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a b s t r a c t

The Griffith-Francfort-Marigo damage model describes the behavior of brittle materials
under the quasi-static loading assumption, focusing on the evolution of damage regions.
It is based on the minimization of a shape functional given by the sum of the total potential
energy of the system with a Griffith-type dissipated energy, with respect to the distribution
of the healthy and damaged phases, under an irreversibility constraint. A natural approach
to deal with such a minimization problem consists in considering the topological derivative
concept to nucleate small damaged regions and the shape gradient to propagate them. In
contrast to such an approach, in this paper the Griffith-Francfort-Marigo damage model is
revisited by using the sole tool of topological derivative. In particular, we propose a striking
simple numerical scheme based on the computation of the topological derivative field to
determine damage nucleation as well as crack/damage propagation. In other words, the
topological derivative is used as descent direction to minimize the Francfort-Marigo func-
tional indicating, in each iteration, the regions that have to be damaged. Therefore, the pro-
posed topology optimization algorithm is able to capture the whole nucleation and
propagation damaging process, including important features like kinking and bifurcations.
These properties are confirmed through several numerical experiments and by comparison
with available laboratory experiments.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Many works in Fracture Mechanics address the issue of microscopic modelling of fractures and the coupling of some
defect atomistic models with macroscopic elasto-plastic models. In this paper, we focus on a purely macroscopic model
in the framework of continuum mechanics. Roughly speaking, continuum models can be classified in two main categories.
On the one hand, there are models of crack growth and propagation which assume that the crack is a surface evolving in
three-dimensional body, with specific evolution laws, which are found innumerable in Fracture literature (often depending
on the body shape and dimensions). On the other hand, one can consider models of fracture, where the crack is identified as a
thin damage. In this case there exists a competition between the initial healthy elastic phase and another damaged elastic
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phase. The transition from healthy to damaged can be smooth or sharp, i.e., there is an interface between a healthy and a
fully damaged zone. Our model belongs to this second class.

The origin of such a model amounts to the British engineer A.A. Griffith in 1921, who published a paper on fracture of
glass. In this work, Griffith assumes that flaws pre-exist in the body, where stress concentrates, provoking atomic debonding
and resulting in crack propagation, until the body breaks. The pre-existing crack is submitted to an external load: force or
imposed displacement. In Griffith’s model, the system is modeled by two thermodynamic variables: the area of the crack
and the displacement of the loading grips. The energy of the system is the sum of the elastic energy in the body, and the
surface energy of the crack, and is a function of a single thermodynamic variable: the area of the crack. When the crack
evolves, the stress in the sample is partially relieved, so that the elastic energy is reduced. At the same time, the advancing
crack creates more surface area, so that the surface energy increases. Thermodynamics dictates that the process should go in
the direction that reduces the total available free energy. If the decrease in elastic energy prevails, the crack grows, otherwise
the crack heals. Specifically, let U be the internal energy (i.e., the macroscopic energy of the atoms), P be the work of the
volume and surface forces (i.e., �P is the potential energy), S be the body entropy and T0 the surface temperature, assumed
constant and equal to the ambient temperature. Let us assume that the process is quasi-static, the kinetic energy and the
volume heat sources are negligible, whereas the surface heat supply must not vanish a priori (recall that boundary loads
are prescribed). Therefore the combination of the first and second laws of Thermodynamics yields
d
dt

ðU � P � T0SÞ 6 0; ð1:1Þ
where Griffith takes U as the sum of the stored elastic energy E and a surface term proportional to the crack area, D. Thus,
Griffith’s Law (1.1) strictly tells us that the available free energy must decrease in time, that is that the total energy
F :¼ E� P þ D tends to be minimized, while the entropy S increases.

A stronger postulate was considered about 70 years later by Francfort and Marigo [12] when revisiting Griffith’s model
under the framework of global minimization of the energy. Indeed, the authors, and after them a series of coworkers and
contributors did suppose that at each quasi-static step, the total energy F achieves the global minimum with respect to
the distribution of the healthy and damaged phases. Furthermore, they assumed that the crack is irreversible, meaning that
healing is precluded: at each step, either the crack is unchanged, and hence load is increased, either the crack advances, and
hence its area is strictly increasing.

