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I INTRODUCTION 

The large applicability of the boundary element method 
(BEM) to solve engineering problems depends directly 
on the availability of fundamental solutions. 1'2 Although 
fundamental solutions are extensively described in a 
great number of publications, their derivation and gen- 
eral expressions are scarcely ever discussed. The goal 
of this paper is to discuss a well known procedure for 
the determination of general fundamental solutions of 
some basic linear elliptic differential operators of con- 
tinuum mechanics. 

At the present stage of development, the advanced 
application of BEM to particular problems has shown 
great dependence of correct interpretation and clever use 
of fundamental solutions in its general aspects. In this 
paper it is shown that fundamental solutions are formed 
by a combination of essential and complementary elemen- 
tary functions. 3'4 Essential fundamental solutions were 
used extensively up to now. Nevertheless, little attention 
has been given to the complementary terms of funda- 
mental solutions. This work is an attempt to cover this 
gap, and does not intend to be conclusive, in the sense 
of giving the best coefficients (or range of coefficients) 
of complementary functions. It should be noted that all 
fundamental solutions have complementary functions. 3 
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The operators treated here are: Laplace, bi-harmonic 
(KirchholTs plate model), Reissner/Mindlin plate model, 
two- and three-dimensional elasticity. Although only 
applied to some operators, the procedure outlined here 
can be easily extended to all the family of linear elliptic 
differential operators with constant coefficients. 

The indicial notation will be extensively used through- 
out this paper, with subscript greek indices in the range 
1,2 and subscript roman indices in the range 1,2,3. 

2 ABSTRACT THEORETICAL FOUNDATION 

The establishment of the integral equations for a given 
physical phenomenon, starting from their mathematical 
description in differential form, is best performed 
through the application of the weighted residual meth- 
od) This method states that the weighting functions, 
according to which residual errors are minimized, are 
given by 1 

u~(Q) = Uj,(?, Q)ej(?) 

t~(Q) = T j i ( P  , Q ) e j ( P )  (1) 

where u~(Q) and t~(Q) are the generalized displace- 
ments and tractions, respectively, at the field point Q 
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corresponding to the fundamental solution; Uji(P , Q) 
and Tj i (e  , Q) represent, respectively, the displacements 
and tractions in the i direction at the field point Q cor- 
responding to a generalized unit-concentrated load 
acting in the j direction applied at the load point 
P(ej(P)). 

Consider a problem described by its differential form 

Lij( Oo )uj( Q ) = - F~j( OQ )qj( Q ) (2) 

where Lij(OQ) is a linear elliptic differential operator with 
constant coefficients; Fij(OQ) is any differential operator; 
Oo means that the differential operators are applied at 
the field point Q; qj(Q) is a known vector; and, uj(Q) 
refers to the generalized basic variables (e.g. the general- 
ized displacements in structural mechanics) of the prob- 
lem in question. 

Writing the above equations for the fundamental 
solution results in 1 

Lij(Oa) Ukj(P, Q) = -6(P, Q)6ik (3) 

where 6(P, Q) is the Dirac's delta generalized function 
(Dirac's delta distribution 5) applied in the load point 
P, and 6ik is the Kronecker's delta symbol. 

The H6rmander's method is applied in order to trans- 
form the original problem on a tensor field into another 
equivalent one on a scalar field. The scalar solution 
G(P,Q) is related to the tensor solution Ukj(P , Q) by 6 

Uk:(P, Q) = L~(OQ)G(P, Q) (4) 

where L~(OQ) is the cofactor matrix of Lki(OQ). 
Substituting eqn (4) into (3), observing the equality 

L~j°(OQ)Lkj(OQ) = Lq(OQ)Lekj(OQ) = ILlf,k (5) 

where ILl- detLij(OQ) is the determinant of Lo.(OQ), 
then it applies for 

ILIG(P, Q) = -(5(P, Q) (6) 

Now, the problem of finding a tensor fundamental 
solution of the operator Lij(OQ) was reduced to the 
search of the scalar fundamental solution of the opera- 
tor ]L]. This is known as the H6rmander's method. 7 

Fundamental solutions have radial symmetry, since 
one is dealing with isotropic materials. Then, G(P, Q) = 
G(Q, P) = G(r), where r =H P - Q II, that is, r is the dis- 
tance between points Q and P, measurable according to 
the L2-norm. 

