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Abstract
This paper presents a procedure to numerically analyze the coupled electro-structural response
of laminated plates with orthotropic fiber reinforced layers and piezoelectric layers using the
generalized finite element method (GFEM). The mechanical unknowns, the displacements, are
modeled by a higher order shear deformation theory (HSDT) of the third order, involving seven
generalized displacement functions. The electrical unknowns, the potentials, are modeled by a
layerwise theory, utilizing piecewise linear functions along the thickness of the piezoelectric
layers. All fields are enriched in the in-plane domain of the laminate, according to the GFEM,
utilizing polynomial enrichment functions, defined in global coordinates, applied on a bilinear
partition of unities defined on each element. The formulation is developed from an extended
principle of Hamilton and results in a standard discrete algebraic linear motion equation.
Numerical results are obtained for some static cases and are compared with several numerical
and experimental results published in the literature. These comparisons show consistent and
reliable responses from the formulation. In addition, the results show that GFEM meshes
require the least number of elements and nodes possible for the distribution of piezoelectric
patches and the enrichment provides more flexibility to reproduce the deformed shapes of
adaptive laminated plates.

1. Introduction

Smart/intelligent structures have received increasing attention
from researchers in recent decades due to several aspects.
The motivation for utilizing adaptive materials is to enable
a structure to change its shape or its material/structural
properties, thereby improving performance and service life.

Electrostrictive materials, magnetostrictive materials,
shape memory alloys, magneto- or electro-rheological fluids,
polymer gels, and piezoelectric materials, for example, can all
be used to design and develop structures that can be called
smart.

These adaptive materials can reduce the need for complex
mechanical linkages and actuator systems since the adaptive
material itself is integrated (embedded/bonded) within the
structure, resulting in the reduction of weight and avoiding
some problems inherent to these mechanical devices (Chee
et al 1998).

Piezoelectric materials can be applied in laminated
composite structures as patches and films or to form
layers within of the laminate. Because they exhibit
coupled mechanical–electrical behavior, they can be used as
sensors, measuring strains and accelerations, or as actuators,
when electric potentials are applied to generate a field of
deformations in the structure.

In the past three decades, a large variety of models
have been developed to predict the behavior of piezoelectric
materials in smart structures. These models may be
classified into three different categories: induced strain models,
coupled electromechanical models and coupled thermo-
electromechanical models.

The coupled electromechanical models provide a more
consistent representation of both the active and sensitive
responses of piezoelectric materials through the incorporation
of both mechanical displacements and electric potentials
as state variables in the formulation. The coupled
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electromechanical models are most commonly implemented in
finite element codes. The early codes were modeled with solid
elements, following the pioneering work of Allik and Hughes
(1970). However, the hexahedron or brick elements display
excessive shear stiffness as the element thickness decreases.
This problem was circumvented by adding three incompatible
internal degrees of freedom to the element (Detwiler et al
1995). Other formulations based on solid elements have
been developed, (see, for instance, Tzou and Tseng (1990)
and Ha et al (1992)), but, as a rule, the completely three-
dimensional modeling of laminated piezoelectric structures
results in systems with a large number of degrees of freedom,
since they require one solid element per layer of the laminate.

One strategy to reduce the cost associated with the full
solid element models is in the use of a layerwise theory (LT)
to describe both mechanical and electrical unknowns. Among
others, Saravanos et al (1997) can be cited as a reference for
the complete dynamic electromechanical response of smart
piezoelectric plates under external mechanical or electric
loading. Lee (2001) presents a complete family of finite
elements for beams, plates and shells based on LT for all state
variables. Lage et al (2004), also incorporated the coupled
magneto-electro-elastic phenomenon in a partially hybrid
functional with higher order functions along the thickness. A
more elaborate strategy is developed by Cotoni et al (2006),
who presents a finite element formulation based on a fourth
order expansion through the laminate thickness, combined with
a piecewise linear term to describe the mechanical variables
and a quadratic distribution of the electric potential inside each
piezoelectric layer.

The layerwise theories still involve a large number of
degrees of freedom in the models, similar in extent to the
full solid elements. This inconvenience induced the parallel
development of two-dimensional models. The most simple
of these are based on the classical laminated plate theory
(CLPT), for instance, the work of Hwang and Park (1993),
who developed a two-dimensional quadrilateral plate element
with one electrical degree of freedom per piezoelectric layer
per element. The output voltage was post-processed from the
direct piezoelectric equation.

The simple CLPT offers poor kinematic approximation
capabilities for a complex laminate system, such as those
equipped with piezoelectric patches. Therefore, models based
on the first order shear deformation theory (FSDT) were tested,
such as that described by Detwiler et al (1995), for the linear
response of coupled electrical-mechanical behavior, or by Gao
and Shen (2003), who considered the geometrical non-linearity
of the structure.

The particular structural configuration of a laminate with
piezoelectric layers or patches makes it very difficult to
adequately model using a single equivalent layer kinematic
model, applied to both mechanical and electrical unknowns.
Therefore, a sensible strategy involves the use of a single
equivalent layer model for the mechanical unknowns and a
layerwise theory for the electric potential. Some of the most
simple of these combinations are those using the FSDT for
the mechanical displacements and LT for the potential, for
example, the shell element formulated by Saravanos (1997).

Cen et al (2002) have also employed a partially hybrid energy
functional for correcting the transverse shear deformation in
their mixed FSDT–LT finite element formulation. In a different
manner, Liew et al (2004) utilized the mixed FSDT–LT models
in a formulation based on the element-free Galerkin method.

It is well known that the FSDT results in some deficiencies
in the approximation of the mechanical response of anisotropic
laminates, particularly in the form of underestimated
displacements and poor transverse shear stresses. A higher
order shear deformation theory (HSDT) behaves much better
and several studies indicate that it is a good choice for
the mechanical displacements in an piezoelectric laminate,
combined with the LT for the electric potential. This can be
seen in the work of Reddy (1999), Chee (2000) and Faria
(2006), among others.

This paper presents a procedure to numerically analyze
the coupled electro-structural response of laminated plates
with orthotropic fiber reinforced layers and piezoelectric
layers, by the generalized finite element method (GFEM).
The mechanical unknowns, the displacements, are modeled
by an HSDT of the third order. The electrical unknowns,
the potentials, are modeled by a layerwise theory, utilizing
piecewise linear functions along the thickness of the
piezoelectric layers. All fields are enriched according to the
GFEM, utilizing polynomial enrichment functions applied on
a bilinear partition of unity defined on each element. The
remainder of this paper is outlined as follows: section 2
reviews the basics of GFEM. Section 3 deals with the
linear electro-elasticity formulation. Section 4 details the
proposed application of the GFEM strategy to the problem of
laminated plates with orthotropic piezoelectric layers, showing
the discretization, the global enrichment of the approximating
spaces, stiffness and inertia matrices, mechanical–electrical
coupling matrices and mechanical and electric dynamic load
vectors. Section 5 shows numerical applications for the static
analysis of classical models of adaptive plates comparing the
results of the present formulation with those in the literature,
and section 6 gives some conclusions.