There are several ways to compute the minimum of the energy in order to provide a computational algorithm of fracture/-
damage propagation (see, e.g., [11]). One minimization scheme suggested in [1] relies on shape optimization principles. It
consists of a descent method driven by the shape gradient of the energy functional, i.e., the energy decreases in the normal
direction to the boundary of the damage region with a magnitude given by the shape derivative of F . Furthermore, in order
to nucleate new damage regions, the so-called topological derivative of F was also considered in [1]. Let us emphasize that in
theory the concepts of shape and topological derivatives are distinct, and the latter is computed in the undamaged part of the
body, in order to determine if it is energetically worth to create some new damage away from the existing one. One draw-
back of using the shape gradient approach, is in fact that it is a vector field concentrated on the boundary of the damage, as
opposed to the topological derivative which is a scalar field distributed in the whole domain. Therefore, one needs a very
good computation of the normal vector to the damage region, because this vector will determine the crack/damage path.
It turns out that the shape optimization method of [1] was promising, but computationally expensive.

Topological sensitivity analysis may be considered for a pure fracture model as in [19,16] as for a damage model with
crack-like damage regions. It is the purpose of the present work to revisit Griffith-Francfort-Marigo damage model by using
solely the topological derivative concept, that is, the computation of this scalar quantity should allow us to determine dam-
age nucleation as well as crack/damage propagation, relying on the contour lines of the topological derivative field. It can be
proven, but is not the aim of this work, that from a theoretical standpoint the concepts of shape and topological derivatives
do coincide on the boundary of the damage region [6]. In this work, we present a simple numerical scheme that was able to
improve the results of [1], not only in terms of computational cost but also in terms of successful crack propagation assess-
ment tests. The interest of this method is its striking simplicity: to achieve minimization, a single scalar field is computed
from which nucleation and propagation of damages are determined. In particular, the topological derivative is used as des-
cent direction to minimize the Francfort-Marigo functional indicating, in each iteration, the regions that have to be damaged.
Therefore, the proposed topology optimization algorithm is able to capture the whole nucleation and propagation damaging
process, including important features like kinking and bifurcations. These properties are confirmed through several numer-
ical experiments, whose results are compared with real laboratory tests when available. Let us emphasize however that
being a descent method, what is actually achieved is local rather than global minimization, which is also more sound from
a Physical perspective. In this respect, our choice has been to refine the mesh at the crack tip as soon as a local advance is
made. In such a way, according to our numerical results, bifurcation and kinking are rather well captured.

The paper is organized as follows. The Griffith-Francfort-Marigo damage model is revisited in Section 2. Its associated
topological derivative is presented in Section 3. The resulting topology optimization algorithm is shown in all its details
through Section 4. The obtained numerical results are presented in Section 5, where the whole nucleation and propagation
damaging process is observed, together with important features such as kinking and bifurcations. Finally, the paper ends
with some concluding remarks in Section 6.
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2. Mechanical model

The Griffith-Francfort-Marigo damage model describes the behavior of brittle materials under the quasi-static loading
assumption, focusing on the evolution of damage regions [12]. Unlike ductile materials, perfectly brittle materials show
no irreversible deformation and no energy dissipation immediately before the crack propagation, and thus the failure is usu-
ally brutal. Based on this evidence, the damage model of Francfort-Marigo asserts that an abrupt change in the material
behavior takes place pointwisely.

The main idea behind this type of damage model is to introduce an elastic body made of two distinct materials, here rep-
resented by the parameter q0 � 1. The change from the original material to the damaged one occurs only if the elastic
energy released by this transition overcomes a certain material-dependent threshold. In other words, the occurrence of
the damage is determined by the relation
1
2
Ce � e� 1

2
q0Ce � e > j; ð2:1Þ
where C is the fourth-order elasticity tensor, e is the second order strain tensor and j is a material property that represents
the damage toughness.

Two conditions are expected for this model. Firstly, the healthy material should be more stiffer than the damaged mate-
rial, i.e.,
ð1� q0ÞCe � e > 0 8e; ð2:2Þ

to characterize the stiffness loss associated with the damage. Secondly, the damage ðC ! q0CÞ is permanent, i.e., the mate-
rial is unable to return to its original state ðq0C: ! CÞ. Thus, irreversibility imposes a constraint on the evolution of the
phenomenon.