In usual engineering problems, such as those treated 
in this work, the operators considered are linear elliptic 
differential equations with constant coefficients. The 
homogeneous solutions are then easily obtained. 

In order to determine G(r), first the homogeneous 
equation corresponding to eqn (6) must be solved. 
After this, the theory of distributions is applied in 
order to determine the general fundamental solution, 
establishing that 4 

(G(r), ILI4'(r)) = -0(0)  V0 • ~ ( ~ " )  (7) 

where (., .) denote the duality pairing between the spaces 
~ ( ~ ' )  and ~'(~i~); 0(r) is a test function; ~ ( ~ ' )  is the 
space of test functions in ~ ' ;  and ~'(~l') is the space of 
distributions (the dual space of ~ ( f ) ) .  Integrating by 
parts, after excluding a sphere S(P,e) centered at the 
load point P with radius e, a system of equations is 
obtained, one, which satisfying the above expression, 
gives the general fundamental solution G(r). G(r) is 
formed by a combination of essential and complemen- 
tary elementary functions. The essential ones are those 
necessary to satisfy eqn (7), that is, they completely 
characterize the singular behavior, while the com- 
plementary ones do not affect this equation. 

3 APPLICATION TO SOME OPERATORS 

Following the procedure outlined above, some general 
fundamental solutions of linear elliptic differential 
operators concerning the range of interest of continuum 
mechanics will be considered. 

3.1 Laplace operator 

The Poisson equation 

= - b  (8) 

is governed by the Laplace operator A(.) = 02(.)/ 
OxiOxi. The Laplace equation corresponds to b = 0. 

The fundamental solution, in agreement with the above 
presentation, is governed only by the operator ILl. The 
right hand side of eqn (2), which in this case is related 
to Poisson's equation, is answerable only for the domain 
integral, when the problem is expressed in integral form. 
Then, to determine the fundamental solution one 
needs only to consider the Laplace equation 

Au = 0 (9) 

It can be seen that the differential operator governing 
the problem in question is given (formally) by 

L = A (10) 

The correlation between the terms of the particular 
eqn (8) and those of the general eqn (2) can be directly 
expressed. The method outlined in the preceding section 
can be applied in order to determine the fundamental 
solution. Due to the fact that this problem is already 
expressed on a scalar field, H6rmander's method need 
not be applied, and in order to use the previous symbo- 
lism, the function U(r) must be equalized to G(r). 

In this case, eqn (3) is expressed as 

AU(r) = -6(r) (11) 

whose homogeneous solution is, for the two-dimensional 
case 

U(r) = C1 In(r) + 6'2 12) 
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and, for the three-dimensional case, 

U(r) ~- Cl 1 -[- C2 (13) 
r 

Now, it is only necessary to guarantee that the above 
solutions satisfy eqn (7). 

Substituting Laplace's operator (eqn (10)) in eqn (7), 
integrating by parts through the use of  Green's formula, 
and observing again that U(r) is equal to the fundamen- 
tal solution G(r), one obtains 

l im0~-f  U - ~ d r +  Iv ~b~rUdp} : - ~ b ( 0 )  (14) 
~ 0 t  Jr~ 

As ~b is a test function, its derivative is limited, which 
means to say that 4,s 

d~r~ _< M (15) 

where M has a positive and limited value. 
Solving eqn (14) for the two-dimensional case, it can 

be seen that the first integral is zero, while the remainder 
results in 

- 1  
C1 = ~ (16) 

In this way one concludes that the natural logarithm 
elementary function is an essential function, while the 
constant elementary function is a complementary func- 
tion due to the fact that no restrictions are imposed on 
the value of  C2. Making use of  the substitution 

C2 = F2C1 (17) 

the general fundamental solution of  Laplace's operator 
in the two-dimensional domain can be expressed as 

U(r) = - 1  [In(r) + F2] (18) 

Similarly, for the three-dimensional case consider eqn 
(13) and one obtains 

'('r ) U(r) = ~ + F2 (19) 

As shown above, it can be seen that Brebbia et al. 1 
have considered the fundamental solution of  Laplace's 
two- and three-dimensional operators disregarding the 
complementary function associated with F2. 

A helpful fact on the numerical implementation of  
logarithmic functions like eqn (18) is that, due to the 
arbitrary coefficient F2, this equation can be written as 

U(r) = ~ 1  ln(ar) (20) 

where a = ln(F2). Now, the coefficient a can be selected 
in such a way that the problem can be sealed in order to 
give the natural logarithm argument such that the 
results neither overflow nor are incalculable. Because 

F2 can be any real value, it can be seen that a > 0. In 
this case a represents a scaling in the value of  the 
radius r. This scaling produces no change in the value 
of  any tensor derived from U(r). 

