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Abstract

An optimum hp adaptive mesh design is accomplished by minimizing the number of equations for a speci®ed error limit. This new

approach leads to a problem in which the h and p mesh parameters appear explicitly in the formulation. The optimal conditions yields a

non-linear equation for each element which simultaneously supplies the optimum values for h and p parameters. The methodology here

developed is applied to the numerical solution of several unidimensional elliptic boundary value problems. Ó 2000 Elsevier Science S.A.

All rights reserved.
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1. Introduction

Despite the high degree of development reached by the ®nite element method in terms of mathematical
theory and algorithms, the ability of de®ning an appropriate level of discretization for a given problem
usually depends on the judgement of the analyst and on his previous experiences with similar problems. If
the results are considered unsatisfactory, the discretization should be redone. Thus, it is reasonable to admit
that if in the ®rst try the expertise of the analyst failed, similar situation may happen when the results are
being analyzed, that is, he/she may also fail in perceiving the quality of the results, or lack of it.

Due to such uncertainties, the possibility of automatically improving the numerical solution quality
became an attraction center in computational mechanics. The approximated solution obtained by the ®nite
element method can be improved by adaptive or feedback strategies which modify the solution represen-
tation where it is unsatisfactory. Such techniques are based on: node repositioning without a�ecting the
mesh topology (r); mesh superposition (s); mesh re®nement by change of element size (h); increase in the
interpolation function orders (p); or combinations of them, mainly the last two (hp).

When the h and p strategies are combined, the most e�cient method is obtained for a wide class of
problems [2]. The main drawback of this class of adaptive methods is perhaps the complexity of the cor-
responding programming [4,8].

There exist several alternatives for starting an hp procedure in a ®nite element mesh. The ®rst one
perhaps the most used, consists in performing an h re®nement in order to capture the eventual singularities
present in the problem. Next, a p re®nement is performed until a desired precision is reached. This
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technique, despite being simple, demands a high computational cost due to the considerable number of
iterations usually required.

Another possible operational sequence is, based on some criterion, to make at each iteration a com-
putation of new values for h and p parameters until an acceptable precision is reached. Among many works
that follow this idea the papers of Guo and Babu�ska [6] and Rachowicz et al. [11] are worth mentioning.

The ®rst one proposes a p adaptive re®nement for smooth solution regions and an hp mesh sequence for
regions containing singularities [1] The meshes are geometrically graded toward the singular point with el-
ement degrees which are described by a nearly linearly increasing function starting in the second element away
from the singularity. Further, the degree of the ®rst element next to the singular point is greater than or equal
to the degree of the second element. This technique is known as: true optimal hp mesh [1]. An inconvenience
of this methodology is that in the region of the domain where the solution is regular, a p re®nement may not
be the best strategy option. Besides, since the mesh topology is preserved in this region, the possible so-
lution to be obtained is strongly dependent on the initial discretization because it is not practical to enrich
the ®nite element spaces by increasing the polynomial order inde®nitely due to numerical instabilities.

The second mentioned work [11] is based on the error minimization for a ®xed number of equations,
where the h and p parameters are evaluated independently, following a convergence error analysis. This last
strategy can be synthesized in the following conjecture [1]: Between any two meshes in a sequence of optimal
meshes, the change of the error per change in number of degree of freedom is maximized. It is worth men-
tioning that in some circumstances this methodology leads to the so-called true optimal hp meshes of
Babu�ska et al. [1]. Nevertheless, the main inconvenience of this method is that a great number of iterations
are needed in order to obtain a desired error level.

In this work, a new strategy based on a simultaneous computation of optimal h and p parameters is
proposed. The formulation is based on the minimization of the number of degrees of freedom (d.o.f) for a
constrained error level. The optimal conditions of this problem yield a non-linear equation for each element
where h and p parameters are found in the an explicit form. The solution of this equation gives the optimal
h and p mesh values (see the original work [7]).

Thus, in the proposed approach the user speci®es a tolerance error and a short iterative process is started
in order to ®nd an optimal or quasi-optimal mesh for which the number of degrees of freedom is minimum
for the pre-speci®ed error.

In adaptive methods, the availability of local error estimation as a measure of the approximated solution
quality is implicit [10]. Since this topic is presently out of the scope of this paper, only problems having
analytical solutions are solved, the error being exactly computed, for illustrating the type of achievements
that the proposed methodology can provide.

2. Elliptic boundary value problems

Consider an open bounded domain X in RN with boundary C � CN [ CD, where CN \ CD � ;. Assume
that C is smooth enough, i.e. a normal vector n exists almost everywhere (a.e.) on C. It is assumed there are
displacement constraints on the boundary CD, surface forces t 2 L2 CN� � and body forces f 2 L2 X� �, where
L2 X� � and L2 CN� � are the space of Lebesgue square-integrable functions over X and CN , respectively.