2. Generalized finite element method

Oden et al (1998) presented a hybrid method combining
the hp clouds method and the conventional form of the
finite element method. This strategy takes into account the
idea of adding hierarchical refinements to a set of shape
functions associated to finite elements, such as the Lagrangian
interpolation functions which satisfy the requirement of a
partition of unity (PoU). The method became consolidated with
the works of Duarte et al (2000), Strouboulis et al (2000) and
Strouboulis et al (2001), resulting in the methodology called
generalized finite element method (GFEM).

In the GFEM context, discrete spaces for a Galerkin
method are defined using the concept of the partition of unit
finite element method (PUFEM), of Babuška et al (1994),
Melenk (1995), Melenk and Babuška (1996), and Babuška
and Melenk (1997) and of the hp clouds method of Duarte
(1996) and Duarte and Oden (1996). A mesh of elements
is created to: (a) facilitate the numerical integration; and (b)
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define the PoU locally within elements by intrinsic coordinates.
Finally, the PoU functions are enriched by functions defined in
global coordinates. This last aspect is responsible for the high
efficiency of the method. Usually the enrichment functions are
polynomials, but special enrichment functions can be used to
provide more accurate and robust simulations. These functions
can be built based on a priori knowledge of the solution of
a problem as well as based on the solution of local boundary
value problems.

In recent years, the GFEM has been applied to a
diversity of phenomena such as the analysis of dynamic
crack propagation (Duarte et al 2001) and porous materials
(Strouboulis et al 2001, 2003). It has also been used to
build arbitrarily smooth approximations for handling higher
order distributional boundary conditions (Duarte et al 2006).
Barros et al (2007) uses it to perform p-adaptive analysis and
error estimation. O’Hara (2007) and O’Hara et al (2009)
use GFEM to analyze multiscale phenomena. Barcellos et al
(2009) develops a Ck continuous finite element formulation for
the Kirchhoff laminate model. A procedure to define richer
approximate subspaces for shell structures and the treatment
of the boundary layer phenomenon is addressed by Garcia et al
(2009).

Partition of unity (PoU) is a set of functions where, among
other properties (see Oden and Reddy 1976), the sum of their
values is equal to unity on every point of the support. It can
be noted that the standard finite element shape functions form
a partition of unity. In general, the GFEM can be briefly
defined as a strategy to enlarge the FEM approximation space
by adding special functions to the conventional approximation
basis. This basis now takes the role of a partition of unity
and allows inter-element continuity and creates conforming
approximations. The enrichment allows the application of any
information that reflects previous knowledge of the boundary
value problem solution, such as a singular function resulting
from local asymptotic expansion of the exact solution close
to a point. The approximating capabilities of the enrichment
functions are included in the function space of the method
while keeping the same standard structure of an FEM code.

The construction of the method can be summarized as
follows. Initially, a cloud family is defined by

Fk,p
N = {{ϕ j(x)}N

j=1

⋃
{ϕ j(x)L j i(x)}N

j=1|i ∈ j ( j)} (1)

where ϕ j(x) are PoU functions and L j i(x) are the enrichment
functions, both related to the node j , and j ( j) is an index
set which refers to the enrichment functions associated with
each node. In this definition, the cloud family functions F k,p

N
comprise the PoU, which generates the polynomial space of
degree k, Pk , which is able to represent, in an exact form,
polynomials of the space of degree p, Pp. This cloud family
is used to build the following approximation functions for an
arbitrary displacement component u(x)

ũ(x) =
N∑

j=1

ϕ j(x)

{
u j +

q j∑

i=1

L j i(x)b ji

}
= ΦTU (2)

with

UT(x) = [ u1 b11 · · · b1q j
· · ·

· · · uN bN1 · · · bNq j
] (3)

where ui and biq j
are the nodal parameters associated with

the standard finite element shape functions ϕ j(x) and enriched
functions ϕ j (x)L j i(x), respectively. The complete set of
functions can be grouped in vector form as

ΦT = [ ϕ1 L11ϕ1 · · · L1q j
ϕ1 · · ·

· · · ϕN LN1ϕN · · · LNq j
ϕN ] (4)

where q j is the number of enrichment functions of each node.
Let U and V ∈ H1(�) be Hilbert spaces of degree 1

defined on the domain � and consider the following boundary
value problem: find u ∈ U such that B(u, v) = L (v), ∀ v ∈
V . Let Uh be the subspace spanned by a set of kinematically
admissible functions and Vh the subspace spanned by a set of
kinematically admissible variations. We define the following
Galerkin approximation for the boundary value problem using
the GFEM approach: find ũ ∈ Uh such that B(ũ, ṽ) = L (ṽ),
∀ ṽ ∈ Vh , where ũ and ṽ ∈ Uh = Vh ⊂ H1, H1 being the
Hilbert space of degree 1 defined on the domain �. B(•, •) is
a bilinear form of H1 × H1 −→ R and L (•) is a linear form
of H1 −→ R. The formulation leads to the equation system
B(ΦTU,ΦTV) = L (ΦTV) where

VT = [ v1 c11 · · · c1q j
· · ·

· · · vN cN1 · · · cNq j
] (5)

are nodal parameters related to the test function, such that
ΦTV ∈ Vh . In cases where the enrichment functions Li j

are polynomials, the proximation ũ will be represented in the
following particular form

u p(x) =
N∑

j=1

ϕ j(x)

{
u j +

q j (p)∑

i=1

p ji(x)b ji

}
= ΦTU. (6)

The present implementation of a GFEM formulation for
plates is performed with enrichment polynomials up to the
third degree, applied on a PoU defined by bilinear shape
functions, according to the following linear combination

ϕ j ×
{

1,
x − x j

hx j

,
y − y j

hy j

,

(
x − x j

hx j

)2

,

(
x − x j

hx j

)(
y − y j

hy j

)
, . . . ,

(
y − y j

hx j

)3}
(7)

where x̄ = (x − x j)/hx j and ȳ = (y − y j)/hx j are
normalized coordinates. ϕ j , j = 1, 2, . . . , N are standard
finite element bilinear shape functions, x j = (x j , y j) are nodal
coordinates of an arbitrary node j . hx j and hy j are the cloud
characteristic dimensions of the node in the directions x and
y, respectively, and N is the number of nodes of the finite
element mesh. It can be noted that using this procedure of
enrichment only the partition of unity keeps its interpolator
characteristic—the enriched functions associated with a given
node are zero there, and, therefore, they are not interpolation
functions in the classical sense. Only the PoU satisfies the
Kronecker delta condition, i.e., ϕ j (xi) = δi j . Therefore,
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the Dirichlet boundary conditions cannot be directly imposed,
making special procedures necessary to impose them. One
efficient procedure to impose these conditions is through the
so-called boundary functions, as developed by Garcia (2003)
and Garcia et al (2009).

