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Abstract

This work presents a general framework for constitutive viscoelastic models in the finite deformation regime. The approach is
qualified as variational since the constitutive updates consist of a minimization problem within each load increment. The set of internal
variables is strain-based and uses a multiplicative decomposition of strain in elastic and viscous components. Spectral decomposition
is explored in order to accommodate, into analytically tractable expressions, a wide set of specific models. Moreover, it is shown that,
through appropriate choices of the constitutive potentials, the proposed formulation is able to reproduce results obtained elsewhere
in the literature. Finally, numerical examples are included to illustrate the characteristics of the present formulation.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In contrast with what we see in small strain regime, the choice of convenient internal variables and evolution laws
for viscoelastic materials submitted to finite deformations is not trivial nor unique, leading to different formulations
in the literature. We recall first the work of Simo [15] in which an additive decomposition of stresses in equilibrium
and non equilibrium contributions is stated and the evolution law is defined as a linear differential equation on the
non-equilibrium stresses. This approach was followed later by Holzapfel and Simo [5] and Holzapfel [3] or, more
recently, [4,2]. Multiplicative decomposition of strains in viscous and elastic parts was applied by Sidoroff [14] and
later to [9,7,8] among others. In [13] the ability of different models to reproduce nonlinear viscous behavior is discussed
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and a model is proposed which is not restricted to small perturbations away from thermodynamic equilibrium. Another
important reference that should be visited is [6].

The purpose of this work is to present a variational framework for constitutive viscoelastic models based on the
formulation proposed in [11,12,17]. The constitutive updates satisfy a minimum principle within each load increment,
feature that has the quality of providing appropriate mathematical structure for applications like error estimation among
others (see [12]). The formulation assumes a multiplicative decomposition of strain into elastic and viscous components
and a strain based set of internal variables, characteristic that relates it to the works [13] and the spatial model of [2]
more than to the approach of Simo.

A particular difference between the present particularization and that used in plasticity or viscoplasticity [11] is
related to the way in which inelastic strains are decomposed. While classic decomposition separates inelastic strains
into size and direction, the present approach uses spectral decomposition that provides facilities to accommodate, into
simple analytical expressions, a wide set of viscous models. It is also possible to show that an appropriate choice of
constitutive potentials allows to reproduce other models in literature.

2. Variational form of constitutive equations

Using conventional notation, let us call F=∇0x the gradient of deformations, and C=FTF the Cauchy strain tensor,
respectively. These values may be decomposed in volumetric and isochoric parts. The isochoric tensors are defined as
follows:

F̂ = 1

J 1/3 F, J = det(F), Ĉ = F̂TF̂ = 1

J 2/3 FTF. (1)

We will work in the framework of irreversible thermodynamics, with internal variables. Thus, we define a general set
E={F, Fi , Q} of external and internal variables, where Fi is the inelastic part of the (total) deformation, and Q contains
all the remaining internal variables of the model. In addition, a multiplicative decomposition F = FeFi of the gradient
of deformations is considered. We assume the existence of a free energy potential W(E) and a dissipative potential
�(Ḟ;E), such that the Piola–Kirchhoff stress tensor, comprised of an equilibrium (elastic) and a dissipative (viscous)
components, is derived as follows:

P = �W

�F
(E) + ��

�Ḟ
(Ḟ;E). (2)

In addition, another dissipative potential �(Ḟi , Q̇;E) is included to characterize the irreversible behavior related to the
inelastic tensor Fi , such that

T = −�W

�Fi
(E) = ��

�Ḟi
(Ḟi , Q̇;E), A = −�W

�Q
(E) = ��

�Q̇i
(Ḟi , Q̇;E). (3)

It was shown in [11,17] that an incremental version of the above equations, constituting an incremental update
method for the material state, can be obtained from the following incremental potential:

W(Fn+1;En) = �t�(F̊,En) + min
Fi

n+1
Qn+1

{W(En+1) − W(En) + �t�(F̊i , Q̊;En)}, (4)

where F̊(Fn+1,En), F̊i (Fi
n+1,En) and Q̊(Qn+1,En) are appropriate incremental approximations of Ḟ, Ḟi and Q̇,

respectively.

3. A set of viscoelastic models

A general set of isotropic3 viscoelastic materials based on the presented variational framework is proposed.

3 The isotropy condition is now assumed but no theoretical material symmetry constraints are inherent to the present formulation.
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Fig. 1. Generalized Kelvin–Maxwell model.