When equilibrium statements are described in their variational form, it is possible to use weaker to-
pological spaces than the ones used for strong formulations. Also, existence and uniqueness conditions are
easier to be established, as well as a priori and a posteriori error estimators. Using formal mathematical
expressions, elliptic boundary value problems may be written as follows:

Find u 2 U , such that

B u; v� � � l v� � 8v 2 V ; �1�
where B : U � V ! R is a bilinear symmetric operator and l is a linear functional such that l : V ! R, that
is, l 2 V 0 where V 0 is the dual space of V : The trial function space U , also called admissible functions space,
is de®ned as

U � u 2 H 1 X� � j u� � g in CD

	
; �2�
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where g de®nes the function of prescribed values on CD and H 1 X� � is a Hilbert space of order 1 on X. The
test functions space, or admissible variations space, is de®ned by

V � v 2 H 1 X� � j v� � 0 in CD

	
: �3�

3. Finite element approximation

Most of the numerical methods used to solve boundary value problems rely on the de®nition of a ®nite-
dimensional subspace Uhp of the space of admissible functions U , in which the approximate solution uhp is
searched for. The ®nite element method is nothing more than a systematic and general procedure for
constructing subspace families Uhp � U and Vhp � V . In other words, it consists of solving the following
approximate problem:

Find uhp 2 Uhp � U , such that

B uhp; vhp

ÿ � � l vhp

ÿ � 8vhp 2 Vhp � V : �4�
In this case, the ®nite-dimensional space of admissible variations Vhp and the ®nite-dimensional space of
admissible functions Uhp are equivalents, that is Uhp and Vhp are composed of identical collections of
functions. By using this approach, the problem leads to a set of linear algebraic equations commonly
written as

Kuhp � F; �5�
where K is the global sti�ness matrix, F the generalized force vector and uhp is the discrete solution vector.
The components of uhp represent the parameters of the linearly independent basis functions spanning Uhp.

According to the mathematical theory of the ®nite element method, the discretization error e depends on
the domain partitioning and the choice of the ®nite element spaces [12], and may be de®ned as the di�erence
between the exact value of u and the one numerically obtained uhp, i.e.

e � uÿ uhp: �6�
Thus, the possibility of automatically improving the approximation uhp through adaptive strategies is focus
of special attention. Up to now, the most e�cient way of error control for a wide class of problems is the hp
adaptive technique.

4. An optimum hp mesh design

In this section, a technique to compute simultaneously optimal h and p parameters is shown. The idea is
based on the minimization of the number of d.o.f for a given value measured in the H1 norm. Mathe-
matically, this can be written as

minimize Nd:o:f : hn; pn� � � C
Z

X
q hn; pn� �X dX; �7�

subject to e hn; pn� �k kH1 X� � � eadk kH1 X� �; �8�

where hn and pn are the parameters of the new mesh, ead is the admissible approximation error, Nd:o:f: hn; pn� �
is the total number of degrees of freedom, C is a positive constant value depending on the domain ge-
ometry, q hn; pn� � is the density of degrees of freedom (d.o.f. density) and �k kH1 X� � denotes the norm in the
H 1 X� � space, which is equivalent to the energy norm in this context.

It is convenient to work in the optimization problem with equality constraints in order to allow both
re®nements as well as unre®nements of the mesh. This approach substantially simpli®es the formulation.

Numerical experiments indicate that the d.o.f. density q hn; pn� � is related to hn and pn parameters as
follows:
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q hn; pn� � � pn

hn

� �a

; �9�

where a � 1; 2 for 1D and 2D problems, respectively.
Rachowicz et al. [11] proved that, in some cases, an optimal point in h re®nement (p � const) is reached

through uniform distribution of the error over the domain X. Although this condition may not be related to
optimality of hp meshes in the sense of problem (7) and (8), it is often recognized as a very advantageous
feature of the discretization [14]. Therefore, such equidistribution of the error will be considered as a basic
premise, acting as an equality constraint. Let m denote the total number of ®nite elements and K the Kth
element of the mesh, the constraint (8) is now substituted by

e hn; pn� �k k2
H1 X� � �

X
K

eK hn; pn� � 2

H1 K� � � m eK hn; pn� � 2

H1 K� � � m eK
ad

 2

H1 K� �; �10�

where, for each element K,

eK hn; pn� � 
H1 K� � � eK

ad

 
H1 K� �: �11�

Analogously, the objective function shown in Eq. (7) may also be stated in terms of the Kth element as
follows:

Nd:o:f : hn; pn� � � C
X

K

Z
K

q hn; pn� �K dK: �12�

The constant C and the parameters hn and pn are strictly positive and so is q hn; pn� �. Thus, for sake of
simplicity, the non-trivial global optimization problems (7) and (8) is now substituted by the set of local
optimization problems

minimize q hn; pn� �K �
pn

hn

� �a

; �13�

subject to eK hn; pn� � 
H1 K� � � eK

ad

 
H1 K� �: �14�

Hence, the proposed procedure consists in looking among the several possibilities of hp enrichment for the
one which aggregates the least amount of additional degrees of freedom. Of course, these two optimization
statements (7) and (8) and (13) (14) are distinct and the relationship between their optimal solutions, if it
exists, is an open question.