More precisely, let us consider an open and bounded geometrical domain X � R2, with Lipschitz boundary C :¼ @X, and a
sub-domainx of the formx � X. Francfort and Marigo proposed a functional that should be minimized at each time instant
ti, whose arguments are the displacement field ui and the damage distribution q : X ! f1;q0g defined as
qðxÞ :¼ 1; if x 2 X nx;

q0; if x 2 x:

�
ð2:3Þ
Since q0 � 1;X nx andx are used to represent the healthy and damaged parts of the elastic body, respectively. That is, if
qðxÞ ¼ 1 one recovers the healthy material C, otherwise, if qðxÞ ¼ q0 one obtains the damaged material q0C.

The Francfort-Marigo functional FxðuiÞ is defined as the sum of the total potential energy and an energy dissipation term,
namely
FxðuiÞ ¼ J ðuiÞ þ jjxj; ð2:4Þ

where jxj is the Lebesgue measure of x and J ðuiÞ is the total potential energy defined as
J ðuiÞ ¼ 1
2

Z
X
rðuiÞ � eðuiÞdX: ð2:5Þ
Note that there are no body forces, nor surface tractions. Indeed, we are going to impose a nonhomogeneous Dirichlet
boundary condition, i.e., a prescribed displacement. Some terms in the above equation require explanation. The stress tensor
rðuÞ is defined as
rðuÞ ¼ qCeðuÞ; ð2:6Þ

while the strain tensor eðuÞ is given by the symmetric part of the gradient of u, namely
eðuÞ ¼ 1
2

ruþ ðruÞ>� �
: ð2:7Þ
We restrict ourselves to isotropic material, so that the elasticity tensor C can be represented by the Lamé’s coefficients l
and k in the following form
C ¼ 2lIþ kðI� IÞ; ð2:8Þ

where I and I are the second and fourth identity tensors, respectively. Finally, the displacement field is solution to the fol-
lowing boundary value problem: Find ui, such that
divrðuiÞ ¼ 0 in X;

rðuiÞ ¼ qCeðuiÞ;
ui ¼ gi on CD;

rðuiÞn ¼ 0 on C0:

8>>><
>>>:

ð2:9Þ
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where gi ¼ gi�1 þ Dgi is used to denote a prescribed displacement on the boundary CD � C depending on the time instant ti
and the increment Dgi. Thus, the total applied displacement g is computed as the sum
g ¼ g0 þ
XN
i¼1

Dgi; ð2:10Þ
where N is the total number of increments. Finally, C0 � C is used to denote a traction free boundary. Therefore, C ¼ CD [ C0,
such that CD \ C0 ¼ £.

Now, we have all elements to state the Francfort-Marigo damage model, which consists in minimizing the functional
FxðuiÞ, for each time increment ti, with respect to the set x � X. That is
Minimize
x�X

FxðuiÞ; subjectto ð2:9Þ: ð2:11Þ
This model is purely energetic in the sense that damage evolution is based just on the energy density distribution. As a
direct consequence, it is not able to distinguish the difference between traction and compression stress states and thus not
suited to describe the crack closure phenomenon.

Another important feature of the model concerns the characterization of a critical load. In problems without singularities,
critical load is the one that allows local strain-energy density to achieve a critical value. In problems with stress singularities,
however, the strain energy density rises locally to unbounded values and consequently above any finite threshold. Neverthe-
less, experiments like those of Griffith indicate the existence of a critical nonzero load even in the presence of such singu-
larities, which reveals a limitation on the straightforward application of the Francfort-Marigo model in these cases. An
existing remedy in the literature proposes a modification in the (discrete) numerical scheme of the model by introducing
a new material property js used in conjunction with a scaling factor associated with a mesh size measure [1]. Here, we
replace j by a modified energy release parameter jd (see (2.1)) defined by the ratio
j ¼ jd :¼ js

d
; ð2:12Þ
where d is a scaling factor associated with the width of the initial damage. From the physical point of view, when d becomes
smaller, the parameter jd increases in a similar way as the energy density, so that the critical load converges to a finite non-
zero value. This strategy has shown to be effective in problems of crack propagation where the fracture is represented by a
damaged region of small width d, since letting d ! 0 forces the damage region to be crack-like. In the original Bourdin, Franc-
fort and Marigo work [11], the crack was approximated by a smeared region by Ambrosio and Tortorelli functional [2],
whereas in our approach the contrary is done: a damage converges to a crack. In the anti-plane case theoretical results in
this respect were derived by Dal Maso and Iurlano [17]. Note the use of js is explicitly taken into account in these approx-
imations. See also [15], where a phenomenological continuum model for mode III dynamic fracture based on the phase-field
approach is proposed.