3. Linear electro-elasticity

Most models of piezoelectric materials used as sensors and
actuators in intelligent structures consider only the linear
piezoelectric constitutive equation, Di = εi j E j , which is
partly developed from electromagnetic theory. However, this is
only true for a homogeneous and isotropic dielectric material,
for which it is assumed that the polarization (P) of the dielectric
material is linearly proportional to the electric field (E).

According to Reddy (2004), the coupling between the
mechanical, thermal and electric fields can be established
employing thermodynamic principles and the Maxwell
relations. Analogously to the deformation energy functional
U0 in the linear elasticity theory and to the free energy
functional of Helmholtz �0 in thermoelasticity, the existence
of a functional �0 is assumed such that

�0(εi j , Ei , θ) = U0 − E · D − ηθ = 1
2 Ci jklεi jεkl

− ei jkεi j Ek − βi jεi jθ − 1

2
χkl Ek El − pk Ekθ − ρcv

2θ0
θ2

(8)

denominated the Gibbs free energy functional, or the enthalpy
functional, where η is the enthalpy, Ci jkl are elastic moduli, ei jk

are the piezoelectric moduli or, more precisely, the constants
of piezoelectric deformation, χi j are dielectric constants, pk

are the pyroelectric constants, βi j are thermal expansion
coefficients, cv is the specific heat at constant volume, per unit
mass, and θ0 is the reference temperature. Differentiation of
this functional with respect to the fields ε, E and θ results
in the coupled constitutive relations for a deformable pyro-
piezoelectric material, as can be seen in Reddy (2004).

The formulation utilized in the present paper ignores
variations in temperature, such that the coupled equations
become

σi = C E
i j ε j − eik Ek Dk = ek jε j + χεkl El

η = β jε j + pk Ek

(9)

where σi j are the components of the mechanical stress tensor,
Di are the components of the electric displacement vector and
η is the enthalpy. In (9) the contracted notation was used,
considering the stress and strain tensors to be symmetrical.
The enthalpy becomes uncoupled from the other fields, and
the problem solution is obtained from the first two equations.
These relations can be reordered into one single-matrix
linear relation, electromechanically coupled, in the orthotropic
material directions, along axes 1, 2 and 3

{
σ 1

D1

}k

=
[

C1 −e1T

e1 χ1

]k {
ε1

E1

}k

. (10)

The superscript 1 indicates the coordinate system and k
is the number of an arbitrary piezoelectric layer. For the

piezoelectric extensional mode of actuation, only the following
coefficients in (10) are different to zero: C1

11, C1
12, C1

13, C1
22,

C1
23, C1

33, C1
44, C1

55 and C1
66, for the stiffness matrix; e1

15, e1
24,

e1
31, e1

32 and e1
33, for the piezoelectric matrix; and χ1

11, χ1
22 and

χ1
33, for the dielectric matrix.

In this formulation each composite layer is considered
orthotropic, whether it is piezoelectric or not. Therefore, the
constitutive relation (10) must be rotated to the global laminate
coordinate system, according to the layer orientation angle, and
then be combined into the laminate constitutive relation.

In addition, for simple monolithic piezoelectric materials
polarized along the principal transverse direction 3, the
piezoelectric properties would be the same in both the 1 and
2 in-plane directions. The two piezoelectric constants that are
usually tabulated are d31 and d33 (in the strain formulation)—
the first subscript indicates the direction of the electric field and
the second subscript the direction of the strain. It can be shown
that the material parameters are interrelated as follows

eik = di j C jk . (11)

4. Discrete formulation of the GFEM

In this study a generalized finite element is implemented
to model laminated plates with piezoelectric sensors and
actuators. The domain is divided into quadrilateral elements
defined by 8 nodes and the corresponding standard biquadratic
serendipity functions. The partition of unity is defined by the
nodes of the four vertices and the corresponding Lagrangian
bilinear functions, which are, in turn, enriched according to
the GFEM procedure in order to generate the enriched space
of approximation for the unknown electrical and mechanical
fields.

The formulation developed here is derived from Hamil-
ton’s principle, which is constructed in such a way that it
is a variational equivalent to the differential governing equa-
tions of the mechanical and electrical responses in a continuum
electromechanically coupled (Lee 2001). These equations are
Cauchy’s equations of motion,

∂σi j

∂x j
+ fi = ρüi (12)

(where the summation convention is used) and Maxwell’s
equations of conservation of electric flux

∂Di

∂xi
= Q (13)

where σi j are the Cartesian components of the stress tensor,
fi are the components of body force per unit volume, ρ
is the specific mass per unit volume of the material, ui

are the components of mechanical displacement, Di are the
components of electric displacement (electric flux) and q is the
electric charge.

The functional of Hamilton’s principle is (Chee 2000)

∫ t1

t0

(δK − δP + δW ) dt = 0 (14)
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which must hold for any t1 > t0, where K , P and W are
the total kinetic energy, the total potential deformation energy
and the total work of external forces applied to the system,
respectively, and δ is the variation operator. The expression
can be expanded as
∫ t1

t0

{
−
∫

V
ρδuTü(x, t) dV −

∫

V

{
σ x

Dx

}T {
δεx

−δEx

}
dV

+
∫

V
δuTbV dV +

∫

S
δuTfS dS + δuTfP

+
∫

V
δϕTQ dV −

∫

S
δϕTq dS

}
dt = 0 (15)

where u is the vector of mechanical displacement, σ is
the stress tensor, ε is the strain tensor, D is the electric
displacement, E is the electric field, fS is the surface force, fV

is the body force, fP are concentrated forces, ϕ is the electric
potential, Q is a free electric charge and q is a free electric
charge at the surface. (The components of the stress and strain
tensors appear in the equation organized in vector form.)

