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Abstract 

The sixth-order differential equation system of the Reissner and Mindlin plate bending models describe mathematically the plate problem, 

where lines normal to the mid-plane before deformation remain straight and inextensible in the deformed configuration, but not necessarily 

normal to the reference plane anymore. The non-normality condition is due to the consideration of transverse shearing strains, disregarded in 

the classical bi-harmonic Kirchhoff plate model. As the plate thickness is reduced and/or the transverse shear modulus is increased. the 

deformed configuration is less dependent of the transverse shear strains and, in the limit as the plate thickness approaches zero and/or the 

transverse shear modulus approaches cc, the transverse shear strain effects vanish and the problem is exactly that described by the classical 

plate model. In this paper, we investigate the fundamental solutions of both the fourth-order Kirchhoff and the sixth-order Reissner and 

Mindlin plate models. We consider a transversely isotropic material and show that the fundamental solution of the bi-harmonic problem can 

be obtained directly from the general fundamental solution of the sixth-order plate problem, in the limit as the plate thickness approaches 

zero and/or the transverse shear modulus approaches m. This solution is in agreement with the analytical solution of an infinite thin clamped 

circular plate submitted to a unitary concentrated load acting at its center. 0 1998 Elsevier Science S.A. All rights reserved. 

1. Introduction 

The sixth-order Reissner [20-221 and Mindlin [18] plate models, accounting for the transverse shear strains 
disregarded in the classical bi-harmonic Kirchhoff [14] plate model, require the imposition of three boundary 
conditions (because the governing system is of the sixth order), solving in such way the Poisson/Kirchhoff 
paradox on a free edge [30,25]. These refined models are adequate for solving transverse shear strain sensitive 
moderately thick plate problems, where the transverse shearing strains contribute with significant effects in the 
plate behavior. For such problems, the use of the classical model is inappropriate for a satisfactory solution. 

The sixth-order plate problem, whose natural formulation arises in differential form, was formulated in an 
integral form for the Reissner model by van der WeeCn [32-341. An integral formulation for the Mindlin model 
was developed by de Barcellos and Silva [8], whereas Westphal Jr. and de Barcellos [36] presented a unified 
integral formulation for both models. Constanda [5] presented a rigorous mathematical analysis of the 
sixth-order plate models by means of boundary integral formulations. 

The well-known fundamental solution determined by van der Weeen [33,34] and since then extensively used, 
is however, not a general one. Westphal Jr., de Barcellos and Tomb Pereira [37] showed that an extended 
solution can be considered, the general fundamental solution, whose derived tensors in final form are simpler 
and potentially better than those of van der WeeEn. 
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In this paper, we show that the above cited general fundamental solution presents two important 
particularities: (a) in the limit as the plate thickness approaches zero the transversal displacement fundamental 
tensor component is compared with the corresponding general fundamental solution of the bi-harmonic plate 
model [37]. This process leads to a solution that is in complete accordance with that of an infinite thin clamped 
circular plate submitted to a centrally located concentrated unitary transverse force; and (b) the same previous 
conclusion is drawn if we consider a transversely isotropic material with a very high transverse shear modulus. 

The thin plate fundamental solution so obtained is of the same form as that considered by Costa Jr. and Brebbia 

]61. 
The compatibility process between the general sixth-order Reissner and Mindlin and the general fourth-order 

Kirchhoff plate fundamental solutions lead us to the possibility of specifying the best set of values for the 
otherwise free general fundamental solution coefficients. 

The indicial notation will be considered here, where Greek subscripts vary in the range 1 to 2 and Latin 

subscripts in the range 1 to 3, with repeated indices being summed according to Einstein’s rule. Partial 
derivatives are expressed with the corresponding subscript preceded by a comma. 

2. The basic abstract differential problem 

Starting from the Lame/Navier system for a given problem [37], 

L;,@,)y(Q) = -Fi,(a,>s;(Q, , (1) 

we write in the following the LamC/Navier system for the auxiliary problem, which leads to its corresponding 
fundamental solution. In the above equation Lij(a,) is a given linear elliptic differential operator system with 
constant coefficients, Fij(j(a,) is a given differential operator system, a, being a symbol to indicate that the 
differential operators are applied in the field point Q, q,(Q) is a given vector, and u,(Q) are the generalized 
basic variables of the problem, the plate displacements. 