To this aim, consider the classical rheological mechanism shown in Fig. 1 and the following assumptions:

• The elastic part of the Kelvin branch is split in isochoric and volumetric energies. The isochoric part is an isotropic
function of Ĉ = F̂TF̂:

�(Ĉ) = �(c1, c2, c3), (5)

where cj are the eigenvalues of Ĉ. The volumetric part may be defined using the usual expression U(J ) =
(K/2)[ln J ]2, The viscous part of the Kelvin branch is an isotropic function of the symmetric part of the rate of
deformation:

�(D) = �(d1, d2, d3) with D = dev(sym(ḞF−1)), (6)

where dj are the eigenvalues of D.
• The Maxwell branch is based on a multiplicative split of strains in an elastic and an isochoric viscous part

F̂ = F̂eFv �⇒ F̂e = F̂Fv−1, det Fv = 1. (7)

A flow rule for the internal variable Fv can be written as

Ḟv = DvFv = (dv
j Mv

j )F
v , (8)

in which the spectral decomposition of Dv=sym(ḞvFv−1) in eigenvalues dv
j and eigenprojections Mv

j , j=1, 2, 3,

was used. The scalars dj are chosen to be the internal variables contained in the set Q̇ = {d1, d2, d3}. In this case,
it is important to note that (8) is a constraint relating the internal variables Fv and Q. The elastic and viscous
potentials associated to this branch are assumed to be isotropic functions of the elastic deformation and viscous
stretching, and thus depend on their eigenvalues:

�e(Ĉe) = �e(ce
1, c

e
2, c

e
3) and �(Dv) = �(dv

1 , dv
2 , dv

3 ), (9)

where ce
j are the eigenvalues of Ĉe.

• An incremental expression for the viscous deformation is obtained by using the classical exponential mapping
[1,10] with the convenient property of providing an isochoric tensor for any traceless argument:

�F̂ = F̂n+1F̂−1
n = exp[�tD] ⇒ D = �qj

�t
Mj = 1

2�t
ln(�Ĉ). (10)

�Fv = Fv
n+1Fv−1

n = exp[�tDv] ⇒ Dv = �qv
j

�t
Mv

j = 1

2�t
ln(�Cv). (11)

Expressions (10) and (11) show that D and Dv are approximated by incremental expressions of �Ĉ and �Cv ,
respectively.
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Taking into account (10) and (11), the minimizing variables Qn+1, Fv
n+1 in (4) are replaced by the new incremental

variables �qv
j , Mv

j .

W(Fn+1;En) = W(Cn+1;En) = ��(Ĉn+1) + �t�

(
�qv

j

�t

)
+ �U(�n+1)

+ min
Mv

j ,�qv
j

{
��e(Ĉe

n+1) + �t�

(
�qv

j

�t

)}
, (12)

such that

�qv
j ∈ KQ = {pj ∈ R : p1 + p2 + p3 = 0}, (13)

Mv
j ∈ KM = {Nj ∈ Sym : Nj · Nj = 1, Ni · Nj = 0, i �= j}, (14)

where Sym is the set of symmetric second order tensors. The minimization operation is performed within the sets KQ

and Dv , i.e. null trace of the viscous increment and orthogonality of eigenprojections, respectively. Given isotropic
expressions for energy functions, the minimization in (12) can be performed in part analytically. A simple extension to
this model can be obtained by considering a set of P Maxwell branches, as seen in Fig. 1(a).

4. Hencky and Ogden models

Hencky models are based on quadratic forms of logarithmic strain tensors:

� = �
3∑

j=1

(�j )
2, � = �

3∑
j=1

(dj )
2, (15)

�e = �e
3∑

j=1

(�ej )
2, � = �v

3∑
j=1

(dv
j )2. (16)

In this case, it is particularly convenient to obtain simple uncoupled linear expressions for the minimizing argument
�qv

j . In spite of the facility offered by Hencky models in terms of analytical treatment, it is well known that this type of
hyperelastic potentials does not fit well the behavior of rubber-like materials. For that case, a more adequate choice may
be the Ogden model which has also the capability of generalizing other models like neo-Hookean and Mooney–Rivlin.
Ogden models are based on the following potentials:

� =
3∑

j=1

N∑
p=1

�p

	p

([exp(�j )]	p − 1), � =
3∑

j=1

N∑
p=1

�p

	p

([exp(dj )]	p − 1), (17)

�e =
3∑

j=1

N∑
p=1

�e
p

	p

([exp(�ej )]	p − 1), � =
3∑

j=1

N∑
p=1

�v
p

	p

([exp(dv
j )]	p − 1). (18)

5. Numerical implementation and examples

Since the present constitutive equations allow nearly incompressible behaviors, appropriate finite element spaces
are necessary to circumvent the volumetrical locking. Therefore, the equilibrium problem was expressed using the
variational formulation proposed in [16] in which the pressure field 
 and volumetric strain field � are assumed to
be constant over each element. The examples shown in this paper are run with isoparametrical eight nodes brick
elements.
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Fig. 2. Cyclic shear test.