The mechanical behavior of the plate undergoing bending
is modeled by the equivalent single layer (ESL) methodology,
using the kinematical hypothesis following Levinson’s higher
order shear deformation theory (Levinson 1980). Hence,
the present formulation is based on the following assumed
displacement field

u(x, t) = u0(x, y, t)+ zψx(x, y, t)+ z3ψ3x(s, y, t)

v(x, t) = v0(x, y, t)+ zψy(x, y, t)+ z3ψ3y(x, y, t)

w(x, t) = w0(x, y, t)

(16)

where (u, v,w) are the components, in Cartesian directions,
of the displacement of an arbitrary point in the laminated
plate. This theory is chosen here due its relatively
lower computational cost, since only seven generalized
displacements are required, u0, v0, w0, ψx , ψy , ψ3x and ψ3y .
u0, v0 and w0 are the displacements of a point in the reference
plane, ψx and ψy are rotations of a segment normal to the
middle plane around the y-axis and x-axis, respectively, and
ψ3x and ψ3y are higher order warping variables in the x–z and
y–z-planes, respectively. These are the mechanical unknown
fields that can be approximated over the bi-dimensional (x, y)
domain through function spaces with C0 regularity.

Opting for a thin or thick plate model is a decision which
cannot be made a priori because it depends on the solution and
the computation goals, for example, displacements or stresses.
Moreover, according to Szabó and Babuška (1991), hierarchic
plate/shell models (H M|i) have the property

lim
i→∞

‖u3D
E X − u(H M|i)

E X ‖E(�) � Cdαi (17)

when u3D
E X , the fully three-dimensional solution, is smooth.

In (17), C is a constant, independent of i , the model order,
αi is a constant which is dependent on i , and αi+1 > αi . Thus,
the HSDT has a higher rate of convergence than the FSDT or
CLPT.

Using the linear strain–displacement relations it is
possible to obtain the strain field, which is separated into

coplanar strains εm f (x, t)

εm f (x, t) =
{
εx(x, t)
εy(x, t)
γxy(x, t)

}

=

⎧
⎪⎨

⎪⎩

∂u0(x,y,t)
∂x

∂v0(x,y,t)
∂y

∂u0(x,y,t)
∂y + ∂v0(x,y,t)

∂x

⎫
⎪⎬

⎪⎭
+ z

⎧
⎨

⎩

∂ψx (x,y,t)
∂x

∂ψy(x,y,t)
∂y

∂ψx (x,y,t)
∂y + ∂ψy(x,y,t)

∂x

⎫
⎬

⎭

+ z3

⎧
⎨

⎩

∂ψ3x (x,y,t)
∂x

∂ψ3y(x,y,t)
∂y

∂ψ3x (x,y,t)
∂y + ∂ψ3y(x,y,t)

∂x

⎫
⎬

⎭ (18)

where it is possible identify the generalized extensional strains,
ε0, the generalized flexural rotations, κ1, and the generalized
warp rotations, κ3, such that

εm f (x, t) = ε0(x, y, t)+ zκ1(x, y, t)+ z3κ3(x, y, t). (19)

The transverse shear strains, γ c(x, t), are given by

γ c(x, t) =
{
γyz(x, t)
γxz(x, t)

}

=
{
ψy(x, y, t)+ ∂w0(x,y,t)

∂y

ψx(x, y, t)+ ∂w0(x,y,t)
∂x

}
+ 3z2

{
ψ3y(x, y, t)
ψ3x(x, y, t)

}
(20)

where it is possible identify the generalized shear strains, γ 0,
and the generalized shear-warp strains, κ2, such that

γ c = γ 0 + 3z2κ2. (21)

At this stage it is necessary to define how the electric
degrees of freedom are incorporated. Reddy’s layerwise theory
(Reddy 2004) is adopted here for interpolation of the electric
potential field. The electric potential in the element, ϕ(x, t), is
approximated by piecewise functions along thicknesses of the
piezoelectric layers. This hypothesis is acceptable since the
voltage is generally applied perpendicular to the active layers,
and assuming homogeneous material.

According to these laminate theories, each layer is
modeled using independent approximations for the in-plane
displacement components and the electrostatic potential in a
unified representation, in accordance with the linear theory of
piezoelectricity.

Consider a laminate with npiez piezoelectric layers. N =
npiez +1 electric potential nodal values, ϕ1

no to ϕN
no, corresponds

to each arbitrary node no on the laminate middle plane if such
piezoelectric layers are contiguous, or N = 2npiez electric
potential nodal values if there is inert material between them.
Hence the potential approximation ϕ̃no in an intermediate
position z within an arbitrary piezoelectric layer k at an instant
t is given by the expression

ϕ̃no(z, t)k = ϕk−1
no (t)ζk−1 + ϕk

no(t)ζk (22)

with

ζk−1 =
(

zk − z

hk

)
and ζk =

(
z − zk−1

hk

)
. (23)

The GFEM formulation is implemented beginning with
the definition of the partition of unity (PoU) over the
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element domain. The enrichment is carried out by
adding new parameters linked to unknown nodal values
which are associated with the functions that multiply the
original base functions. In this way, the generalized
mechanical displacements over the laminate middle plane,
(u0, v0, w0, ψx , ψy, ψ3x , ψ3y), can be approximated, for
example, as

ũ0 =
Nne∑

no=1

N
e
no(x, y)

(
u0

no(t)+
n f (u0

no)∑

j=1

u0 j

no(t) f j
u0

no
(x, y)

)

ṽ0 =
Nne∑

no=1

N
e
no(x, y)

(
v0

no(t)+
n f (v0

no)∑

j=1

v0 j

no(t) f j
v0

no
(x, y)

)

...

ψ̃3y =
Nne∑

no=1

N
e
no(x, y)

(
ψ3yno(t)+

n f (ψ3yno )∑

j=1

ψ
j

3yno
(t) f j

ψ3yno
(x, y)

)

(24)
where N

e
no(x, y) is the portion of the PoU functions matrix

related to the node no, Nne stands for the number of nodes
and n f (•no) denotes the number of enrichment functions
associated with the unknown • at node no. Hence, by
assembling all the functions in a single matrix of displacement
approximations, one has a symbolic representation for the
discretized unknown fields, whose matrix Ne has dimensions
7 × 7(Nne + npar), with npar equal to the number of
enrichment parameters of the element.