The generalized displacements of the auxiliary problem are due to three generalized concentrated forces, such 
that [3] 

UT(Q) := ‘kj(Pt QP,V’) 1 (21 

where UT(Q) are the fundamental solution generalized displacements, e,(P) are the generalized unit-concen- 
trated forces in the direction k and acting at the load point P, and lJ,,(P, Q) are the displacements in the direction 

j at the point Q due to the loadings e,(P). 
Substituting Eq. (2) into Eq. (1) and observing the definition of the fundamental solution, 

‘,(‘,)qjCQ) := ‘(P, Q)‘,(P) > (3) 

being 8(P, Q) a Dirac’s distribution at the point P, we obtain [33] 

‘<j(‘o)‘k,(c Q) = w&P, Q>‘i/+ > (4) 

which are the LamC/Navier equations of the auxiliary problem, where S,, is the Kronecker’s delta symbol. This 
system of differential operators can be further reduced to a simple differential equation, whose solution can be 
easily determined. For such a purpose, we apply the Hiirmander’s method [12]. Observing that 

LyLkj = L,,Liy = det(L)G,, , (5) 

being L’” the cofactor matrix of L, and defining 

U,,(P. Q) := L;;(~,MP, Q> , (6) 

we can write the system (4) as 

det(L)G(P, Q) = -6(P, Q) . (7) 

After solving the problem (7), the scalar fundamental solution G(P, Q) is substituted into the system (6). In this 
way, the fundamental solution U,,(P, Q) of the Lame/Navier system equations (4) is obtained. 
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This procedure was applied by Westphal Jr. et al. [37] to some well-known elliptic differential problems of 

the applied mechanics, including the problem under consideration here. In the following, we apply the method to 
the sixth-order plate problem, with the general scalar fundamental solution G(P, Q) being determined in a 
slightly different manner. 

3. The sixth-order plate model general fundamental solution 

Consider a plate of uniform thickness h = 2c > 0, homogeneous and transversely isotropic, referred to a 
three-dimensional Cartesian coordinate system, with the thickness axis xj normal to the plane of isotropy, and 
with the x, - x2 reference plane lying on the plate mid-surface. Following the notation of Jones [ 131, the 
material constants are: E, = E and vil? = V, the isotropic in-plane elasticity modulus and Poisson coefficient, 

respectively, and E,, v13, v,, and G,, the transverse elasticity modulus, transverse Poisson coefficients and 

transverse shear modulus, respectively. The relation E, v,, = E, vli3 should be observed, leading to the five 
constants which characterize such a material. Further, the in-plane shear modulus meets the relation G = E/ 

(2( 1 + v)) and we define 

(84 

where 

y:=m. @b) 

The three constants k,, k, and k,, characterize the material transverse isotropy, being the material isotropic if 
k, = k, = k, : = 1. The stress and strain tensors at an arbitrary point x : = (x,, x2, x3) of a three-dimensional 
Cartesian coordinate system are denoted by q,(x) and E&X), respectively. In the following, the five material 
constants are specified by E, v, k,, k, and k,, and the constitutive relations for the linear three-dimensional 
theory of elasticity are expressed by 

~(4 = & [q,,(x) - vk,k,a,,(x)l , (9c) 
E 

or 

&&) + +(x) + s (( 1 + k:v)c,,,(x) + (1 + v)k,kE&&))c& 1 , (104 
k,E 

fl&) = - 1 + v %3(X) 7 

Q(X) = y W,vEy,XX) + (1 - v)k~~&)I 7 (1Oc) 

with 

P=‘p(q v3):= 1 -v-24. (1Od) 

The problem is investigated for the particular case of bending behavior, case (a) of Fig. 1. Considering that 
only a transverse loading a”‘($ is applied on the plate faces (A : = CT(‘) and B : = 0 in Fig. 1) it implies (Eq. (1)) 

{q(F)}, := (0 0 a”‘($}’ . (11) 

We define the applied loading and the two-dimensional plate variables with a superscript 1 enclosed by 



366 T. Westphal et al. I Cornput. Methods Appl. Mech. Engrg. lbh (1998) 26.1-378 

A/2 A/2 

$. +, + +, = 
T B/2 T B/2 

A/2 A/2 

(a> W 

t_ B 

6, 

Fig. I. A general problem (c) composed as the sum of ;i bending (a) and a stretching (b) problem. 

parenthesis. This notation reveals to be very practical when used in connection with high-order plate models (see 

L381). 
Starting from the displacement assumption [ 151 

UU(X) : = 4; ‘(X).x, . 

U&) := +\“(x, ) 

we obtain for the stress distribution along the plate thickness [23] 

(12a) 

(12b) 

(13a) 

(13b) 

( 13c) 

together with the plate equilibrium equations 

u bfp)&) - gbf ‘(i, = 0 ) (14a) 

&j$) + P(X) = 0. (14b) 

In the above equations X := (x,, x2) is a point on the reference plane of the plate (or on a plane parallel to the 
reference plane), u,(x) are the displacement components, c$: “(X) are the plate displacement components, and the 
plate stresses are defined as 

‘ 
IJ bf,‘m : = j-, U&b~ h, ? (15a) 

d$(i) := 
I fld(X) h, ( 15b) 

m< 

We define a 3 X 3 matrix ?(I)(k), whose elements are the plate stresses and the plate loading, such that 

I 
u::‘(i) U::‘(X) 

[P(i)],,, := u::‘(i) 

where the matrix subscript Sym is used 
variables in the RHS of Eq. (13). 

