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Problem context
Minimization of mass subject to material (local) failure constraints:

 common engineering requirement: lightest design that supports loads without 
“failure”.

 much less frequent in topology optimization literature
 not consolidated in commercial programs



Most relevant difficulties:

1. Local nature of material failure (stress) constraints 

2. Singularity Stress (mathematical) phenomenon (SIMP – Solid Isotropic Material 
with Penalization of Intermediate densities - approaches) Definition of appropriate 
failure criterion: 

3. High sensitivity of stresses to design changes

Problem context
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 Stress: objective or constraint?

 Min stress subject to volume constraint.
 Min volume subject to stress constraint

 Stress: local or global?
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Background
Singularity Stress

 Firstly seen in discrete (frame) structures:

Sved and Ginos (1968), Kirsch (1990), Cheng and Z. Jiang (1992), 

 Cheng & Guo (1997),

Epsilon-regularization
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Background
Singularity Stress

 Continuum structures: Duysinx and Bensoe (1998)
 Local stress criterion based on failures in microstructures
 Extension to SIMP approach:



Background
Singularity Stress

 Epsilon-Regularization Cheng & Guo (1997)

 q-p regularization (Bruggi 2008)

 … other alternatives
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Background
 Amstutz & Novotny, 2010, 2012  Topological derivative
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 Xia, Shi, Liu, Wang (2012) A level set solution to the stress-based structural shape and topology 
optimization



Level set method
 Variation of the boundary by a function Ø : boundary = zero-level set of function Ø. 

 Spatial description of  zero-level set

 Material derivative

 Hamilton Jacobi Equation



Level set method
 Problem Statement 1

 Integral in Ω  integral in D by Heaviside function



Level set method
 Problem Statement 2

 Problem Statement 3: Augmented Lagrangian



Level set method
 Sensitivity analysis

 Adjoint equation



Level set method
 Sensitivity analysis  velocity of the boundary

 The objective function decreases its value for a normal velocity of the boundary:

 Upwind schemes for the discrete solution of Hamilton Jacobi equation

 Courant-Friedrich-Lewy (CFL) condition

 Function Ø  “distance function with signal”  Reinicialization (bad  stuff)



Numerical Tests

Example 1: Traction of a Bar
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Example 2: Bending of a bar
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Example 3: L-shaped domain
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Example 4: MBB-beam



Numerical Tests

Initial design Final solution

Failure function



 Augmented Lagrangian approach provides a good representation of the 
constrained problem.

 Sensitivity analysis provides adequate directions for a minimization 
sequence.

 The approach “identifies”  LOCAL high stress levels and modifies the 
shape according to that.

 Benchmarks solutions with optimum designs similar to those achieved 
in previous works.

Final Remarks



 The transport of Φ by the chosen solution of HJ do not keep distance 
function properties. 

 Practical restarting techniques introduces shape changes grater than 
convergence conditions.

 Other stress failure criteria on “cut elements” must be tested.

 Success on minimization sequence still dependent on “good” parameters.

Final Remarks



Thank you!
Obrigado!
Teşekkürler!