At this point, it is necessary to associate restriction (14) to the hn and pn parameters in order to obtain an
expression relating them explicitly. An a priori estimate of interpolation error on element K is given by
Theorem 2.1 in the work of Oden et al. [10]. Moreover, it is well known that discretization errors in ®nite
elements behave like interpolation errors except for pollutions and a constant value, also independent of
control h and p parameters. Thus, an a priori discretization error can be expressed by the following the-
orem:

Theorem 4.1. There exists a constant C1 r� � > 0, independent of element size h, order approximation p, error
and solution u 2 Hr K� �, with r > 1; such that as h! 0

eK h; p� � 
H1 K� �6C1 r� �hlÿ1pÿ rÿ1� � uk kHr K� � � pollution error; �15�

where l � min p � 1; r� �:

Eq. (15) can also be written in terms of the error energy norm for the new hn and pn mesh parameters as

eL hn; pn� � 
H1 L� �6C2 r� �hlnÿ1

n pÿ rÿ1� �
n uk kHr L� � � pollution error; �16�

where ln � min pn � 1; r� � and L denotes the Lth element of the new mesh.
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If the mesh is ®ne enough, then the uk kHr L� � and eL hn; pn� �k kH1 L� � may be approximated, respectively, as

uk kHr L� � � c uk kHr K� � and eL hn; pn� � 
H1 L� � � c eK hn; pn� � 

H1 K� �; �17�

where the factor c is given by c � hn=h� �N=2
.

By substituting Eqs. (17) in Eq. (16), the admissible error energy norm for the element K takes the form

c eK hn; pn� � 
H1 K� � � c eK

ad

 
H1 K� �6C2 r� �hlnÿ1

n pÿ rÿ1� �
n c uk kHr K� � � pollutions; �18�

Disregarding the pollutions and dividing Eq. (15) by Eq. (18), results

eK h; p� �k kH1 K� �
eK hn; pn� �k kH1 K� �

� eK h; p� �k kH1 K� �
eK

ad

 
H1 K� �

� b r� � hlÿ1

hlnÿ1
n

p
pn

� �ÿ rÿ1� �
� n; �19�

where b r� � is a constant of proportionality that depends on the regularity r. This parameter was introduced
in order to allow the quotient between two convergence behavior (upper bounds of Eqs. (15) and (18)).
Parameter n relates the current error energy norm over the element K, eK h; p� �k kH1 K� �, to the desired error
energy norm over the same subdomain K, eK

ad

 
H1 K� �.

Note that the constants C1 r� � and C2 r� � are independent of the mesh parameters h, p, hn and pn, but they
depend on distortions of individual elements. Even so, they have been simpli®ed in Eq. (19), i.e. it was
assumed that C1 r� � � C2 r� �. From Eq. (19)

hn � b r� � h
lÿ1

n
pn

p

� � rÿ1� �" #1= lnÿ1� �

: �20�

Finally, since the constraint uses parameters hn and pn explicitly, the constrained optimization problem of
two variables may be rewritten as a one-dimensional unconstrained problem just by substituting Eq. (20)
into the objective function (13). This operation leads to

minimize q pn� �K �
pn

b r� ��hlÿ1=n� pn=p� �s� �1= lnÿ1� �

( )a

; where s � r ÿ 1: �21�

The ®rst order necessary optimality condition is that the ®rst derivative of Eq. (21) with respect to the
variable pn must be zero [3], i.e.

d

dpn
q pn� �K � 0: �22�

However, it is still impossible to obtain the derivative in Eq. (22) because of the dependency of ln with
regard to the regularity r and the polynomial order pn for each di�erent problem and the existence and
intensity of singularities. Thus, some speci®c cases are now discussed, focusing di�erent types of re®nement,
that is h, p or hp, and also di�erent regularity levels.