3. Topological derivative

In order to solve the minimization problem (2.11), we use the topological derivative concept [18]. The idea is to evaluate
the topological derivative of the shape functional (2.4) with respect to the nucleation of a small circular inclusion. Such a
topological derivative is know in the literature. For the sake of completeness, we state the main result to be used in this
paper, which is given by the following theorem [18, Ch. 5, pp. 158]:

Theorem 1. The topological derivative of the shape functional (2.4) with respect to the nucleation of a small circular inclusion
with different material property from the background, represented by a contrast c, is given by the sum
DTFxðxÞ ¼ DTJ ðxÞ þ jdDT jxjðxÞ 8x 2 X: ð3:1Þ

The last term DT jxjðxÞ is trivially given by
DT jxjðxÞ ¼ þ1; if x 2 X nx;

�1; if x 2 x;

�
ð3:2Þ
while the first term DTJ ðxÞ is known, whose closed formula is written as
DTJ ðxÞ ¼ �PcrðuiðxÞÞ � eðuiðxÞÞ; ð3:3Þ

where the polarization tensor Pc is given by the following fourth order isotropic tensor
Pc ¼ 1
2

1� c
1þ ca2

ð1þ a2ÞIþ 1
2
ða1 � a2Þ 1� c

1þ ca1
I� I

� �
; ð3:4Þ
with the parameters a1 and a2 given by
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a1 ¼ kþ l
l

and a2 ¼ kþ 3l
kþ l

; ð3:5Þ
and the contrast c is defined as follows
cðxÞ ¼ q0; if x 2 X nx;

q�1
0 ; if x 2 x:

�
ð3:6Þ
See also [3,5] for details on the formula derivations. The same formula (3.3) holds true for heterogeneous medium [13], provided
that the heterogeneity is locally Lipschitz continuous.

Let us remark that we have here chosen the same contrast for each of the two Lamé’s coefficients. For the expression of
the topological derivative with a distinct contrast, we refer to [1]. In this reference it is also proven that DTJ ðxÞ < 0 if
x 2 X nx and DTJ ðxÞ > 0 if x 2 x (see [1, Theorem 4.1]).

4. Resulting algorithm

The topological sensitivity analysis provides a first order correction for the shape functional when an infinitesimal per-
turbation is introduced in the domain. Therefore, it is possible to decrease the value of the shape functional by nucleating
infinitesimal inclusions at the regions where the topological derivative is negative. Since due to practical reasons only finite
size perturbations can be created, we propose an algorithm based on the introduction of inclusions of finite sizes at those
regions. If the size of the inclusion is small enough, but at the same time large enough to be treated numerically, it is
expected that the Francfort-Marigo functional decreases. The size of inclusion is associated with the region x� where the
topological derivative field is negative, i.e.,
x� :¼ x 2 X : DTFxðxÞ < 0f g: ð4:1Þ

In principle x� must not be a connected subset, that is, there might be nucleation of damage in front of the previously

damage zone, but also elsewhere in the body. In the former case, nucleation of damage yields evolution of the damage
set, whereas in the latter it means genuine damage nucleation. Let us emphasize that from a theoretical point of view,
the topological derivative holds away from the damage region and for an infinitesimal inclusion only. On the other hand,
the topological derivative can be used as a steepest-descent direction in the optimization process like in any method based
on the gradient of the objective functional. Therefore, for practical purposes, since the numerical method introduces a grid of
finite size, we will consider nucleation of inclusions of finite sizes but small enough such that a decreasing of the Francfort-
Marigo functional in each iteration is ensured. It should also be noted that the topological gradient can be used in place of the
shape gradient (as done in [1]) to compute the time evolution of the damage region.