The electric potential approximation in the coplanar
directions (x, y), in any position within a piezoelectric ply k,
according to the GFEM methodology, is built with the same
PoU functions, N

e
no(x, y), used to approximate the mechanical

displacement fields. The approximation ϕ̃(x, t)k
e

is expressed
by

ϕ̃(x, t)k
e =

Nne∑

no=1

N
e
no(x, y)

×
(
ϕk

no(z, t)+
n f (ϕk

no)∑

j=1

ϕk j

no(z, t) f j
ϕk

no
(x, y)

)
. (25)

Replacing (22) in (25) one obtains

ϕ̃(x, t)k
e =

Nne∑

no=1

N
e
no(x, y)

{
[ϕk−1

no (t)ζk−1 + ϕk
no(t)ζk]

+
n f (ϕk

no)∑

j=1

[ϕk−1 j

no (t)ζk−1 + ϕk j

no(t)ζk] f j
ϕk

no
(x, y)

}
. (26)

All degrees of freedom involving electric and mechanical
unknowns are grouped in the following way, in a vector of
nodal parameters in the element, associated with node no

U
eT

no =
{
. . . , u0

no, u01

no, . . . , u0n f (u0
no)

no , v0
no, v

01

no, . . . , v
0n f (v0

no )

no ,

w0
no, w

01

no, . . . , w
0n f (w0

no)

no , . . . , ψ3yno , ψ
1
3yno
, . . . , ψ

n f (ψ3yno )

3yno
,

ϕ1
no, ϕ

11

no, . . . , ϕ
1n f (ϕ1

no )

no , ϕ2
no, ϕ

21

no, . . . , ϕ
2n f (ϕ2

no )

no , . . .

. . . , ϕN
no, ϕ

N 1

no , . . . , ϕ
N n f (ϕN

no )

no , . . .

}
. (27)

The extensional, flexural and warp strains can be grouped
in a vector εm f such that

εm f =
{

ε0

κ1

κ3

}
. (28)

In this way, the approximation of the coplanar strains over
an arbitrary element e is accomplished by substituting (24)
into (18)

ε̃(x, t)e =
Nne∑

no=1

B
e
m fno

(x, y)Ue
no(t)

= Be
m f Ue. (29)

This provides the in-plane strains approximation matrix, Be
m f ,

of dimensions 9 × 7(Nne + npar), following the proposed
organization shown in (28), whose portion related to the node
no, B

e
m fno

, is written in the form

B
e
m fno

=

⎡

⎢⎢⎢⎢⎣
· · ·

∂Nno
∂x

∂
∂x (�

1
u0

no
) · · · ∂

∂x (�
n f (u0

no)

u0
no

)

0 0 · · · 0
∂Nno
∂y

∂
∂y (�

1
u0

no
) · · · ∂

∂y (�
n f (u0

no)

u0
no

)

.

.

.
.
.
. · · ·

.

.

.

0 0 · · · 0

0 0 · · · 0 · · ·
∂Nno
∂y

∂
∂y (�

1
v0

no
) · · · ∂

∂y (�
n f (v0

no)

v0
no

) · · ·
∂Nno
∂x

∂
∂x (�

1
v0

no
) · · · ∂

∂x (�
n f (v0

no)

v0
no

) · · ·
.
.
.

.

.

. · · ·
.
.
.

. . .

0 0 · · · 0 · · ·

· · · 0 0 · · · 0
· · · 0 0 · · · 0
· · · 0 0 · · · 0
. . .

.

.

.
.
.
. · · ·

.

.

.

· · · ∂Nno
∂x

∂
∂x (�

1
ψ3yno

) · · · ∂
∂x (�

n f (ψ3yno )

ψ3yno
)

2×∑�(1+n f (ϕ�no))

︷ ︸︸ ︷
0 · · · 0
0 · · · 0
0 · · · 0
.
.
. · · ·

.

.

.

0 · · · 0

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(30)

where�◦• = Nno(x, y) f ◦• (x, y) for the unknown • of the node,
◦ is the order of the enrichment function and 1 � � � npiez.

Similarly, the transverse shear strains can be grouped as

γ c =
{

γ 0

3κ2

}
. (31)

These strains are approximated over an element e by
substituting (24) into (20)

γ̃ c(x, t)e =
Nne∑

no=1

B
e
cno
(x, y)Ue

no(t)

= Be
cUe (32)

leading to the transverse shear approximation matrix, Be
c,

of dimensions 4 × 7(Nne + npar), following the proposed
organization shown in (31) and (30).

The electric field vector E(x, t) is defined as the negative
gradient of the electric potential function, such that

E(x, t) = −∇ϕ(x, t) =
{ Ex

Ey

Ez

}
=
⎧
⎨

⎩

− ∂ϕ(x,t)
∂x

− ∂ϕ(x,t)
∂y

− ∂ϕ(x,t)
∂z

⎫
⎬

⎭ . (33)
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Then, using the definition of ϕ̃(x, t)k
e

in (26), it is possible
to express the electric field approximation over an element e,
within a piezoelectric ply k, by

Ẽ(x, t)k
e

= −
Nne∑

no=1

⎧
⎪⎪⎨

⎪⎪⎩

∂
∂x {Ne

no(x, y)[ϕk−1
no (t)ζk−1 + ϕk

no(t)ζ k]}
∂
∂y {Ne

no(x, y)[ϕk−1
no (t)ζk−1 + ϕk

no(t)ζk]}
∂
∂z {Ne

no(x, y)[ϕk−1
no (t)ζk−1 + ϕk

no(t)ζk]}

⎫
⎪⎪⎬

⎪⎪⎭
. (34)

Finally, the electric field vector within a piezoelectric ply
k can be approximated in the form

Ẽ(x, t)k
e = −

Nne∑

no=1

B
ke

noU
e
no

= −Bke
Ue. (35)

This equation provides the electric field approximation matrix
within a piezoelectric ply k, Bke

, of dimensions 3 ×
7(Nne + npar), following the proposed organization shown
in (33), where the portion related to the node no, B

ke

no, is given
by

B
ke

no =

⎡
⎢⎢⎢⎢⎢⎣

· · ·

7+n f (u0
no)+···+n f (ψ3yno )︷ ︸︸ ︷

0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0

2×∑�k
(1+n f (ϕ

�k
no ))

︷ ︸︸ ︷
0 · · · 0
0 · · · 0
0 · · · 0

ζk−1
∂Nno
∂x ζk−1

∂
∂x (�

1
ϕk−1

no
) · · ·

ζk−1
∂Nno
∂y ζk−1

∂
∂y (�

1
ϕk−1

no
) · · ·

− 1
hk

Nno − 1
hk
(�1

ϕk−1
no
) · · ·

ζk−1
∂
∂x (�

n f (ϕk−1
no )

ϕk−1
no

) ζk
∂Nno
∂x ζk

∂
∂x (�

1
ϕk

no
)

ζk−1
∂
∂y (�

n f (ϕk−1
no )

ϕk−1
no

) ζk
∂Nno
∂y ζk

∂
∂y (�

1
ϕk

no
)

− 1
hk
(�

n f (ϕk−1
no )

ϕk−1
no

) 1
hk

Nno
1

hk
(∂�1

ϕk
no
)

· · · ζk
∂
∂x (�

n f (ϕk
no)

ϕk
no

)

· · · ζk
∂
∂y (�

n f (ϕk
no)

ϕk
no

)

· · · 1
hk
(�

n f (ϕk
no)

ϕk
no

)

2×∑�k (1+n f (ϕ�
k

no ))

︷ ︸︸ ︷
0 · · · 0
0 · · · 0
0 · · · 0

· · ·

⎤

⎥⎥⎥⎥⎥⎥⎦
(36)

with 1 � �k � (k − 1) and (k + 1) � �k � (npiez − k)
and considering the piezoelectric layers to be noncontiguous
and the same degree of enrichment for both surfaces of each
piezoelectric layer k.