3.2 Bi-harmonic operator 

The representative equation of  KircholTs plate model is 
expressed as 8 

- D A 2 u  = - b  (21) 

and is written in this way in order to be in accordance 
with eqns (2) and (3). Here, D = Eh3/[12(1-  v2)] is 
the flexural rigidity, E is the modulus of  elasticity, v is 
the Poisson coefficient, h is the plate thickness and 
A 2 = AA is the bi-harmonic operator. 

As in the case of  the Laplace eqn (11) this equation 
can be written as follows 

-DA2U(r )  = -6(r) (22) 

whose homogeneous two-dimensional general solution 
is 

U(r) = Clr 2 In(r) + C2 r2 + Ca In(r) + C 4 (23) 

Following the same procedure as in Laplace's opera- 
tor, and applying Green's formula successively to eqn 
(7), there results 

0/0)O /24) 
Bearing in mind that the derivatives of  the test func- 

tions are limited, one can see that the first and the 
third integrals are zero. To regularize the second integral 
it is necessary that 

C3 = 0 (25) 

while, from the last integral, satisfying the equality, one 
can conclude that 

1 
C1 - 87rD (26) 

By the substitutions 

C 2 -~- F 2 C1 

• C 4 = F 4 C  1 (27) 

it results that the general fundamental solution for the 
Kirchhoff's plate model is 

U(r)= 1 [r 21n(r)+F2 r2+F4] (28) 

Only the essential part of  this solution (F2 = F4 = 0) 
is presented by Brebbia et al., l while Costa and Brebbia 9 
concluded that F2 = - 1 / 2  is a good value. Brebbia and 
Dominguez, 2 applying Laplace's operator to the above 
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fundamental solution, with F2 = +1 and F4 =0 ,  
obtained the fundamental solution of Laplace's 
two-dimensional operator (eqn (18)) in its essential 
form (F2 = 0). Taking the F2 value as proposed by 
Costa and Brebbia 9 one obtains F2 = - 3 / 2  in eqn 
(18). 

In the same way as for eqn (20), one can write 

u ( r ) =  1 
[r 2 ln(ar) + F4] (29) 

3.3 Reissner/Mindlin's plate models 

The operator applied to the plate models of Reissner l° 
and Mindlin n is expressed exactly in the form presented 
in eqn (2), with the differential operators given by 4'12'13 

of zero order, and 

z = Ar (37) 

Applying Green's formula successively to eqn (7), 
substituting previously the operator presented in eqn 
(35), one obtains 4 

~+0(lim~-Iv G A ( A -  A2) ~ r  dP 

dG 
+ l r o ~ - r A ( A - A 2 ) q ~ d F - I r  A G ( A - A 2 ) ~ r d F  

+ / L  A ~--~Gr (A - A2)4~dP - IrE A2G ~r  ~dF 

4 
+ lp 0A2 ~Gr dr'} = D3(1 :/])2A2 q~(0 ) (38) 

L=D  
(1 + u)0 2 1 (1 Jr-/J) 0 2 _~2 0 - 

A -- )~2 + (1 -- u)Ox 2] -(-f-U-~O-~2 

( l + . )  o 2 [ ,x2 (1+ . )o21  0 
(1 - u ) ~  LA -- + (1 --u) Ox 2] 

A2 0 A2 0 A2A 

(30) 

and 

-MF ~x 1 

F =  0 

0 

where 

A 2 = 12k2/h 2 

k 2 = 5 / 6  

and 

MF = (1 - u)A 2 
0 

0 

(31) 

(32) 

(33) 

, Reissner 

, Mindlin 
(34) 

According to Mindlin's plate model, the shear correc- 
tion factor k 2 is a function of the Poisson coefficient. 