The plate loading &I’(i) (an a priori 

d” ‘(i, 

cry’(x) , 
1 

(16) 

u(‘)(i) Sym 

for symmetric matrices. Note that these are all the two-dimensional 

non integrated and known plate variable) is defined as the element 
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r\\‘($ in order to complete the above defined plate stress tensor. The actual plate model corresponds to a 

transversely inextensible one, as the plate transverse displacement given in Eq. (12b) is constant along the plate 
thickness (see however Eq. (20) and its subsequent discussion). One can note that there is no one plate stress 
associated to Use in Eqs. (15). For plate models of high order, which take transverse direct deformation into 
account, integrated components of Use take the place of the transverse loading in the respective high-order 
tensors. For the two terms (third-order polynomial) displacement approximation of the twelfth-order (differential 
equation system) Reissner plate model [15], it results [38] 

[7(2)($]3X3 := 

I 

J$‘($ Jr’,‘(Z) 

fl:: 6) ;$Z],,. =rii@) ;::; ZJ) 

where we presented the matrix elements in the RHS with the notation of Reissner [24]. 
for a plate stress obtained directly from gjj(x) (see [38]). 

(17) 

U:“(i) = T(i) accounts 

Applying the Hellinger-Reissner variational principle [23,35] we obtain for Eq. (1) together with Eq. (II), 

1-v 
A - A* + B a;, G $2 -A2 a, 

WI DT 3x3 := 6 a;, A-h’+Pd;, -?a, , 1 (1W A’ a, h2 a2 h2A 

{u(X)>, := {p:“(i) q+)(i) cp:l)(i)}T ) (18b) 

l&T 
(1 - v)A’k, ‘I 

0 0 

[Fl3xx := @G 

1 

0 ’ 
(18~) 

(1 - v)A’k, ” 

1 SYm 

where a, = a/ &x, and ai, = a’/(&, &-cz) for derivatives in matrix notation, A := dt, is the two-dimensional 

Laplace’s operator, D := 2Ec3 /(3( 1 - V-)) is the plate flexural rigidity, i, : = (1 + v)/( 1 - v), and 

h2 := 3k-x , 

c2 

(19) 

with k’ := 5 /6 for the Reissner plate model, whereas for the Mindlin plate model k2 := IT*/ 12 or 

4 (1-(1-2v)k’/(2(1-~)))(1-k~):=(2-k~)~ [18].3 

The plate displacements obtained from the Hellinger-Reissner principle are [lo] 

where ui(x) are the three-dimensional displacements of a point of the plate. If they are exactly of the form given 
in Eq. (12) then q:“(X) = +I”($, showing that the displacements represented in Eq. (20) (Reissner) are a 
generalization of those in Eq. (12) (Mindlin). 

Remark that in the differential governing system (18a) the only transverse material parameter present is k,. In 
the loading operator F,,, Eq. (18c), the additional parameter V, /k, comes into play, but not 1 /E, which would 
be associated with a,, or &33, Eqs. (SC) and (lOc), respectively. 

3 The correction factors of Mindlin are valid for isotropic materials. For non-isotropic materials analogous constants can be obtained for 

the appropriate medium (see [ 181). 



368 T. Westphal Yt al. I Comput. Methods Appl. Mech. Engrg. 166 (1998) 263-378 

Hereafter, we work with the system of two-dimensional variables and do not show the explicit dependence on 
X anymore. 

As shown by van der Weeen [33], Eq. (7) reads 

h’A*(A - A’)G(P, Q) = -8(P, Q, 3 (21) 

with the transversal shear coefficient k, included in the parameter A’, Eq. (19). 
To determine the general solution U,(P, Q) we solve the homogeneous problem related to Eq. (21), namely 

A’(A-A*)V(r)=O, r#O (22) 

where r .= IP - Ql is the distance from P to Q. Eq. (21) is invariant under rotations, so its solution depends only 
on the radial variable r [4]. Such solution can be written in the form 

V(r) : = v, (Y) + v&j . 

where 

(234 

A*V, (r) = 0 , 

(A - h’)V2(r) = 0. 

