illustrated in Figure 1. To simplify the subsequent use, the cubic inclusion is restricted here
to the case where its sides are parallel to the global Cartesian axes. Consider that both position
and dimension be randomly determined. In this way, it is possible partial or total superposition of
inclusions. One possible way to avoid that consists in post-processing the data, testing each pair of
inclusions and eliminating those in partial or total superposition.

x

y

Lx

Ly

rp
rp

xp

xp

Figure 1. Heterogeneous material with inclusions.

Let us consider the property of the inclusion be decomposed as

ki = km +∆k. (45)

Thus, Fk
x =

∫
Ω

QT
x k(x)kykz dΩ of (36) becomes

Fk
x = km

∫
Ω

Φ
T
x kykz dΩ+∆k

∫
Ωi

Φ
T
x kykz dΩ (46)

where Ωi is the union of the inclusion domains. km is a constant in Ω and ∆k is constant in every
inclusion. If the inclusion is cubic with faces parallel to the coordinate axes, both integrals can be
uncoupled in the Cartesian directions:

Fk
x = km

∫
x
Φ

T
x dx

∫
y
ky dy

∫
z
kz dz+∆k

ni

∑
p=1

∫
x∈Ωp

Φ
T
x dx

∫
y∈Ωp

kydy
∫

z∈Ωp

kz dz (47)

ni is the number of inclusions and Ωp is the domain of the p-th inclusion. Analogously,
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Fk
y = km

∫
x
kx dx

∫
y
Φ

T
y dy

∫
z
kz dz+∆k

ni

∑
p=1

∫
x∈Ωp

kxdx
∫

y∈Ωi

Φ
T
y dy

∫
z∈Ωp

kz dz

Fk
z = km

∫
x
kx dx

∫
y
ky dy

∫
z
Φ

T
z dz+∆k

ni

∑
p=1

∫
x∈Ωp

kxdx
∫

y∈Ωp

kydy
∫

z∈Ωp

Φ
T
z dz (48)

In this way, in tests for the PGD representation, all integrals can be uncoupled in the Cartesian di-
rections if the data are generated from harmonic or two phase materials. However, for a real material,
the force vectors in (36) will have to be obtained by coupled 3D integrals.

3.2 Determination of the amplitudes of the data modes

Let us consider that, at a given point, one has a set of nk modes kxl(x)kyl(y)kzl(z). Each function
kxl(x), kyl(y), etc., can have been normalized by its maximum value or not. At this step, it is use-
ful generate a new determination of the entire set of coefficient Dl , given the modes fixed, that is,
determine Dl such that

k̃(x) =
nk

∑
l=1

Dlkxl(x)kyl(y)kzl(z) (49)

improves the approximation of the given function k(x). Therefore, we define the error functional as

E(Dl) =
∫

Ω

[
k(x)−

nk

∑
l=1

Dlkxl(x)kyl(y)kzl(z)

]2

dΩ. (50)

The variation of the error in relation to Ds generates

∫
Ω

k(x)kxs(x)kys(y)kzs(z)dΩ︸ ︷︷ ︸
Gs

=
nk

∑
l=1

(∫
x
kxskxldx

∫
y
kyskyl(y)dy

∫
z
kzskzl(z)dz

)
︸ ︷︷ ︸

Csl

Dl , (51)

for s, l = 1,nk. This produces the algebraic system

CD = G (52)

where C is a nk square symmetric matrix. The force term depends on the data. In case of the generated
harmonic data (39), it can be integrated separately as

Gs =
∫

Ω

k(x)kxs(x)kys(y)kzs(z) dΩ,

=
nm

∑
m=1

Am

∫
x
kxs sin

imπx
Lx

dx
∫

y
kys sin

jmπy
Ly

dy
∫

z
kzs sin

kmπz
Lz

dz+ (53)

nm

∑
m=1

Bm

∫
x
kxs cos

imπx
Lx

dx
∫

y
kys cos

jmπy
Ly

dy
∫

z
kzs cos

kmπz
Lz

dz.
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4. Numerical results

Let us consider a two dimensional VRE of dimensions Lx = Ly = 10 and arbitrate two simple
descriptions for the k constant: the trigonometric and the power ones, with the following parameters:
A1 = 3, i1 = 2, j1 = 1, A2 = 3, i2 = 2, j2 = 2. All Bm = 0. In this way, the data are generated according
to