4.1. h Meshes

In this case, the polynomial order is considered constant, i.e. pn � p, and an h re®nement is performed on
the mesh. Therefore, Eqs. (19) and (20) take the forms:

(i) If p > s, then l � s� 1, therefore

n � b r� � h
hn

� �s

or hn � h
b r� �
n

� �1=s

: �23�

(ii) If p6 s, then l � p � 1, thus

n � b r� � h
hn

� �p

or hn � h
b r� �
n

� �1=p

: �24�
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This result was already obtained by Zienkiewicz and Zhu [13]. In fact, the optimization problem disappears
because, satisfying simultaneously both conditions, pn � p and Eq. (19), variables hn and pn are uniquely
determined. Therefore, to obtain an error equidistribution over the domain is enough to satisfy one of
Eqs. (23) or (24) depending on the regularity of the problem.

4.2. p Meshes

In this case, the element size is ®xed: hn � h. Then, a p adaptive re®nement is done and Eqs. (19) and (20)
take the following forms

(i) If p > s and pn > s, then l � s� 1 and ln � s� 1, therefore

n � b r� � pn

p

� �s

or pn � p
n

b r� �
� �1=s

: �25�

(ii) If p6 s and pn > s, then, l � p � 1 and ln � s� 1, thus

n � b r� �
h sÿp� �

pn

p

� �s

or pn � p
n

b r� �
� �1=s

h sÿp� �=s: �26�

(iii) If p6 s and pn6 s, then l � p � 1 and ln � pn � 1, therefore

n � b r� �
h pnÿp� �

pn

p

� �s

or pn � p
n

b r� �
� �1=s

h pnÿp� �=s: �27�

(iv) If p > s and pn6 s, then l � s� 1 and ln � pn � 1, since

n � b r� �
h pnÿs� �

pn

p

� �s

or pn � p
n

b r� �
� �1=s

h pnÿs� �=s: �28�

It is easy to see that in this case, as well as in the last one, the almost constant distribution of error is
guaranteed by satisfying one of Eqs. (25), (26), (27) or (28), depending upon the problem under analysis.
Once again, the feasible region of the optimization problem has been reduced to a ®xed point hn and pn

satisfying constraint conditions.

4.3. hp Meshes

Here, the hp re®nement is ®nally discussed. In this case, variables hn and pn are not subject to another
additional restriction expect for the original constraint of the optimization problem. Thus, from Eqs. (19)
and (20) one has:

(i) If p > s and pn > s, then l � s� 1 and ln � s� 1, therefore

n � b r� � pnh
hnp

� �s

or hn � b r� �
n

� �1=s pnh
p
: �29�

(ii) If p6 s and pn > s, then l � p � 1 and ln � s� 1, since

n � b r� �hp pn

hnp

� �s

or hn � b r� � h
p

n

� �1=s pn

p
: �30�

In these ®rst two cases, where the solution regularity is low (s < pn), it is not possible to solve the opti-
mization problem as proposed because when constraints (29) and (30) are substituted into the objective
function (13) the result is an expression independent of the hn and pn variables. For these cases it is sug-
gested, depending on the solution regularity, to ®x variable pn and perform an h re®nement (Section 4.1) or
vice versa, i.e. to ®x the element size hn and perform a p re®nement (Section 4.2).

(iii) If p6 s and pn6 s, then l � p � 1 and ln � pn � 1, therefore

n � b r� � hp

hpn
n

pn

p

� �s

or hn � b r� � h
p

n
pn

p

� �s� �1=pn

: �31�
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By substitution of these constraints in the objective function (13), one has

q pn� �K �
pn

b r� ��hp=n� pn=p� �s� �1=pn

( )a

: �32�

(iv) If p > s and pn6 s, then l � s� 1 and ln � pn � 1, thus

n � b r� � hs

hpn
n

pn

p

� �s

or hn � b r� � h
s

n
pn

p

� �s� �1=pn

: �33�

Repeating the same procedure as before

q pn� �K �
pn

b r� ��hs=n� pn=p� �s� �1=pn

( )a

: �34�

In the last two cases, it is possible to obtain the derivative of the objective functions (32) and (34) with
regard to pn by using Eq. (22) in order to obtain a ®rst order necessary condition for the optimal value of pn.
After identifying pn, it may be substituted in Eqs. (31) and (33), depending on the case, and the new element
optimal size hn is obtained.

One of the limitations of this procedure (and of others based on FEM convergence properties) is that the
characteristics of the space to which the solution belongs should be known a priori. This enforces a strong
dependence with the previous knowledge of the problem from the point of view of the user. In order to
eliminate this recursive problem, it is possible estimate the regularity r by analysis of the FEM convergence
properties [9], that may be easily combined with the method here in development. However, an alternative
technique is proposed as:

Lemma 4.1. Let be p � s, b r� � � 1, l � p � 1, ln � pn � 1 and consider Eqs. (19) and (20). Then, one has

n � 1

hpn
n

pnh
p

� �p

or hn � 1

n1=pn

pnh
p

� �p=pn

: �35�

Proof. Straightforward. �

Note that this modi®cation on the problem constraint is quite severe. Strictly speaking, the assumptions
of Lemma 4.1 enforce the condition pn6 p. This means that, under the adopted hypothesis, the new value of
hn in Eq. (35) is consistent with only p unenrichment process. This drawback is a consequence of ®xing
values for l and ln due to the lack of knowledge of the regularity r. Despite this limitation, numerical tests
will be performed using the procedure also in p enrichment. Further, the hypotheses adopted here lead to
the following lemma:

Lemma 4.2. Consider the objective function (13), the result of Lemma 4.1 described by Eq. (35) and let p � s,
b r� � � 1, l � p � 1, ln � pn � 1. Then, the d.o.f. density can be determined by

q pn� �K �
pn

�1=n1=pn� pnh=p� �p=pn

( )a

� pnn
1=pn

pnh=p� �p=pn

( )a

: �36�

Proof. Straightforward. �

The objective function given by Eq. (36) establishes a relationship between the new polynomial order pn

and the d.o.f density q pn� �K which can be better understood through Figs. 1(a) and (b), for re®nement and
unre®nement, respectively.
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Finally, it can be shown that the optimization problem analyzed here consists in solving a non-linear
equation, independent of s and a, in order to obtain optimal values for pn and hn. This result is stated by the
following theorem:

Theorem 4.2. Let p � s, b r� � � 1, l � p � 1 and ln � pn � 1. Then, a necessary and sufficient optimality
condition for the minimum q�pn�K (Eq. (36)) is given by the following equation:

pn ÿ p ÿ ln n� p ln
pnh
p

� �
� 0 or pn � u pn� �; �37�

where u pn� � is given by

u pn� � � p � ln nÿ p ln
pnh
p

� �
: �38�

Moreover, this optimality condition is independent of regularity r (or s) of solution and the parameter a related
to the physical dimension of the problem.

Proof. By substituting Eq. (36) in Eq. (22), one has

d

dpn
q pn� �K �

a

pn� �2
" #

pnn
1=pn

pnh=p� �p=pn

" #a

pn

�
ÿ p ÿ ln n� p ln

pnh
p

� ��
� 0: �39�

Note that the ®rst as well as the second factor of Eq. (39) provide a trivial solution for optimization
problem, that is pn !1 or n! 0. Thus, only the third factor, which is independent of a and r, allows the
identi®cation of a non-trivial solution, shown by Eq. (37).

Deriving Eq. (37) with respect to pn results in

1� p
pn
> 0: �40�

Therefore, due to convexity of Eq. (36), the theorem is proved. �

From this result, one can conclude that the polynomial order pn may be characterized as a ®xed point of
u pn� �. Thus, the optimization problem may be stated as solving the non-linear equation for each ®nite
element

pn ÿ u pn� � � 0: �41�

Fig. 1. Objective function for various values of n and h � 1.
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This result suggests the use of numerical methods in order to obtain a polynomial order pn which should be
used later to compute a new size hn of the element through Eq. (35). A possible procedure to obtain pn is
applying a relaxation method leading to the following algorithm:

Fixed point algorithm. Let be p an initial polynomial order, tol a tolerance criterion and maxiter a
maximum number of iterations. Then, for a given relaxation factor w > 0, an estimative for pn in iteration
j� 1 is

pj�1
n � 1� ÿ w�pj

n � wu pj
n

ÿ �
: �42�

The stop criterion is satis®ed when the tolerance tol is achieved or when j�maxiter.
As a matter of fact, this is an integer optimization problem. However, parameter pn is de®ned as the

integer number which is closest to the real value pn. This number is e�ectively used for the p enrichment of
the interpolation functions on each element and also for the computation of hn. This assumption is quite
acceptable due to the smooth behavior shown by the objective function (see Fig. 1).

The optimal values of pn; pn and hn for some values of n and h � 1 are shown in Table 1. It may be noted
that when n > 1, the re®nement is provided by appreciable variations of pn while hn is maintained around
0:43. In the case of unre®nement �n < 1�, the values of pn diminish slowly. Otherwise hn shows greater
variations when compared with the case of re®nement �n > 1�. Thereafter, the methodology here proposed
has a marked tendency of producing accentuated p re®nements. This fact runs accordingly with mathe-
matical theory of FEM for regular problems [12].