Eq. (23~) can be expressed as 

z2v2,._; + zv2,r - z7v2 = 0. (24) 

where z := hr. 
The general solutions of Eqs. (23b) and (24) are 

V,(r) = B, + B2 In r + B,r’ + B,r* In r , (254 

V,(z) = B,&(z) + B&z), (25b) 

where Z,(z) and Z&(z) are the modified Bessel functions of first and second kind, respectively [l], and B, to B, 

are constants. 
We express the general solution of Eq. (22) as 

G(z) = C,&(z) + C,r’ In r + C, In r + C,r* + C, + C,l,(z) . (26) 

This solution was expressed by van der WeeEn [33], Silva [28], Westphal Jr. et al. [37] in the form 

G(z) = D,&(z) + D,z’ In z + D, In z + D,z’ + D, + D,Z,(z) , (27) 

with the relations between the coefficients in Eqs. (26) and (27) being 

C, := D, , C,:=D,A*, C,:=D, 

C, := (D4 + D, In A)A* , C,:=D,+D,lnA, C,:=D h (28) 

In the following, we consider Eq. (26) in order to determine the constants C, to C, that meet Eq. (7). It is clear 
that E@ (27) could equally well be used, but in applying Eq. (26) we do not have me coupling effect between 
the six linearly independent functions which build up the general solutions in Eq. (25) forming the fundamental 
solution, as is the case with the constants of Eq. (27) that comply with Eq. (28). We express the general scalar 
fundamental solution G as a function of r only, namely G(r), since for each problem the plate thickness h and 
the transverse shear modulus factor k, are fixed, implying the factor A to be a constant. 

The significance of our fundamental solution G(r), Eq. (26), is its general representation, that is, the most 
general solution of the governing differential operator. The most frequently used solution of van der Weeen [33] 
can be directly determined from Eq. (27) if the free coefficients are set as D, : = -D, /4 and D, : = 0 [28,36]. 
Constanda [5] considered Eq. (26) with C, = C, : = 0. A judicious investigation of the operator Ly of Eq. (6). 
that is 
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A’[( 1 + ;)A’ - (;A + A’) a;,] -A’[;4 + A’] a;, -A*[4 - A*] 8, 

-A*[SA + A*] a;, A’[( 1 + ;)A’ - (;A + A2) a;,] -A*[A- A*] a2 , (29) 

A*[A - A”] a, A’[A - A21 a2 [A - A*][(1 + $)A - A’] I 

reveals that the differential operator L;J involves a non-differential term, [DA2( 1 - V) /2]*, that does not 

eliminate the constant C, and D, of G(z), Eqs. (26) and (27), respectively. Such fact seems to have been ignored 
by the BEM community, with the exception of the related works of the present authors. Clearly this does not 
imply that the other fundamental solutions are wrong. This question concerns a free coefficient function. while 
the essential ones which generate a Dirac’s distribution are correctly posed. 

Using the general solution equation (26), that meets Eq. (7), and the differential operator det(L) given in Eq. 
(21), we calculate the general fundamental solution U,(P, Q) using Eq. (6). 

We need now to investigate the solution of the problem depicted in Eq. (22) at the singular point r = 0. when 
Eq. (21) must then be considered. This is a generalized function and the analysis should be performed according 
to the theory of distributions4 

(G(r), det@)+(r)) = (det(L)G(r), &r)>. d+-) E WQ*) , (30) 

where (u, b) denotes the duality pairing of a E 9’(R*) and b E iB(R’), being S(R*) the space of test functions 
in [w’ and 9’(R’) its dual space, the space of distributions. From Eq. (7) it follows [28,37] 

(G(r), det(L )4(r)) = - 4(O) . (31) 

Let S(P, 8) be a sphere with boundary 4 and radius E centered at the singular point P. Next exclude the 
associated region 0E from the infinite one 0*, integrate by parts, and take the limit E+ 0. This results [28] 

1 

lim - 
E-0 

{ 1 r, 

GA(A - A2) 
dr 

dT 

2 
/ 

I 
.A 

t rFA(A-A2)+dT- 
I 

AG(A-A2)$dr 
E r, 

5 6 

r \ 

+ I 4A2(A-A*)Gdfi =- 4 
1 D3(1 - v)*A* 

4(O) 
0*-f& 

The derivatives of G, Eq. (26), are 

z=-AC,K,(Ar)+C,(2lnr+ l)r+C,~+2C,r+AC,I,(Ar), 

AG = A2C,Ko(Ar) + 4C2(ln r + 1) + 4C4 + A'C,Z,(Ar) , 
A%= -A3C,K,(Ar)+4C,~+A3C,Z,(Ar), 

A*G = A4C,Ko( Ar) + A4C,Zo( Ar) , 
4 Using the multi-index notation [ 12,29,3 I] 

(G(r), D”qW) = (- 1 )‘m’(‘D”G(r). #4r)) , 

(32) 

(334 

(33b) 

(33c) 

(33d) 

and for the present case D” = dct@); as D” is a self-adjoint polynomial in A with constant coefficients and Ial is even, this implies that the 
transpose of D”, ‘D”, coincides with D”. 
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A2$= -hSC,Ko(Ar) + A~c,z,(A~), 

A’(A - h’)G = 0. 