Developing each portion of the Hamilton’s principle
functional and inserting the variable discretizations we get the
expression for the element contributions as follows. From
the variation of potential energy it is possible to identify
the purely mechanical stiffness, composed by a membrane-
bending matrix, Ke

m f , and transverse shear Ke
c matrix, whose

integrations over the midplane domain lead to the following
representations

Ke
m f =

∫

�e

BeT

m f

[A B L
B D F
L F H

]
Be

m f d�e (37)

Ke
c =

∫

�e

BeT

c

[
Ac Dc

Dc Fc

]
Be

c d�e. (38)

The sub-matrices A, B, D, F, H and L are components
of the purely mechanical constitutive matrix of the membrane
and bending of the laminate, of dimensions 9 × 9, and the
sub-matrices Ac, Dc, Fc , are the components of the purely
mechanical constitutive matrix of transverse shear of the
laminate. These matrix components are obtained by integration
along the thickness in the following way

{Ai j, Bi j , Di j , Li j , Fi j , Hi j}

=
N∑

k=1

∫ zk

zk−1

Ck
i j{1, z, z2, z3, z4, z6} dz i, j = 1, 2, 6.

(39)

{Aci j , Dci j , Fci j }

=
N∑

k=1

∫ zk

zk−1

Ck
i j{1, z2, z4} dz i, j = 4, 5. (40)

At this point it is convenient to decompose the electric
field in each piezoelectric layer k into a constant and a linearly
varying part along its thickness, in the form

Ẽke
(x, t) = −

Nne∑

no=1

{E0k
no + zE

1k
no}

= −{E0k + zE1k}. (41)

Similarly to the forms used for the deformation
equations, (28) or (31), it is interesting to group the electric
fields E0k and E1k , in definition (41), in the following way

Ẽke = −
{

E0k

E1k

}
. (42)

From the expression of the variation of strain energy, it
is possible also to identify the coupled mechanical–electrical
stiffness, composed of a membrane-bending coupled stiffness
part Ke

m f −ϕ and a transverse shear coupled stiffness Ke
c−ϕ ,

whose integration on the in-plane domain results in

Ke
m f −ϕ =

∫

�e

BeT

m f

[O P
P Q
R S

]lam
⎡

⎣
E1e

...

Enpiez
e

⎤

⎦ d�e (43)

Ke
c−ϕ =

∫

�e

BeT

c

[
T U
V W

]lam
⎡

⎣
E1e

...

Enpiez
e

⎤

⎦ d�e. (44)

The sub-matrices Ok , Pk , Qk , Rk and Sk are independents
for each piezoelectric layer k, defining a mechanically
electrically coupled constitutive matrix for membrane-bending
of the laminate, of order 9 × 6npiez, and the sub-matrices Tk ,
Uk , Vk and Wk , defining a mechanically electrically coupled
constitutive matrix for shear bending of the laminate, of order
4 × 6npiez. Their components are given by

{Ok
i j , Pk

i j , Qk
i j , Rk

i j , Sk
i j}

=
∫ zk

zk−1

ek
i j{1, z, z2, z3, z4} dz i, j = 1, 2, 6. (45)

{T k
i j,U

k
i j , V k

i j ,W k
i j }

=
∫ zk

zk−1

ek
i j{1, z, z2, z3} dz i, j = 4, 5. (46)
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The electrically mechanically coupled stiffness matrix,
Ke
ϕu, is obtained by a similar procedure to that used for the

mechanically electrically coupled stiffness matrix, Ke
uϕ . It

should be noted that Ke
ϕu = KeT

uϕ .
Finally, the purely electric stiffness matrix Ke

ϕϕ can be
obtained by in-plane integration by

[Ke
ϕϕ] =

∫

�e

⎡

⎣
E1e

...

Enpiez
e

⎤

⎦
T [

X Y
Y Z

]lam
⎡

⎣
E1e

...

Enpiez
e

⎤

⎦ d�e. (47)

The purely electric constitutive matrix of the laminate is
of order 6npiez ×6npiez and it is formed by sub-matrices Xk , Yk

and Zk , whose components are given by

{Xi j ,Yi j , Zi j} =
∫ zk

zk−1

χ k
i j{1, z, z2} dz i, j = 1, 2, 3.

(48)
The total element stiffness matrix is obtained by adding all

contributions

Ke = Ke
uu + Ke

uϕ + Ke
ϕu − Ke

ϕϕ. (49)

The element inertia matrix Me is obtained by inserting
the mechanical displacement approximation into the variation
of kinetic energy and performing integration on the element
midplane domain�e. This results in

Me =
∫

�e

NeT

[P0 P1 P3

P1 P2 P4

P3 P4 P6

]
Ne d�e (50)

where P0 = ρ0 I3×3, P1 = ρ1 I3×2, P2 = ρ2 I2×2, P3 = ρ3 I3×2,
P4 = ρ4 I2×2 and P6 = ρ6 I2×2. The I s are identity matrices or
parts of them. The generalized masses are defined by

{ρ0, ρ1, ρ2, ρ3, ρ4, ρ6} =
N∑

k=1

∫ zk

zk−1

ρk{1, z, z2, z3, z4, z6} dz

(51)
where ρk is an equivalent mass per unit area of the layer k.

Similarly, the vectors of equivalent nodal forces are
obtained from the variation of the external work, such that

FeV =
∫

�e

NeT

uuN f e
F V d�e FeS =

∫

�e

NeT

uuN f e
F S d�e

FeP = NeT

uu F P FeQ =
∫

�e

NeT

ϕϕNqe
QS d�e

(52)
Ne

uu and Ne
ϕϕ are approximation arrays of the mechanical and

electrical unknowns, respectively. The sum of all contributions
results in the element nodal force vector Fe(t).