−0.01 −0.008 −0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008 0.01

−1.5

−1

−0.5

0

0.5

1

1.5

Shear strain

S
h
e
a
r 

s
tr

e
s
s

OGDEN = HENCKY

Fig. 3. Stress–strain curves in cyclic shear test. Amplitude: 0.01.

5.1. Shear test

In this example a single 3D element is submitted to a pure shear deformation (Fig. 2). The material behavior follows
the rheological model of Fig. 1(b) with identical material parameters used in an equivalent example presented in [13].
The lateral displacement ux follows a sinusoidal law ux = U sin wt , where w = 0.3 s−1.

The material is quasi incompressible due to a penalizing bulk modulus K . Two different models for � were used:
Ogden model and Hencky model. In the case of Ogden, we used the following six-parameter fitting: �1 = 20, �2 =−7,
�3 = 1.5, 	1 = 1.8, 	2 = −2, 	3 = 7.

For the Hencky model, the value � =∑
i

1
2�i	i = 30.25 was used, which is the consistent equivalent shear modulus

for small deformations. The Maxwell branch uses Hencky model for both potentials with �e = 77.77 and viscous
coefficient �v such that � = �v/�e = 17.5.

The time evolution of Cauchy stresses �xy as a function of shear strain Cxy , for different shear amplitudes, is shown
in Figs. 3–5. In the case of small strains both models (Ogden or Hencky main spring) give identical results, and match
quite well equivalent results in [13]. As expected, the behavior of the main spring is determinant on the behavior of the
whole system for deformations higher than unity.
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Fig. 4. Stress–strain curves in cyclic shear test. Amplitude: 1.0.
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Fig. 5. Stress–strain curves in cyclic shear test. Amplitude: 2.0.

Comparing the results of the Ogden-based model with those of [13] it is possible to see a close correlation of
maximum values of stress for all four cases. However, hysteresis loops clearly look “thinner” as the deformation grows
along the cycle. This behavior is in agreement with the fact that the Hencky model used in the Maxwell branch provides
a contribution in stress significantly lower than a corresponding Ogden model for high deformations.

6. Pinched thick plate

This example shows a thick viscoelastic plate with clamped boundary and in contact with a rigid hemispherical tool
performing the path given in Fig. 6. The tool initially presses the plate down to a cursor-end position where it remains
during a relaxing period. Finally, it is removed at high velocity. According to the initial tool velocity defined by the time
t different deformation histories are obtained. Three cases are tested with t = 0.5, 1, and 2 s. This run was performed
taking advantage of symmetry conditions and a mesh of 16 × 16 × 5 brick elements.
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Fig. 6. (a) Pinched plate. (b) Tool path.

Fig. 7. Pinched plate. (a) Intermediate and (b) final configurations.

The square plate is 30 mm wide and 5 mm high. The tool has a radius of 2.5 mm and its displacement is 8 mm. Both
elastic potentials � and �e use an Ogden model with the following material parameters: �1 = 2.758; �2 = −1.725;
�3 = 0.704 (MPa) and 	1 = 1.33; 	2 = −3.05; 	3 = 3.89. The viscous potential � is of Hencky type with �v = 1.1394
(� = 2 s). Potential � is null.

Fig. 7(a) shows the deformed configuration for the maximum tool displacement, while 7(b) illustrates the final
configuration after the tool removal. Figs. 8 and 9 present the history of the Cauchy stress �x and vertical displacement
of the point located on the plate bottom surface just below the punch tip. These curves show clearly that faster tool
motions produce higher stresses and higher dissipated energy with a consequent faster tool-piece separation during the
backward motion.

7. Final remarks

A general set of viscoelastic constitutive models is presented in this article. Due to its variational characteristic it
provides appropriate mathematical structure for further applications like, for example, error estimation. Moreover, it
has the appealing characteristic that different materials can be modelled by means of the definition of constitutive
potentials depending on eigenvalues of strains and strain-rates. As a practical consequence, most of the implementation
effort, including stress updates and tangent matrix is done at generic level with no relation to a specific isotropic law
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Fig. 8. Cauchy stress �x versus time.
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Fig. 9. Displacement uz of lower surface below punch tip.

(potential). Moreover, the three-equation nonlinear system that provide the stress and strain updates is analytically
invertible and the material tensor has a closed form expression. Thus, the performance of the constitutive update is
comparable to that of the classical radial-return algorithm in elasto-plastic problem.

The first numerical example compares the capacity of Hencky and Ogden-type models to reproduce observed
nonlinear viscous behavior. As expected, Ogden models perform better for the case of large strains and rubber-like
materials, leading to non-elliptic hysteretic loops. The second example illustrate the application of the present model
to common large scale FEM computations.
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