We have on the sphere boundary r = E and dT = E d0, and for small arguments F 

1 
K,(A&I=AE. 

Z”(#I&) = 0, 

Z,(AC)=+, 

We) 

(33) 

(344 

Wb) 

(34c) 

(34d) 

where y is the Euler constant. 
As 4 is a test function 

where M, to M, are bounded constants. 
We can now analyse the several integrals in Eq. (32). The last boundary integral. the integral number 6, 

contributes for the singular behavior of the problem, the integrals number 1, 3 and 5 are cancelated and the 
remaining ones, the integrals 2 and 4. are non-trivial, and should consequently be zeroed. This regularization is 

performed through judicious choices of the coefficients C, to C,. It can be verified that we should have 

(364 

c, = c, (36b) 

Finally, from the integral number 6, 

(37) 

The coefficient C, should be null, according to the regularity condition at infinity for the fundamental solution 
[3,4,36]. We do not have any imposition on the coefficients C, and C,; they are free coefficients. 

We define two constants Fj and F5 such that 

C, := A'F,C, , (38a) 

C, := F5C I . (38b) 

The system (6) give us 

uap = 8710(: _ v) {[8&r) - (1 - v)(2 In I’ + 1 + SF4)lSnp - [8A(z) + 2(1 - ~)lr.,~.~>, 

u,, = -u,, = & [2 In r + 1 + 8F,]rq, , 

1 8 3-v 1-v 
u,, =- 

87TDh2 
h2u”(ln r + 4F,) - I_V In r + p(1+4F,)-2F5 . 2 II (39) 

where it was defined [33] 
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B(z):=K,(i)+~(K,(z)-~). 
The functions A(z) and B(z) have the following behavior for small arguments 6 

A(h)= -;, 

&As)=-+[ln($)+y+i], 

this being a good approximation for As < 7 X 10m5. 
Defining two variables a, and (Ye 

2lncr,:=1+8F,, 

2lna,:=(3-V)(l+4F,)-(l-v)F,, 

we obtain 

U&-) = 4rrD(: _ V) {]4B(Ar) - (1 - v) Mqdl& - ]4A(hr) + (1 - 41r,,rp19 

(404 

(bob) 

(414 

(4lb) 

(424 

(42b) 

(43) 
1 

U,,(r) = -Q,(r) = G ln(a,%,, , 

1 

U 
Y* ln(cY,r) -+ - 1 8 

U,,(r) = G (1 - v)A 
Z ln(a;r) . 

1 

This is just the general fundamental solution presented by Westphal Jr. et al. [37], if we substitute here the 
constants ~u,taA and a,tph. 

4. A connection between the Kirchhoff and the Reissner/Mindlin general fundamental solutions 

Consider the general fundamental solutions for the Kirchhoff s plate operator [37], 

U(r) = & [r2 ln(c+r) + F] (44) 

and Reissner/Mindlin, just presented above, where LYE and F are the free coefficients of Kirchhoff s plate model 
general fundamental solution. 

We now look at the last member of Eq. (43), in the limit as the plate thickness h approaches zero and/or the 
transverse shear modulus coefficient k, approaches infinity, 

lim u,,(r) = F,mo 8rrD ~‘++--!---{~‘[ln(~,~)-+] - 3k2(F_ v)gln(a2,}, (45) 
h--10 

kc+ G 7 

or 

lim U,,(r) = & 
h_” I ( 

Y* ln(cY,r) - i 
>I 

. (46) 
tC+na 

Comparing Eqs. (44) and (46) we have, for 

ln(aKr) = ln(cy, r) - +, (47a) 

F=O, (47b) 
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lim U,,(r) = U(r) . 
h-0 

k,+= 

From Eq. (47a) 

-I/? 
a;, =qe . 

and, substituting the Eqs. (47b) and (49) into Eq. (44), it results 

U(r) = & r2 1 ln(a,r) - + 1 
Considering now 

and comparing with Eq. (43), we can verify that 

(48) 

(49) 

(50) 

(51) 

(52) 

This comes to be exactly the fundamental solution for the rotations in the Kirchhoff plate model. 

5. Particular fundamental solution 

We can simplify the general fundamental solutions previously presented, Eqs. (43), (50) and (52). We just 
make the simplest possible choice for the remaining free coefficients to be 

._ (Y1 .- 1, cr,:=l, 

finally resulting the particular fundamental solutions 

(53) 

l Kirchhoff plate model 

U(r)=&[lnr-+]. 

dU(r) 
U,(r) = -yg- = 

a 
& W-b-, a ; 

(541 

l Reissner and Mindlin plate models 

Uap(r) = 4nD(: _ v) {[4B(Ar) - ( 1 - 4 ln rl& - [4A(Ar) + 1 - v]r,ar.P}, 

1 
U,,(r) = -U3,(r) = G ln(r)rr,a , (55) 

U,,(r) = & {r’[lnr-+] - (1 _8V)Az lnrj. 