The semi-discrete algebraic equations of motion for the
element are

MeÜe(t)+ KeUe(t) = Fe(t). (53)

In the particular case of a quasi-static problem the system
becomes

KeUe = Fe(t). (54)

It is known that, even after the correct imposition of
essential boundary conditions, the stiffness matrix shows a

Figure 1. Piezoelectric bimorph beam and discretized models:
(a) MEF mesh; (b) and (c) GFEM meshes.

very high condition number, or becomes singular. This
linear dependency between the system equations seems to
occurs because the PoU and the enrichment functions are both
polynomials. The algebraic solution must be obtained using
a procedure appropriate for positive-semi-definite matrices. In
this study, the iterative K–ε method of Babuška presented by
Strouboulis et al (2000) is employed.

5. Numerical examples

The proposed GFEM formulation was incorporated into a finite
element code for validation. The numerical results generated
from the following models were compared with published
experimental and numerical results.

5.1. Case 1—bimorph plate as actuator

This problem consists of a bimorph working as an actuator.
The top and bottom surfaces of the beam are subjected to
electric potentials of 0.5 V and −0.5 V, respectively, resulting
in a unitary electric field across the thickness of the beam, and
the corresponding displacements are determined. This problem
was subjected to experimental measurements obtained by Tzou
and Tseng (1990). Their experimental apparatus consists of
a cantilevered piezoelectric bimorph beam constructed of two
layers of PVDF bonded together and polarized in opposite
directions. The dimensions and discretized models used in the
numerical analysis reported here are shown in figure 1. The
material properties are given in table 1.

The experimental results obtained by Tzou and Tseng
(1990) have been used to verify numerical results of several
researchers, and some of these results are compared with those

8
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Table 1. Material properties of the piezoelectric bimorph.

E = 2 GPa ν = 0.29
e31 = 0.046 C m−2 e32 = 0.046 C m−2

χ11 = χ22 = χ33 = 0.1062 × 10−9 F m−1

obtained from the present formulation. These numerical results
will be briefly commented on. Firstly, Hwang and Park (1993)
considered a regular mesh with five linear plate elements
whose formulation is based on the CLPT for mechanical
displacements and endowed with one electric degree of
freedom per piezoelectric layer per element, which means one
equipotential surface within the element.

Detwiler et al (1995) analyzed the problem with a regular
finite element mesh with five linear plate elements. The
formulation is based on FSDT for mechanical behavior. The
electric potential is approximated in each element by one
degree of freedom in each piezoelectric layer, and it is taken
as constant in the in-plane directions.

Cen et al (2002) modeled this problem with a formulation
based on FSDT for mechanical behavior and layerwise theory
for the electric potential. The mesh is regular with five linear
plate elements.

Lim et al (2005) considered that the deformation of a
piezoelectric actuator-embedded structure can be estimated by
using the linear elastic thermal analogy, which equivalently
replaces the piezoelectric strain with thermally induced strain.
The authors analyzed the structure using the HEXA 8 finite
element implemented in the MSC/NASTRAN.

Faria (2006) analyzed this model using a mesh with five
serendipity biquadratic finite elements formulated according
to an HSDT for the mechanical description and the layerwise
theory for the electric potential interpolation.

The results obtained in this paper for the problem
considered are obtained with a mesh with two generalized finite
elements, according to figure 1(b). The functions are enriched
with polynomials of first and second degrees.

The displacement boundary conditions at the clamped end
are enforced by excluding the nodal coefficients corresponding
to the PoU functions at the boundary and the coefficients of
all enrichment functions which are not null on the Dirichlet
boundary. The boundary conditions of the electric potential are
applied imposing the voltage on the top and bottom degrees of
freedom corresponding to PoU on all nodes of the mesh.

A sequence of equally spaced points is defined on
the plate, with coordinates x1 to x5 and its the transverse
displacements are listed in table 2, which also shows the
number of degrees of freedom (dof) for each model. The values
at x2 and x5 are directly obtained from the solution of the
algebraic equilibrium system (54), and the values at x1, x3 and
x4 are obtained from post-processing of the results.

The electric loading may be understood as an equivalent
bending moment applied at the free end of the beam, such
that the displacement response can be well approximated
by a second degree polynomial, as can be verified by the
response obtained with our first degree enrichment, which
is approximately equal to the response of the second degree
enrichment.

Table 2. Deflection induced by a unitary electric field.

Transverse displacement (×10−7 m)

Theory x1 x2 x3 x4 x5 dof

Present (PoU) 0.0005 0.0009 0.0021 0.0032 0.0044 28
Present
(first degree enrich.)

0.1705 0.5538 1.2390 2.2155 3.4512 96

Present (orthot. first
degree enrich.)

0.1717 0.5520 1.2413 2.2092 3.4500 70

Present (second
degree enrich.)

0.2820 0.5533 1.2380 2.2156 3.4514 210

Faria (2006) 0.1400 0.5500 1.2400 2.2100 3.4500 303
Cen et al (2002) 0.1380 0.5520 1.2420 2.2080 3.4500 66
Detwiler et al (1995) 0.1400 0.5500 2.1000 2.2100 3.4500 50
Lim et al (2005) 0.1380 0.5520 1.2420 2.2070 3.4500 180
Tzou (experiment) — — — — 3.1500 —

Moreover, the models can be compared in terms of
computing time or number of unknowns. Thus, since the
computing time of the results reported in the literature are
unavailable we have considered that similar amounts of
unknowns leads to similar computing times for the final system
of equations. Therefore, it can be seen from the results of the
orthotropic first degree enrichment, a strategy of different p-
refinement only in the longitudinal direction, provides good
values for the transverse displacements with a competitive
number of degrees of freedom, compared to other models.

According to Detwiler et al (1995), the experimental value
given for tip deflection is less than that of the others because
of shear losses through the bonding layer of the piezoelectric
layers, and this bonding is considered perfect in the theoretical
and numerical formulations.

5.2. Case 2—bimorph plate as a sensor

This case consists of the same bimorph as in case 1, but here
it functions as a sensor. A prescribed deflection is applied
at its free end and the electric potentials on the surfaces are
calculated. The meshes used in this paper have two and three
generalized finite elements, according to figures 1(b) and (c).
The functions are enriched with polynomials of degrees less
than or equal to three and the results are shown in table 3.

It can be observed that the electric potential distribution
along the beam is approximately linear, as was also observed
by Chee (2000) and Faria (2006). For example, Faria (2006)
observed an electric potential of 323 V at the clamped end
using a mesh with 40 finite elements. The present formulation
provides an electric potential of 325 V as a result for both
GFEM meshes (figures 1(b) and (c)) even though some mesh
dependence can be noted. This influence may indicate the need
for other non-polynomial enrichment functions for the electric
potential.