Having said that, at this stage, we are free to design our algorithm either by nucleating only at those points where the
topological derivative achieves its minimum, or at all points were it is negative, while an intermediate choice would be
to calibrate the size of the inclusion to be nucleated according to the characteristic size of the previously damaged region.
This choice will be provided by the model parameter b 2 ð0;1Þ, with the extreme choices given by b ¼ 0 (minimum points
only), and b ¼ 1 (the whole negative region), respectively. To this aim, let us introduce the quantity
DTF�
x :¼ min

x2x�DTFxðxÞ; ð4:2Þ
which allows us to define the inclusion to be nucleated xb � x� as follows
xb :¼ x 2 x� : DTFxðxÞ 6 ð1� bÞDTF�
x

� �
; ð4:3Þ
where b 2 ð0;1Þ is chosen such that jxbj � pd2=4 (and jxbj 6 pd2=4), so that the size of the inclusion to be nucleated is here
related to the width of the initial damage d. Therefore, if the initial damage is crack-like (d small), b will be taken as small as
to satisfy jxbj 6 pd2=4. By this choice, a damage will evolve like a crack. As a matter of fact, the parameter b induces a thresh-
old for the topological derivative DTFxðxÞ and the volume of the inclusion will only depend on d, while its shape will depend
on the contour lines (level-sets) of DTFx. We will show through some numerical experiments that this strategy ensures a
decreasing of the Francfort-Marigo functional in each iteration, provided that the size of the inclusion to be nucleated xb

is small enough.
The algorithm can be outlined as follows. Given the solution of the linear elasticity system (2.9), the associated topolog-

ical derivative field (3.1) is evaluated. If the field is positive everywhere or jx�j < pd2=4, a perturbation of size pd2=4 at any
point of the domain is likely to increase the value of the functional. In this case, the algorithmwill not propagate the damage,
and it is possible to increase the load gi further and run a new analysis. On the contrary, if the topological derivative field is
negative in some undamaged region and the condition jx�j P pd2=4 is fulfilled, a damage xb will be nucleated inside x�,
with b : jxbj � pd2=4 (and jxbj 6 pd2=4). Schematically, one can see the newly-damaged region as an half-disk of radius
d=2 located at the tip of the pre-existing damage. Since the nucleation of a new damage xb modifies the problem, the solu-
tion to the elasticity system associated with the new topology have to be computed again. Finally, the new topological
derivative field is evaluated and the process is repeated until the condition jx�j P pd2=4 is not fulfilled anymore for any load
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increment. The elasticity system is solved by the Finite Element Method. In order to improve the numerical results, the mesh
at the crack tip is intensified in each iteration of the optimization process. The above procedure written in the form of
pseudo-code is given in Algorithm 1.

Algorithm 1. The damage evolution algorithm.
5. Numerical experiments

The elasticity problem is discretized by using linear triangular elements only. It should be emphasized that the boundary
conditions induces a stress concentration and it is therefore natural to expect damage initiation at these locations. However,
in order to compare our results with those found in the literature, the regions near to the boundary conditions were ignored.
The damage evolution is represented by black and red lines. The black trajectories represent the damage evolution in a mate-
rial traction state, trðrðuiðxÞÞÞ > 0, whereas the red trajectories represent the damage evolution in a compressive (unphys-
ical) state trðrðuiðxÞÞÞ < 0.

5.1. Mode I opening

The first example considers the Mode I crack opening. This case will be used as a reference to calibrate the necessary
parameters and check the overall performance of Algorithm 1. The domain consists of a unit square X ¼ 0;1ð Þ 	 0;1ð Þ with
unit thickness (units are in m) with an initial damage of length h and width d located in the center of the left side of the
domain, as shown in Fig. 1. A vertical displacement was imposed on the bottom and top sides of the domain with a total
intensity g, which has been divided into 100 uniform load increments. The material properties modulus of elasticity E, Pois-
son ratio m, and energy release rate js correspond to the high-strength concrete. The inclusion is made of a material with an
elasticity modulus q0E and its diameter is specified by the parameter l. All these data are summarized in Table 1.

5.1.1. Critical load
The Francfort-Marigo damage model is not suited for the determination of a critical load in problems with singularities,

such as the limiting case when d ! 0 of the Mode I example. In this case any non-null load is sufficient to raise infinitely the
value of the energy density at the crack tip. When it is of interest to characterize a critical load in problems that have initial
damage, a strategy can be chosen in a similar manner as in [1]. As discussed in Section 2 instead of using the mesh size, we
chose to use as a scale factor a dimension associated with the geometry of the problem, given by the initial width d of the
damaged region. Hence, as the width d of the initial damage is reduced, the parameter jd grows in order to compete against
the increase of the elastic energy density at the damage tip. To verify this assertion, five tests were made with different val-
ues for the initial width, namely d 2 f 1

20 ;
1
40 ;

1
80 ;

1
160 ;

1
320g[m]. The parameters were maintained according to Table 1.