For a clamped circular plate of radius r = a submitted to a unitary concentrated load applied at the center r = 0, 

the analytical solution for the transversal displacement 113 is, according to Kirchhoff’s plate model [30], 

(56) 

Canceling the terms involving the radius a of the plate in the above solution, retaining consequently only the 
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terms not related to its dimension in the brackets, we obtain exactly the fundamental solution U(r) of the 

Kirchhoff plate model presented in Eq. (54). 
The procedure just followed in analysing the above closed solution was considered by Hartmann [ 111, but he 

used instead the analytical solution for a simply supported plate and discarded the constant term -( 3 + v)/ 
(2( 1 + v)) that should replace the term - 1 / 2 when this problem is considered in obtaining the fundamental 
solution in question. However, the most right problem to be considered is just that of a clumped plate, since the 
boundary conditions of the auxiliary problem are those of vanishing displacements (transversal displacement 
and rotations), which are the variables of our starting Lame /Navier system equation ( 1). 

The fundamental solution for the Kirchhoff plate model with the factor - l/2 was also presented by Costa Jr. 
and Brebbia [6], where the factor in question was obtained through numerical experiments. This factor was here 
obtained through simple mathematical considerations, 

The procedure here presented in determining general fundamental solutions seems to be very practical for 
another type of operators, specially for those involving basic variables of different nature, as is the present case. 
As the specialization of the final form of our sixth-order general solution is in close agreement with those of a 
thin clamped circular plate submitted to a centrally located unitary loading, we believe that our solution forms a 
part of the analytical solution of a Reissner and/or Mindlin plate under the same conditions. 

6. Integral formulation and general tensors 

The integral equations for Reissner’s and Mindlin’s plate models were already presented in several papers, the 
related bibliography at the end of this paper serving as an example for them. These equations are summarized 
next, and we present the respective general tensors with the free constants LY, and (~2. P and Q are general 
domain points. When these points are located on the boundary they are denoted by p and q, respectively. The 
plate mid-surface domain is denoted by 0 and its Lipschitz continuous boundary by IY 

The integral equations for the generalized displacements u,(P), Eq. (18b). and resultant stresses T,~(P) = 

~bl,‘(P). Eq. (16), with tics) = T,,(q)n,(q), where n,(q) denotes the components of the outward unit normal to c 
are 

c,(p)uj(p) + I r ‘ij(P, q)‘,(q) dr(q) 

= 1 U,(R q)tj(q) dT(q) + 
r I 

n [Ut,(P, Q> - MU,,,,(P, Q)l~“‘<Q> do(Q) (57) 

and 

r,,(P) = I F 
‘atj(e S)tj(S) d’(q) - I r 

‘aij(c q)uj(q) dr(q) 

+ 
I 

R W,,,U’v Q, - ~,,(f’, Q)l8’(Q) da(Q) + Ma”‘(P)6,, 

For uniformly distributed loads a”‘(Q) = cte, the above domain integrals can be transformed to 

i R 
]u,,(P, Q, -MU,,.,@‘. Q>b”‘(Q) WQ) = CT(‘) 

I I 
[AJP) q) - MJ;JP, q>ln,(q> U(q) 

and 

(58) 

(59) 

I n [‘,i,(~ Q> -Mv,i(P, Q>l~“‘(Q> ‘n(Q) = a”’ I r [Yrip(P, 9) - MU,,& q)lnp(q) U(q). (60) 

The variable M is defined as 

Reissner plate model , 

Mindlin plate model . 
(61) 
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The general expressions for the above tensors are given in the following, being completed with the 

displacement fundamental solution Eq. (43). 

l Tensor T,(r) 

T&9 = &4A(hr) + 2ArK,(Ar) + (1 - v)l[r,pm + r,&J 

+ [4A(Ar) + (1 + 41r,,,nB - 2[8A( hr) + 2hrK, ( Ar) + (1 - ~)]r,~~r,~r,,}. 

A’ 
Tu3W = G [&Wn, - 4ArJ-)r,or.,,l . 

T&I = $i[t 1 + 4 Ma,r) + vln, + (1 - v)r,,r.,,> . 

7,3(r)=&r,n. 

l Derivatives of the tensor U,,(r) 

UmaJr) = 4TD(1 L v)r {4ArK, (Ark,&, + [4A(Ar) + ( 1 - 41[ym~~py 

+ r,Ju, + r,,aap] - 2[8A( Au) + 2ArK, ( Ar) + ( 1 - v)]r,ur,pr,,}. 