Applying H6rmander's method, eqn (6) is expressed 
as  13 

D3 (~-)A2A2( A- A2)G(r)=-6(r) (35) 

whose homogeneous general solution is 

G(z) = CIKo(z ) + C2 In(z) + C3z 2 + C4z 2 in(z) 

-~- C510(Z ) -Jr- C 6 (36) 

where Io(z) and Ko(z) are the modified Bessel's 
functions 14 of first and second kind, respectively, and 

The first, third and fifth integrals above are zero. 
Taking the sixth integral, satisfying the equality, one 
concludes that 

2 
('1 = 7rD3(1 _ u)2A 6 (39) 

In order for the remaining integrals (the second and 
the fourth) to be regularly evaluated, it is necessary that 

1 
C 4 = ~ C  1 

c2 = c, (40) 

respectively. Moreover, in order to satisfy the regularity 
condition at infinity, it is necessary that 

C5 = 0 (41) 

The functions related to C3 and C6 are the comple- 
mentary ones of the fundamental solution and therefore, 
writing 

C 3 = F 3C1 

C6 = F6Ct (42) 

the general scalar fundamental solution is expressed as 

[ G(z) = 7rD3(1 - 1j)2~6 Ko(Z ) + ln(z) + F322 

+1z2 ln(z) + f6] (43) 

Substituting this equation in (4) the general tensor 
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Uij(r) is obtained as 

1 
U~n(z) = 87rD(1 - v) {[8B(z) - (1 - , )(2In(z) + 1 

+ 8F3)]ra/3 - [8a(z) + 2(1 -- u)]r,arg} 

expressed as 1 

( 1 ) 
~ u~'nB -~ (1 - 2u) un,~ = -b~  

where # is the shear modulus. 
Therefore, the differential operator L,~a is 

U'~3(z)=l[2ln(z)+l+ZF3]rr'~' ,_ , ] 
[ 1 - 2vOx~l 1 --2vOx--~x2 

U 3 a ( z )  - Uo,3(z) L = # L/ 1 o"72 A + - -- = - - 1 - -  c32// 
1 

V33(Z) - -  87rD(1 - v "'2)a {(1 - v)z~(ln(z) + 4F3) 7--- 2 u ~  1 - 2vx~_[ 

- 8 ln(z) - 4[(3 - u)(4F3 + 1) 

- (~ - ~)F6]) 

where 

A(~) = ~ ( z )  + z 

B ( z ) = K ° ( z ) + I  ( _ 1 )  

A compact 
obtained by defining a and/3 such that 

In(a) = (1 + 8F3)/2 

In(/3) = [(3 - v)(4F3 + 1) - (1 - v)F6]/2 
resulting in 

v ~ ( z )  = 

(44) 

(45) 

(48) 

form of the above equations can be 

1 
41rD(1 - u) {[4B(z) - (1 - . ) l n (az ) ]8~  

(46) 

- [4A(z) + (1 - .)]r,~r,~} 

Uo3(z) = 4 -~  ln(az)rr,~ 

u3~(z )  = - vo3(~)  

1 ( ln(az)  U33(2)=87rO(l_v))~2 [ ( l _ . ) z  2 1 )  

- 8 ln(/3z) ] 
/ 

(47) 

(49) 

The expression for Uij(r) above is both slightly differ- 
ent and more compact than those presented by Wee~n 13 
and, consequently, more adequate for numerical 
implementation. The tensor Uo.(r ) is reduced to that pre- 
sented previously by Barcellos and Westpha115 if a = 
/3 = 1, but here the fundamental solution is also com- 
plete. As seen before, a and/3 have any values greater 
than zero. 

The tensor Tij(r) is shown in the Appendix in order 
for the study to be complete. The remaining general ten- 
sors are given by Barcellos and Westpha115 in terms of  
F3 and Fr. 

3.4 Two-dimensional elasticity 

Navier's equations for two-dimensional elasticity are 

of  the rigid body motions in directions 1 and 2, where 
the matrix to be solved is singular. 

A compact form of  the above equations can be 
obtained, as before, in the form 

- 1  
Usa(r) - 87r(1 - u)# [(3 - 4u) ln (a r )~a  - r~r,f 

(53)  

3.5 Three-dimensional elasticity 

Navier's equations for three-dimensional elasticity are 
analogous to eqns (48), with the Greek indices changed 
to Latin indices. Equation (50) is, for this case 

2(1 - , )  3 A 3 - . .  -6(r)  (54) 

(4) as 

1 {[ 
U~n(r) - 87r(J ---v)# (3 - 4v)In(r) + (3 - 4v)F2 

q (7 28u)-] 8c, a - r,ar ~ } (52) 