The critical load gc was selected as the value of the displacement boundary condition which allows the nucleation of the
first inclusion, that is, when the condition jx�j P pd2=4 holds for the first time. Fig. 2 illustrates the critical load obtained for
the different experiments, which are normalized according to the first estimate found for the critical load g0

c . Therefore, the



Fig. 1. Mode I. Geometry and boundary conditions.
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introduction of the ad hoc parameter jd through (2.12) allows for dealing with a feasible critical loading for d > 0, as shown
in Fig. 2 (dashed-bullet line). We claim however that the limiting case d ! 0 is much more involved and has been considered
in [19], for instance.

As expected, with the decrease of the width d, the energy density at the damage endpoint increases. Note that without a
scale factor correction, the critical load decreases towards zero. On the other hand, the use of the factor d leads to an asymp-
totic behavior for the critical load. Therefore, to describe completely the model, it remains to calibrate the parameter js

according to experimental data.
5.1.2. Damage evolution
After this preliminary analysis, the experiment was simulated using the parameters shown in Table 1. The topological

derivative at the crack tip at the precise time before the propagation can be seen in details in Fig. 3(a). The distribution of
damage at the end of the optimization process can be seen in Fig. 3(b).

The result is similar to those obtained in [1], and as expected the damage growth took place in traction (see the damage in
black). The history of the strain energy can be seen in Fig. 4(a). It is observed that the damage region remains unchanged
until the increment i ¼ 80. Therefore, damage propagation took place between the load increments 80 and 81. Note the
abrupt drop in the strain energy between these two load increments. In the following load increments (81� 100), the mate-
rial also acquires a strain energy due to the residual material stiffness, though not noticeable due to its low value. The topol-
ogy optimization processes starts in the load increment 80, whose history of the shape functional can be seen in Fig. 4(b).
Note that the model dissipates energy in all iterations.

The initial mesh has 47,746 elements and 24,076 nodes, while the final mesh has 121,160 elements and 60,797
nodes. The total CPU time of the whole process was 1 h and 7 min in a PC endowed with 3.4 GHz processor and
16 GB of RAM memory.
5.2. Nucleation phenomenon

This example has the same geometry end boundary conditions of the Mode I case. The parameters are the same observed
in Table 1 except by js, which is set as js ¼ 1:0	 106 J=m. However, a hole of radius r ¼ 0:1 m located in the center of the
square is introduced, as shown in Fig. 5. The obtained result can be seen in Fig. 6(a). It can be verified that the proposed
algorithm was able to activate the mechanism of damage nucleation, independently of any initial damaged region on the
boundary of the hole. Note that the strain energy increases before the nucleation phenomenon, Fig. 6(b).
Table 1
Mode I. Parameters.

Parameter Value Parameter Value

h 0.25 m E 30 GPa
d 0.01 m q0 10�6

l 2d=3 m m 0.20
g 0.01 m js 3:2	 106 J/m



Fig. 2. Mode I. Convergence analysis for the critical load.
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5.3. Mode II opening

The next case aims at revealing the capability of Algorithm 1 to create branches of damaged regions. The mode II test case
has a similar geometry as that of mode I, differing only in the type of boundary condition. In this case, there are opposite and
tangent displacement conditions at the top and bottom faces, as shown in Fig. 7. In a similar manner to the first case, the
parameters used are given in Table 2.

As discussed, the Francfort-Marigo model is energetic and for this reason it does not distinguish between states of traction
and compression. It is nevertheless possible to adopt a heuristic numerical scheme to test different damage evolutions
according to this procedure. To this aim, a test which checks if the trace of the stress tensor is positive, namely
trðrðuiðxÞÞÞ > 0, can be made. If negative, the damage will not be created even if the topological derivative is negative. Unlike
[4], where the functional is modified to incorporate the distinction between traction and compression, our approach is
purely algorithmic and investigative. However for clarity, the two approaches – the original energetic model and the heuris-
tic one – have been tested and their results presented separately.