The last detail deserves special attention. The error energy norm is not the most convenient argument to
work with error control because it is an absolute quantity. A more useful quantity is the relative error gad,
de®ned as [13]:

gad �
eadk kH1 X� �
uk kH1 X� �

: �43�

As the energy norm of the solution is usually not known, it must be written in terms of uhp

 
H1 X� �. From

Eqs. (6) and (1), the norm of the exact solution uk kH1 X� � may be written as

uk k2
H1 X� � � uhp

 � e
2

H1 X� � � B uhp

ÿ � e; uhp � e
� � B uhp; uhp

ÿ �� B e; e� � � 2B uhp; e
ÿ �

: �44�

Due to the orthogonality of the error e with respect to the discrete space of variations Vhp � Uhp,

B uhp; e
ÿ � � 0 8uhp 2 Uhp � Vhp: �45�

Hence, the norm of the exact solution is given by the following expression:

uk kH1 X� � � B uhp; uhp

ÿ �ÿ � B e; e� ��1=2 � uhp

 2

H1 X� �

�
� ek k2

H1 X� �
�1=2

: �46�

Substituting Eq. (46) into Eq. (43), the maximum global relative error is obtained as

gad �
eadk kH1 X� �

uhp

 2

H1 X� � � ek k2
H1 X� �

� �1=2
: �47�

Table 1

Optimal values of pn, pn and hn; for various n and h � 1

Re®nement �nP 1 and p � 1� Unre®nement �n6 1 and p � 8�

n 1 10 100 1000 10 000 1 0.1 0.01 0.001 0.0001

pn 1.00 2.42 4.18 6.10 8.12 8.00 6.89 5.87 4.94 4.11

pn 1 2 4 6 8 8 7 6 5 4

hn 1.00 0.447 0.447 0.426 0.410 1.00 1.19 1.47 1.88 2.50
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Assuming that the error is uniform over all the elements of the mesh, Eq. (47) may be written as

gad �
m eK

ad

 2

H1 K� �

� �1=2

uhp

 2

H1 X� � � ek k2
H1 X� �

� �1=2
�

����
m
p

eK
ad

 
H1 K� �

uhp

 2

H1 X� � � ek k2
H1 X� �

� �1=2
;

eK
ad

 
H1 K� � � gad

uhp

 2

H1 X� � � ek k2
H1 X� �

� �1=2

����mp :

�48�

Finally, the admissible error energy norm of the Kth element eK
ad

 
H1 K� � may be computed from the value of

the gad parameter, usually provided by the user.

5. An hp adaptive re®nement

One of the tasks of the hp adaptive re®nement is the de®nition of convenient meshes, which relates
adaptivity with automatic mesh generation methods [5]. Two main branches are found in the adaptive mesh
generation techniques. The ®rst one is based on element partitions [11] and the other one is focused on
partial and even total mesh regeneration [13]. The former techniques have, as advantage, a low cost for
mesh construction and solution projection from previous iterations. On the other hand, the geometry
approximation is ®xed by the ®rst discretization and, in the case of having low levels of error, unre®nement
is usually avoided.

Remeshing techniques have opposite properties. Geometry approximation improves as well as the mesh
and unre®nement is easily performed. Meshing cost increases, but taking into account the performance of
actual meshing algorithms this drawback may sometimes be accepted. From these considerations, total
remeshing technique is here proposed as an appropriate choice within this context, although the present
formulation is not restricted to this scheme.

It is important to mention that the primal variable u is here approached by using hierarchical base built
from the integral of Legendre polynomials [12]. However, this technique usually produces non-conforming
meshes in 2D and 3D problems that must be conveniently treated a posteriori, restraining the use of
conventional FEM codes [8].

The choice of the strategy to be used for an hp re®nement basically depends on the regularity of the
solution u. For singular solutions, the value of s is assumed to exist within the range 0 < s < 1. For smooth
solutions, the s parameter takes the value s � p P 1 (see Theorem 4.2).

5.1. Regular problems (sP1)

In this case, an algorithm for total remeshing is used (see [5]). A new polynomial order pn (Eq. (37)) and a
new element size hn (Eq. (35)) is associated to each element of the old mesh. From this information a new
number Nl P 1 of elements within the domain is computed. This is performed by obtaining the closest
integer to the real value Al; that is

Al �
Z 1

0

1

hn x� � dx: �49�

The position of the new nodes i, with 16 i6Nl; may be determined by ®nding ki such that

i �
Z ki

0

1

hn x� � dx; �50�

where the nodes i � 0 and i � Nl are initial and ®nal nodes, respectively.
Once the new mesh is de®ned, a projection of the polynomial order pn from each element of the old mesh

to the new one is done.
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Adaptive remeshing has the drawback that it is not possible to reuse the linear equation system from one
iteration to the other. However, this situation is counterbalanced by the fact that only few iterations are
needed to reach an error level when using the hp calculus technique here proposed. This statement is further
discussed in Section 6, with the aid of some numerical results. But one must remark that the scheme here
proposed is also applicable to nested meshes in order to take advantage of previous computation.

5.2. Singular problems (0 < s < 1)

Singular problems usually solved with conventional FEM codes is such that 0 < s < 1. The proposed
formulation cannot be directly applied to problems involving cracks, vertexes, discontinuous loads, geo-
metrical property variations, etc. Therefore, some special treatment is needed for these cases. This happens
due to the hypothesis of Theorem 4.2, i.e. p � s, being too strong.