1 
U,,,.,(r) = -u,,,y(r) = G [Ma,@,, + ~:m~:vl . 

U,,,,(r) = & 
[ 

r ln(qr) - ( 1 _4,,A1 +]r,? . 

l Tensor U,,,(r) 

Uwa,,(r) = & {[4A( Ar) + 2ArK,( Ar) + ( 1 - v)][r,,&, + T:~S,~~] + [4A( Ar) 

+ (1 + m$,, - - 3[8A( Ar) + 2ArK, ( Ar) + (1 - v)]y~ypyv} . 

U_&9 = $ [NW%, - A( Adr,,r,,l . 

U,,,,(r) = ;{I(1 + 4 ln(qr) + VI& + ( 1 ~ v)r,ut*,p>~ 

1 
U,,,(r) = G r&k 

l Tensor T<,,(r) 

T+,(r) = D~m~zv’ {[4A( Ar) + 2ArK, ( Ar) + ( 1 - v)][n&+ + r~,$~,,] 

+ [4A( Ar) + ( 1 + 3 ~)]n,& - [16A(Ar) + 6ArK,(Ar) + 2(1 - V) 

+ A’r’K,(Ar)l[(~,,n,, + r,,n,)r,, + V$& + r.,6,,k,nl 

~ 2[8A(Ar) + 2ArK,(Ar) + (1 + v)][r,mr,gn, + r,,r,,6,,] 

+ 4[24A( Ar) + 8ArK,( Ar) + 2( 1 - Y) + A’r’K,( Ar)]r,ar~,r,,r,,} , 

TO&9 = 
-D( 1 - v)A’ 

4nr [(2A(Ar) + ArK,(Ar)Wprz, + r.,6u,) 

+ 2A( Ar)rmnp - 2(4A( Ar) + ArK, ( Ar))r,,r,pr,nl , 

7np3(r) = 
D( 1 - v)A’ 

47rr 
[(2A( Ar) + ArK,( Ar))(r,pp + t.,pn,) 

(62) 

(63) 

(64) 

(65) 
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T,&) = 
D(1 - v)A? 

47rr* 
[( h’r2B( hr) + l)n, - ( A”r2A( h-) + 2)r.,r,,] 

l Tensor Vat(r) 

1-v 
I&(r) = - 2rr2 @a, - ?ar,)~ 

V*,(r) = 0. 

l Tensor A,,,(r) 

[(4 ln(a,r) - 3)smup + 2(4 ln(cy,r) - l)r,ar.,l , 

32 
r2(4 ln(a,r) - 3) - ( 1 _ v)A2 (2 ln(cu,r) - 1) r,, . 

I 

l Tensor Y,+(r) 

Yapy(r) = -‘~4~v’r ((4 ln(a, r) - 1 )(r,a& + r,$&) 

+ 
[ 

4(1+3Y) 
1 _ v ln(a,r) - 1 r,& + 4r,ar,pr.r , 1 I 

Y,&9 = T& I(2 Mq) - 1 Pup + 2r,,r,,)l . 

(66) 

(67) 

(68) 

._ r.n . - Vd 
In Eq. (57) for a point P E fl 

c,(P) := 8, . (69) 

The system (57) is valid for a point p E r if we observe that the boundary integral in the LHS should be 
interpreted in the Cauchy principal value sense, and according to Fig. 2 the matrix c,(p) is [32,36] 

y+(l+v) * 
4 s 

(l+4y o 

[C(P)l,., = $y 
4 c 

y_(1+4y () 3 
4 s 

I Y Sym 

being 

(70) 

Fig. 2. Load point p on a corner point with normals (n,. 0,) ad (n,, 0,). 
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I( = sin( 20,) - sin( 28, ) , 

y = cos( 20, ) - cos(28, ) 

For a point p with continuous normals 0, = 0, we obtain 

1 
c,, = -, 6, 

(71) 

7. Numerical applications 

In order to illustrate the use of the above equations, a BEM program was implemented. We tested a wide 
range of values for the free coefficients for some isotropic circular and rectangular plates and under some sets of 
boundary conditions and some choices of the number of integration points. It was confirmed that the results are 
weakly affected by using different coefficients. The results reported by de Barcellos and Westphal Jr. [9] are 
confirmed and some particularities of our code can be found there. 

Here, we show only an example, where we consider a clamped circular plate submitted to a uniformly 

Table 1 

Boundary and internal results for a clamped circular plate uniformly loaded and discretiaed with 8 quadratic boundary elements 

rlu 

Exact 

0.0 

641) 
1 1’3 

4a 

1.7314 

I .7340 

1.7309 
I .7305 

160 16 16 2 
I nn 7 T>\ 7 7,,, - 7,s 4 IP 
W Y” W 4” 