It is interesting to note that one of the characteristics of this problem lies in the symmetry of the strain energy density.
Being the Francfort-Marigo model based solely on the energy density values, it is evident that damage shows two symmetric
branches, one (spurious) in compression and one in traction. Fig. 8 shows the topological derivative at the crack tip in the
exact moment before the damage propagation.
Fig. 3. Mode I. Damage evolution.



Fig. 4. Mode I. Obtained histories.

Fig. 5. Nucleation phenomenon. Geometry and boundary conditions.
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It can be seen that there are two distinct regions ahead of the damage where the topological derivative is negative, what
confirms the expectations. The final distribution of damage can be seen in Fig. 9(a), where the red spurious branch was cre-
ated in a compression state, and the black one in a state of traction. This result agrees with the available results in the lit-
erature [1,10] regarding the damage model of Francfort and Marigo. On the other hand, in Fig. 9(b), the propagation is
allowed to occur only when the trace of the stress tensor is positive. In this case, the damage propagation is physically
consistent.
5.4. Fiber reinforced matrix

This case presented in [10] consists of a rigid fiber embedded in a deformable matrix. In particular, we consider a carbon’s
fiber embedded in a region composed by epoxy. It is assumed that the structure is under plane strain hypothesis and two
different situations are considered. In the first one, the matrix is pulled in the upper face, then the deformable matrix is
under traction state. In the second one, the matrix is pushed in the upper face inducing compression state in the matrix.
The others boundaries are free. In both cases the midpoint of the fiber remains clamped to avoid translations and rotations,
see Fig. 10. All parameters are summarized in Table 3 where E0 is the Young’s modulus of the epoxy and E1 the Young’s mod-
ulus of the carbon’s fiber. In order to avoid unrealistic damage propagation under compression state, the damage is nucleated
if the condition trðrðuiðxÞÞÞ > 0 is fulfilled, provided that the topological derivative is negative. We stress however that it can
be seen as a purely heuristic strategy with no theoretical foundation.



Fig. 6. Nucleation phenomenon.

Fig. 7. Mode II. Geometry and boundary conditions.
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Fig. 11(a) and (b) shows the damage evolution for the traction and compression tests, respectively. In these examples, the
propagation is allowed to occur only when the trace of the stress tensor is positive. In this case, the damage propagation is
physically consistent. Note that, in both tests, the phenomenon of debonding between the fiber and the matrix is captured. It
is important to note that no region was previously damaged, and hence Algorithm 1 is able to nucleate and propagate dam-
age zones simultaneously. Note that it is not clear to us if in the literature [11,10] the damage was allowed to nucleate in the
interface between the fiber and the matrix. Thus, the results obtained by other methods are not equal to those obtained by
our approach, since in [11,10] the damage was initiated and spread toward the sides. However, similar results from our
approach can be observed in [1] and in the most recent reference [4] considering compression. We claim however that
the result present in Fig. 11(b) is just speculative, since the specimen is under compression and no eventual contact condi-
tion on the created crack lips is considered. Instead, the black branch representing the cracked zone in Fig. 11(b) is filled by a
Table 2
Mode II. Parameters.

Parameter Value Parameter Value

h 0.25 m E 30 GPa
d 0.01 m q0 10�6

l 2d=3 m m 0.20
g 0.01 m js 4:5	 105 J/m



Fig. 8. Modo II. Topological derivative.
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damaged material, with very low Young modulus. Nevertheless, the obtained result taking into account these simplifications
is promising and motivates further improvement on our model.
5.5. Experimental results

Some available experimental results used to test Algorithm 1 can be found in [14]. The geometry of interest for these
experiments, sometimes called Bittencourt’s experiments [8], is shown in Fig. 12 where all dimensions are given in inches.
In particular, we highlight the three holes located between the load and initial crack. Thus, the scope is now the study of the
influence of these holes on the crack trajectory.

The different cases treated by this geometry differ by the position of the crack with respect to the applied load, given on
the one hand by the distance c, and on the other hand by the dimension of the initial crack length denoted as h, which are
shown in Table 4. The additional parameters used to test the algorithm are shown in Table 5.

In the first case (h ¼ 1;5 in and c ¼ 5;0 in) the experimental trajectory does not reach the first hole, but it is immediately
oriented toward the second one. The proposed algorithm was able to reproduce (almost exactly) this experimental result, as
shown in Fig. 13(a). In the second case (h ¼ 1;0 in and c ¼ 6;0 in) the experimental trajectory is oriented directly toward the
second hole. Again, the proposed algorithm was able to reproduce the experimental results, as presented in Fig. 13(b). Here,
Fig. 9. Modo II. Final results.