A possible approach is to use the so-called true hp optimal meshes [1] at the singular points certainly, the
best error control technique for this class of problem. The meshes are based on a geometrical growth of the
elements from the singular point. Thus, the mesh used here follows this re®nement criterion:

hn 1
ÿ � Q� Q2 � � � � � QNc

� � h: �51�
h being the actual size of the element next to the singular point, hn the new element size on the singularity
and Nc the number of geometrical layers. In this context, hn is evaluated by considering a pure h re®nement
(Eq. (23)) and, for a given geometric progression ratio Q > 1,

Nc � log 1� �h=hn� Qÿ 1� �� �
log Q

ÿ 1: �52�

As it is intended to extend these results for two- and three-dimensional problems, a ®xed ratio Q � 4 is
adopted for preventing high mesh distortion, although the ratio Q � 5:88 [2] would be preferable if a robust
mesh generation program were available. Further, the regularity of the solution s (or r) is ®xed at
s � 1=2 < p. This last important assumption comes from a pragmatic reasoning: it is assumed that an
engineer analyst will know where the singularity is but not its intensity.

The polynomial order distribution around the singular point is de®ned by a linear growth law starting
from the second element adjacent to the singularity, such that pnf g � 1; 2; . . . ;Ncf g. For the closest element
to the singular point, pn � Nc � 1 is chosen. In other words, the polynomial distribution on the singular
region is pnf g � Nc � 1; 1; 2; . . . ;Ncf g.

5.3. An hp re®nement algorithm

The hp re®nement strategy proposed here allows re®nement as well as unre®nement. In the latter case,
the polynomial order may vary between the range 16 pn6 8 within one iteration. On the other hand, the
element size has a growth limit to avoid mesh distortions. When hn > 1:3h, the following projection is used
[5]:

hn :� 2hhn

h� hn
: �53�

A possible way to achieve the admissible error gad (Eq. (43)) in the optimization problem consists of di-
viding gad in a set of incremental steps. Thus, a new parameter, gad, is de®ned as

gad � gad� �
�������������
iter=niter
p

; �54�
niter being the total number of iterations within the adaptive procedure and iter the iter-th iteration.
Therefore, gad is considered as the limit of the admissible error on each iteration iter. In short, the proposed
procedure may be summarized in the following steps:
1. De®nition of gad and niter.
2. While iter6 niter, start adaptive procedure, i.e. while gad P gad:
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(a) The elements in connection with singular points are identi®ed and a true optimal hp mesh re®ne-
ment is performed on them, as presented in Section 5.2.
(b) On the other regions, a regular solution is assumed to exist. Thus, a direct and simultaneous com-
putation of h and p parameters is done for each element following the technique developed in Section
4.3.
(c) Finally, a total remeshing procedure in accordance with new values of h and p is started as pro-
posed in Section 5.1.

3. When iter� niter, one has gad � gad and, after a last analysis, the process stops. At this point, it is ex-
pected that the speci®ed error level has been reached.

6. Numerical results

Some numerical tests were used to analyze the performance of the proposed technique. To this aim, the
following elliptic boundary value problem is solved:

d2u
dx2
� f x� � � 0; x 2 X � 0; 1� �; u 0� � � g0 and u 1� � � g1; �55�

where f x� � is specially chosen in order to produce great local variations on the solution u x� � due to sin-
gularities or high gradients. Smooth solutions, as it is well known, lead to pure p re®nement.

All cases start from a uniform mesh with 10 linear elements, and the hp adaptive process is carried out
considering that the exact solution u x� � is known in advance in order to compute the error exactly.

In each of the following examples the proposed hp strategy is compared with the one proposed by
Rachowicz et al. [11] as far as convergence rates and number of iterations to achieve a given level of error
are concerned.

Example 1. In this example it is considered g0 � 0, g1 � 0 and f x� � is obtained by

f x� � � 2a
1

1� a2 xÿ x0� �2

264 � a2 xÿ x0� � 1ÿ x� �
1� a2 xÿ x0� �2
h i2

375: �56�

Then, the exact solution u x� � is given by

u x� � � 1� ÿ x� tanÿ1 a x�� ÿ x0� � tanÿ1 ax0

�
: �57�

For x0 � 4=9 and a � 50 the function u x� � is smooth, but presents high gradients near x � x0.The con-
vergence rates of the present formulation for 3, 4 and 5 iterations and the ones described in [11] for about 18
iterations are shown in Fig. 2. Comparing the curves, a similar convergence rate is observed. However, in
this work only a few iterations are needed to reach a similar error level.