Data 1: k(x) = 3sin
2πx
Lx

sin
πy
Ly

+3sin
2πx
Lx

sin
2πy
Ly

and

Data 2: k(x) = 3 x2 y+3 x2 y2. (54)

PGD approximates both functions with only one mode. We fixed 19 nodes equally spaced in each
direction. The functions kx(x) and ky(y) associated to the first PGD mode are shown in Figures 2 and
3. Their product generate the PGD approximation for the data, which are shown in Figures 4 and

0 0.2 0.4 0.6 0.8 1
Dimension length Lj

-3

-2

-1

0

1

2

3

Trigonometric data.
PGD components of mode 1

Function kx
Function ky

Figure 2. Functions for the PGD mode 1 for trigonometric data 1.

0 0.2 0.4 0.6 0.8 1
Dimension length Lj

-40

0

40

80

120

160

200

Potential data.
PGD components of mode 1

Function kx
Function ky

Figure 3. Functions for the PGD mode 1 for potential data 2.

5. The pointwise error with respect to the exact data of (54) are shown in Figures 6 and 7. For the
potential data, the relative error at the maximum point of the data, is about 0,1 %. One notice that the
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Figure 4. PGD approximation for trigonometric data 1.
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Figure 5. PGD approximation for potential data 2.

figures were obtained with a grid of 19×19 points, that is, it takes 192 = 361 points of information.
In fact, the PGD representation requires only 2×19 = 38 values. In three dimensions this would be
193 = 6869 versus 3×19 = 57 values to store the same information.
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xy
 

−0.05

0

0.05

Figure 6. Error between PGD approximation and exact trigonometric data 1.

Next we consider a heterogeneous material with a square inclusion. Using the notation of Figure
1, its center is located at x = y = 5 mm and its length is 4 mm. The material has properties km = 1
W ·(m ·K)−1 and ∆k = 4 W ·(m ·K)−1. The exact solution for this material is shown in Figure 8, made
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Figure 7. Error between PGD approximation and exact potential data 2.

with 50x50 for visualization, because of that the sides of the inclusion seems to have an inclination,
but actually its a complete vertical as can be seen in Figure 9.
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Figure 8. Exact solution for heterogeneous material with square inclusion

For this case, we fixed four different quantities of elements, equally spaced, for each direction: 10,
20, 50 and 200. Using convergence tolerance, maximum number of modes and points of integration
of 10−6, 6 and 2, respectively. The PGD approximates the solution with 2 modes for the cases with
10 and 20 elements and with 3 modes for 50 and 200. The PGD solution for all cases and the exact
solution are shown in Figure 9 along an axis at coordinate x or y = 5 mm, one may notice that as the
inclusion is a square, both solutions in x or y are the same.

The pointwise relative errors, using (55), for all quantities of elements are shown in Figure 10. The
relative error gets its maximum in the discontinuity between the normal material and the inclusion,
which takes around 50 %.

E(x) =
∣∣∣∣k(x)−kexact(x)

kexact(x)

∣∣∣∣ (55)

The product between the solution, for 50x50, generates the grid shown in Figure 11, made with
309 points of information. One may notice that the solution in the figure is shown just the first quarter
for better visualization, but as the inclusion is a square in the center, the solution becomes symmetric.
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Figure 9. PGD functions for heterogeneous material with square inclusion
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Figure 10. Error between functions of PGD approximation and exact solution for heterogeneous
material with square inclusion
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Figure 11. PGD approximation for heterogeneous material with square inclusion

5. CONCLUSIONS

A PGD formulation was developed to obtain a PGD description of a highly oscillatory local mate-
rial property data. This description is composed by a sequence of discrete modes uncoupled in each
of the three Cartesian coordinates. The tests were shown for the conductivity constant in a isotropic
material, but the same procedure is equally applicable to each individual component of the tensor
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of conductivity constants in an anisotropic material. Also, the same technique is used to create a
PGD representation of all data necessary to the PGD modeling of the heat transfer problem. In fact,
prior to this modeling, it is necessary to generate PGD representations for temperature and heat flux
prescribed in each of the faces of the RVE.

The results obtained so far indicate that the PGD technique is capable of generating data represen-
tation with great accuracy and efficiesncy, and can be used to represent data in RVE obtained from
physical samples of different materials.
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