Fig. 10. Fiber reinforced matrix. Geometry and boundary conditions.

Table 3
Fiber reinforced matrix. Parameters.

Parameter Value Parameter Value

E0 3.0 GPa E1 230.0 GPa
d 0.0 m q0 10�6

l 0.02 m m 0.30
g 0.1 m js 1:0	 106 J/m

Fig. 11. Fiber reinforced matrix. Final results.
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the results were obtained without any heuristic approach, since the crack tip is always under traction during the whole dam-
age processing. Similar results have been obtained in [7,9].
5.6. Heterogeneous medium

In this last example we consider a heterogeneous medium. The idea is to corrupt the Young modulus E with White Gaus-
sian Noise (WGN) of zero mean and standard deviation g. Therefore, E is replaced by Eg ¼ Eð1þ sgÞ, where s : X ! R is a
function assuming random values in the interval ð0;1Þ and g ¼ 2 corresponds to the noise level. The domain consists of a



Fig. 12. Bittencourt’s experiment. Geometry and boundary conditions.

Table 4
Bittencourt’s experiments. Position and length of the initial damage.

c (in) h (in)

Bittencourt 1 5.0 1.5
Bittencourt 2 6.0 1.0

Table 5
Bittencourt’s experiments. Parameters.

Parameters Value Parameters Value

N 100 E 4.5 	105 psi
d 0.005 in q0 10�6

l 2d=3 in m 0.35
g 0.20 in js 15 (in-lbf)/in

Fig. 13. Bittencourt’s experiment. Final results.
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Fig. 14. Heterogeneous case. Geometry and boundary conditions.

Table 6
Heterogeneous case. Parameters.

Parameter Value Parameter Value

h 0.2 m E 30 GPa
d 0.01 m q0 10�6

l 2d=3 m m 0.20
g 0.01 m js 5:0	 103 J/m

Fig. 15. Heterogeneous case.
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rectangle X ¼ ð0;1:5Þ 	 ð0;1Þ with unit thickness (units are in m) with an initial damage of length h and width d located at
the center of the bottom side of the domain, as presented in Fig. 14. The parameters used in this example are summarized in
Table 6.

The corrupted Young modulus EgðxÞ and the final result can be seen in Fig. 15(a) and (b), respectively. It is interesting to
note that due to the medium heterogeneity, we can observe kinking and bifurcations phenomena, which is in agreement
with what it is spected from the physical point of view.

6. Concluding remarks

In this study, we proposed an algorithm for the Francfort-Marigo damage model based solely on the topological derivative
concept, which naturally allows for both nucleation and propagation of damage zones. The devised algorithm incorporates a
sequence of finite perturbations according to the contour lines of the topological derivative field, which can be seen as a
direct extension of the concept of infinitesimal perturbation for numerical purposes. It is important to emphasize that the
topological derivative is obtained by post processing and has no significant computational cost. Indeed, as far as computa-
tional cost is concerned, the process of mesh intensification at the crack tip becomes the main bottleneck of our algorithm.
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Several benchmark numerical experiments found in the current literature have been reproduced, including real life Bit-
tencourt’s experiments. It is worth to note that the present approach was able to capture important features of fracture mod-
elling in brittle materials such as nucleation and propagation, together with kinking and bifurcations. In addition, some
numerical tests using a heuristic propagation approach were presented, which allows for the distinction between states
of compression and traction. While this approach is not completely novel (cf. [4]) the results are promising and encourage
the development of the topological derivative for functionals which specifically would consider distinct criteria in traction
and in compression.

However, it is well-known that such a modelling leads to a class of non-linear elasticity systems. The extension to non-
linear problems in general can be considered as the main challenge associated with the theoretical development of the topo-
logical derivative method. The difficulty arises when the non-linearity comes out from the main part of the operator, which
at the same time suffers a topological perturbation. It is the case of nucleation of holes in plasticity and finite deformations in
solid mechanics, for instance. This will be the aim of future work. Finally, we would like to highlight the striking simplicity of
the proposed topological derivative-based fracture modelling summarized in Algorithm 1.
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