When F2 = 0, this is exactly the same equation as 
that obtained by Galerkin's vector. 2 The term 
[ ( 3 -  4u)F2 + ( 7 -  8,)/216an is related to a rigid body 
translation in the Cartesian directions 1 and 2. In this 
way, eqn (52) is similar to that suggested by Telles and 
de Paula, 16 Neves and Brebbia, 17 Tomfis Pereira 18 and 
Kuhn et al. 19'2° Telles and de Paula 16 used this term to 
satisfy the equilibrium of forces and moments starting 
from the basic equations of  BEM. Neves and Brebbia t7 
and Tom,is Pereira, 18 by using numerical experiments, 
showed that the final solution of  a problem depends 
on the adequate choice of  the value of  this term. Kuhn 
et al. 19'2° concluded that there are two critical values 

For this case eqn (6) is 

2(1 - , )  2 A 2 - . .  -~(r)  (50) 

Following the steps performed to obtain eqn (28), it is 
found that 

- ( 1 - 2 , )  
G(r) - 1 6 ~  -- ~3-~2 [ r2 In(r) + F2 r2 + r4] (51) 

Consequently, the tensor U~n(r ) is obtained through eqn 
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The homogeneous solution is 

G(r)=CIr4 +C2r3 +C3r2 +Car + C s I + C 6  (55) r 
The two equations above, when substituted into eqn 

(7), and after applying Green's formula successively, 
results in 

limo~--Jp G ~ d I ~ q - J p  ~-m2q)dI~ 
e 0 t 

-- JG A G d ( d ~ d F  + JF~ d(AG) AqSdF dr 

- JG A2G~r  dF + J'G d(&d:G) o~dF} 

- (1  - 2 u )  
(56) 

The first, third and fifth integrals above are zero. Taking 
the sixth integral, satisfying the equality, it follows that 

(1 - 2u) 
C2 = 1927r(1 - v)# 3 (57) 

For the remaining integrals (the second and fourth), one 
has to define 

C 4 - 0  

C5 = 0 (58) 

in order for these integrals to be regular. 
Then, by writing 

Cl = F1C2 

C 3 ~- F 3 C2 

C 6 = F6C 2 (59) 
the fundamental solution G(r) can be rewritten as 

(1 - 2u) r3 
a(r) = 192-~(1 - -u)#  3 [FIr4 + +F3r2+f6] (60) 

Finally, the fundamental tensor U# (r) is obtained through 
eqn (4) as 

1 r (5 Uij(r)-16rr(1-~.u)#{[ - (3 -4u)  + -~  -6u)F2160. 

or, by making an adequate substitution, 

1 
U q ( r ) - 1 6 r r ( l _ u ) # { ( 3 - 4 u ) ( ! + F ) 6 0 + ! r , i r j  } 

(62) 

where F is a constant. 
As in two-dimensional elasticity, there are here three 

rigid body motions incorporated in the fundamental 
solution, related to three critical values of the F constant 
for each particular problem. 

4 CONCLUSIONS 

In this paper it was shown that general fundamental 
solutions of elliptic linear differential equations with 
constant coefficients can be easily obtained by using 
Hfrmander 's  method, in conjunction with the theory 
of distributions. 

The rigid body motions are consistently incorporated 
into fundamental solutions, when the general scalar dif- 
ferential equation solution is carried out in full through 
the derivation of the tensor Uij(r). 

Computational savings and improvements can be 
attained with skillful numerical implementation of  gen- 
eral fundamental solutions. 
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APPENDIX: T H E  GENERAL F U N D A M E N T A L  
T E N S O R  To(r ) OF R E I S S N E R / M I N D L I N ' S  
PLATE M O D E L S  

The general fundamental tensor To(r ) of  Reissner/ 
Mindlin's plate models, as obtained starting from the 
general fundamental displacement tensor Uiy(r) (eqn 
(47)), is expressed as: 

- 1  
T~a(z) = ~ [(4A(z) + 2ZKl(Z) + 1 - u) 

(r,~n~ + r,nt~c~) + (4A(z) + 1 + u)r,c~n~ 

- 2(8A(z) + 2zKl(z)  + 1 - u)r~r;3r,] 

)~2 
T~3(z) --- ~ [B(z)na - A(z)r,ar,n] 

- 1  
T3a(z ) = ~ -  {[(1 + t,)ln(cez) + u]na + (1 - u)r,ar,n } 

- 1  
7"33 (z) = 27r--; r,, (A 1) 

where r,n = r,~n~ and n~ are the direction cosines of  the 
outward normal to the boundary. 