In Fig. 3, the hp mesh obtained after an iterative procedure with niter� 4 is shown. In this case, the
re®nement, as expected, is concentrated around the point x � 4=9 where high solution gradients are found.

Example 2. The same problem presented in Example 1 is analyzed here, but with a being equal to 200. The
solution u�x� is still smooth but presents higher gradients on x � 4=9.

Convergence rates of Rachowicz et al. [11] for about 18 iterations and of the present formulation for 3, 4
and 5 iterations are shown in Fig. 4. It can be noted that, on the beginning of the process, convergence rates
are similar. However, due to the remeshing strategy, there exists a strong tendency of locating nodes near to
the point x � 4=9 as it happened. Therefore, higher convergence rates appears. Finally, it must be men-
tioned once again that those values of error were obtained with only a few iterations.The ®nal hp mesh for
niter� 4 is shown in Fig. 5. In this case, a concentration of nodes near x � 4=9 is evident. Note that this
technique has positioned a node close to the point x � 4=9 and this carried out such high convergence rates
shown in the Fig. 4.
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Fig. 2. hp Convergence (Example 1).

Fig. 3. Final hp mesh for niter� 4 (Example 1).

Fig. 4. hp Convergence (Example 2).
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Example 3. In this last example, g0 � 0, g1 � 1 and the source term f x� � is

f x� � � a a� ÿ 1�xaÿ2: �58�

Hence, the exact solution is

u x� � � xa: �59�

Here a is selected to be 0:6 and a singular point is located at x � 0. Nevertheless, the energy norm of the
solution is bounded, i.e.

uk kH1 X� � �
du
dx

 
L2 X� �
�

����������������������������Z 1

0

du
dx

� �2

dx

s
� a��������������

2aÿ 1
p <1 if a >

1

2
: �60�

With the singular solution at hand, the Babu�ska et al. technique [1] is used next to the singular point as
detailed in Section 5.2. On the remaining domain, the methodology proposed here is applied. A comparison
between the results obtained by Rachowicz et al. [11] for about 60 iterations and by the present formulation
for 3, 4 and 5 iterations are presented in Fig. 6. Once again, similar convergence rates can be noted, but
there is an important di�erence in the required number of iterations to achieve a similar accuracy level.The
®nal mesh for niter� 4 is depicted in Fig. 7. A detail of the re®nement close to the singularity is shown in
Figs. 8 and 9.

Fig. 5. Final hp mesh for niter� 4 (Example 2).

Fig. 6. hp Convergence (Example 3).
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7. Conclusions

A new hp adaptive strategy based on the local minimization of the number of equations for a given error
level is proposed here. This formulation leads to a non-linear one-variable equation for each element that
may easily be solved by a ®xed point algorithm. As a result, the new h and p parameters are simultaneously
obtained at each element of the mesh for the next iteration.

Since the proposed formulation is independent of an adopted mesh re®nement technique, a remeshing
procedure was chosen here. Remeshing allows a complete independence of the discretization at each iter-
ation. This strategy diminishes the responsibility of the analyst with regard to the previous knowledge of the
problem behavior. On the other hand, computational costs are greater than the ones obtained with, for
example, nested meshing because, in this last option, it is possible to reuse information of previous itera-
tions. The disadvantage of nested schemes is that the new mesh strongly depends on the initial one and that
unre®nements are not easy to perform.

The goal of this work is to propose a formulation applicable to 2D and 3D boundary value problems
with the minimum previous knowledge about the topology of the spaces in which the solution is inserted. In

Fig. 7. Final hp mesh for niter� 4 (Example 3).

Fig. 8. Final hp mesh for niter� 4: zoom of 4� 106 times (Example 3).

Fig. 9. Final hp mesh for niter� 4: zoom of 6:67� 107 times (Example 3).
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order to satisfy these requirements, many hypotheses are assumed. Therefore, the result of Theorem 4.2
may not coincide with the optimal meshes in the sense of Babu�ska et al. [1]. In fact, numerical experiments
have shown that the algorithm usually leads to a mesh where the error is overestimated. Despite this
problem, the obtained results are quite satisfactory in relation to the independence of the analyst in the
adaptive process, to the convergence rates and, above all, to the reduction of the number of iterations to
achieve an speci®ed error level. In addition, the numerical results obtained with only four iterations are as
good as those obtained through the conventional procedure by using four or ®ve times more iterations for
the regular problems (see Examples 1 and 2) and 10 or 12 times more iterations for the singular case (see
Example 3).

Finally, it is worth mentioning that the necessary and su�cient optimality conditions (Theorem 4.2) are
stated in a local sense, that is, at each element. The consideration of these conditions in a global sense, that
is for all the mesh, is a question that still remains open. Moreover, other cost functions could have been
considered instead and are currently under investigation.
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