0.0 I .3000 1.3000 0.0 

0.0 1.3015 I.3015 0.0 IO 

0.0 I.2998 I .2998 0.0 20 

0.0 I .2996 1.2996 0.0 40 

Exact 0.0 0.0 -0.6 -2.0 -1.0 

bc bc - I .9834 -0.9948 IO 

I .o bc bc ** - I .9964 -0.9988 70 

bc bc -1.9981 -0.9993 40 

Exact 0.0 0.0 -0.6 -2.0 -1.0 

0.0 0.0 -05162 - 1.9666 -0.9466 IO 

I .o* 0.0 0.0 -0.5120 ~ 1.9666 -0.9500 20 

0.0 0.0 -0.4928 - I .9608 -0.9424 40 

** Not calculated in this step. 

Table 2 

Percentual errors for 32 quadratic boundary elements 

rla 
L 

- T,,i 
qa 

IP 

5.3E-2 

0.0 6.8E-3 

6.78-4 

1 .o 
bc bc 
bc bc 
bc bc 

I .o* 

3.8E-2 
5.OE-3 

5.1E-4 

** 

- 1.0878 
-0.4344 

-0.3438 

3.8E-2 
5.OE-3 

5.lE-4 

-0.4886 -0.4396 IO 

-6.5E-2 -5.9E-2 20 

-8.78-3 -7.8E-3 40 

-0.1480 -0.5364 IO 
PO.0668 -0.2190 20 

-0.0442 -0.1336 40 

10 

20 

40 

** Not calculated in this step 



T. Westphal et al. I Comput. Methods Appl. Mech. Engrg. 166 (1998) 363-378 371 

distributed load and solve the hypersingular stress system for a boundary point. This possibility is apparently 

due to the symmetry of the problem, as the needed integration procedures are not implemented in our program. 

7.1. Clamped circular plate under a uniformly distributed load 

Here, we consider a model with 8 quadratic boundary elements and IP = 10, 20 and 40 integration points are 
used. The results for an isotropic plate are shown in Table 1. The local coordinates are n and s, the normal and 
tangential directions, respectively, and ‘bc’ denotes boundary conditions. We consider a plate according to 
Mindlin’s model, of radius a := 0.5 and with k2 := 5 16, I/ := 0.3, h := 0.2 and q = a(‘). 

The boundary conditions are u, = u,~ = u3 := 0 (hard clamped [2]) and the calculated plate stresses on the 
boundary are t, = r,,,, ts = r,,, and t, = rn3. The plate stress r,, on the boundary cannot be directly calculated in 
solving the boundary system Eq. (57) without applying symmetry boundary conditions, discretizing only a 
quadrant of the plate. For internal points we define n := (1,0) such that the local system coincides with the 
global one. 

The values corresponding to the ratio r/a denoted by * were obtained for the hypersingular boundary stress 
system Eq. (58) at a boundary point, with the corresponding results multiplied by 2 (there appears a factor l/2 
multiplying the LHS of Eq. (58) for a boundary point, see [7]). Values of ~,,~(p) can be directly calculated in this 
way, without employing symmetry boundary conditions. These results are strongly influenced by our coarse 
discretization. To investigate this problem carefully, we solve the same problem, but employing instead 32 
quadratic elements. The results, in terms of percentual errors, are shown in Table 2. 

8. Conclusions 

The general fundamental solution here presented was obtained through a concise and clear procedure. The 
considered material allowed to identify the contribution of two distinct types of transversal effects, namely 
transverse shear and direct deformations. It was proved that the fundamental solution of Kirchhoff’s plate model 
can be reached if one of the two basic conditions satisfied by this model are met: thinness and/or very high 

transverse shear modulus. 
In the final form of our fundamental solutions, Eqs. (43), (50) and (52), the two free coefficients always 

appear only as ln(apr) = In a;0 + In r. The best choice is simply to select ap := 1. 
High-order plate models are today a research area of ascending interest. Examples of some developments and 

corresponding numerical solutions by the FEM are the works of Schwab [26], Schwab and Wright [27], Li et al. 
[ 16,171. Hencky-Bolle-Mindlin displacement-based plate models are considered in these works, being the 
nature of the formulation adequate to be solved by the FEM. Another possibility to develop two dimensional 

plate models is to start from a stress field as performed by Reissner (see also [19]). As the boundary integral 
equations involve a particular analytical solution of the problem, the fundamental solution, we do not encounter 
limitations on the nature of the basic field. Displacement- and stress-based models are handled with the same 
degree of difficulty. 

The stress field of displacement-based models is determined by differentiation (through constitutive 
equations), whereas stress-based ones are obtained through integration of the equilibrium equations. Additional- 
ly, stress-based models lead to weighted averages of the displacement field that are generalizations of the 
corresponding field of displacement-based models. Classical or high-order Reissner plate models are conse- 
quently the best tools to analyse plate problems. 

It is interesting to have a precise fundamental solution for the bi-harmonic problem because the two free 
coefficients C, and C, are exactly the same free coefficients present in high-order plate models (see [38]). 
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