5.3. Case 3—patched plate

The second validation case is based on experiments conducted
by Crawley and Lazarus (1991). The experiment consists of
a cantilevered laminated composite plate of graphite/epoxy,
with fifteen distributed pairs of G − 1195 piezoelectric patches
(PZT) bonded evenly to the top and bottom surfaces, with

9
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Figure 2. Cantilevered graphite/epoxy composite plate with
distributed piezoelectric sensors and actuators.

Table 3. Electric potential induced by a deflection at the end.

Electric potential (V)

Theory 0 x1 x2 x3 x4 x5

Present (PoU) mesh b 369 259 148 99 49 0
Present (first degree enrich.)
mesh b

245 211 176 160 144 128

Present (second degree
enrich.) mesh b

325 260 196 131 65 0

Present (third degree enrich.)
mesh b

325 261 196 131 66 0

Present (PoU) mesh c 356 373 82 48 14 −21
Present (first degree enrich.)
mesh c

294 259 144 134 125 12

Present (second degree
enrich.) mesh c

327 262 196 131 65 0

Present (third degree enrich.)
mesh c

325 262 196 131 65 0

Faria (2006) 280 255 195 130 70 45
Detwiler et al (1995) 280 250 186 120 56 25
Hwang and Park (1993) 287 245 175 120 60 30

thickness 0.25 mm (see figure 2). Two laminates were tested:
the first one with the stacking sequence [0/45/−45]s, subjected
to electric potentials of 100 and 157.6 V and the second one
with the stacking sequence [30/30/0]s and subjected to an
electric potential of 188.8 V, both with total thickness 0.83 mm.

Detwiler et al (1995) modeled the problem with a FSDT
isoparametric quadrilateral finite element with a formulation
based on an electric potential constant throughout the plane of
the element.

Saravanos et al (1997) analyzed the problem using a
completely layerwise description in a bilinear finite element
formulation and considering a mesh with 16×9 finite elements.
These authors used the following normalized form for the
deflections, consistent with the way the experimental results
were published

T1 = w2

B
T2 = 1

B

(
w2 − (w1 + w3)

2

)

T3 = (w3 −w1)

B

(55)

Figure 3. Mesh used in the GFEM model of the cantilevered
composite plate.

where w2, w1 and w3 are the transverse displacement along
the midline and the two edges respectively, and B is the width
of the plate. These three normalized displacements represent,
or approximate, the axial bending deflection, the transverse
bending curvature, and the twisting angle due to bending–
twisting coupling, respectively. Furthermore, they considered
a [0/45/−45]s lay-up cantilevered plate, whose deflection was
induced applying a uniform electric field of 394 V mm−1, of
opposite polarity at the upper and lower piezoelectric patches.

Chee (2000), developed a formulation of piezoelectric
plates considering HSDT and layerwise theory and imple-
mented it using biquadratic serendipity finite elements. The
author presents the solution for the T1 displacement (55) from
a model of this piezoelectric plate with a 12 × 7 finite element
mesh and applying an uniform electric potential of 100 V for a
[0/45/−45]s lay-up and 120 V for a [30/30/0]s lay-up.

Lee (2001) also used biquadratic serendipity finite
elements formulated according to the layerwise theory, for both
mechanical and electrical behaviors, and showed numerical T1

results for this cantilevered composite plate modeled with a
16 × 9 finite element mesh. Two situations were analyzed:
application of (a) a uniform electric field of 394 V mm−1 for
a [0/45/ − 45]s lay-up and (b) a uniform electric field of
472 V mm−1 for a [30/30/0]s lay-up.

Faria (2006) also analyzed this problem using a mixed
HSDT-LT formulation and considering a mesh with 12 × 7
biquadratic serendipity finite elements for both [0/45/ − 45]s

and [30/30/0]s lay-ups subjected to uniform electric fields of
100 V and 120 V, respectively. This author also presented only
the results for T1 displacements.

The problem is solved with the present formulation
considering the mesh shown in figure 3, using the PoU
functions only, and isotropic enrichments of first and second
degrees. The material properties are listed in table 4.

The displacement boundary conditions are applied in such
a way that just the PoU and the enrichment functions which
are not null on the Dirichlet boundary are eliminated. Hence,
the contribution to the solution provided by the remaining
enrichment functions is maintained on the clouds at this
boundary. This procedure is easily implemented since the
contours are straight lines and are parallel to the coordinate
axis. The electric boundary conditions are applied imposing
the voltage directly on the top and bottom electric degrees of
freedom related to all elements with piezoelectric layers.

10
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Figure 4. Longitudinal bending of a cantilevered [0/45/−45]s

composite plate subjected to 100 V.

Table 4. Material properties.

Properties Gr/epoxy PZT-4

Elastic properties

E1 (N mm−2) 142.86 × 103 62.97 × 103

E2 (N mm−2) 9.70 × 103 62.97 × 103

E3 (N mm−2) 9.70 × 103 62.97 × 103

G12 (N mm−2) 6.00 × 103 24.20 × 103

G23 (N mm−2) 4.00 × 103 24.20 × 103

G13 (N mm−2) 6.00 × 103 24.20 × 103

ν12 0.30 0.30
ν23 0.37 0.30
ν31 0.30 0.30

Piezoelectric coefficients

e15 (C mm−2) — 14.13 × 10−6

e14 (C mm−2) — 14.13 × 10−6

e31 (C mm−2) — 18.41 × 10−6

e32 (C mm−2) — 18.41 × 10−6

e33 (C mm−2) — 12.51 × 10−6

Dielectric permittivity

χ11 (F mm−1) — 15.30 × 10−10

χ22 (F mm−1) — 15.30 × 10−10

χ33 (F mm−1) — 15.00 × 10−10

Figure 4 shows the longitudinal bending (T1) of the
[0/45/−45]s plate subjected to 100 V and figures 5 and 6 show
the transverse bending (T2) and twisting (T3), respectively,
for the same lay-up and an electric potential of 157.6 V.
Figures 7 and 8 also show the transverse bending and twisting,
respectively, but for the [30/30/0]s plate, subjected to 188.8 V.

Figure 4 shows the convergence behavior of the solution
for both first and second degree enrichments. The result
reported by Faria (2006) is not included in the figure because
the curve would be too close to that of the present formulation.
The differences in the results obtained for the deflection at the
end of plate in the present study and in those of Saravanos
et al (1997) and by Lee (2001) are due to the differences in the
mechanical kinematical hypothesis of each formulation. This
is notable since the results for the present formulation and those
of Chee (2000) differ only slightly, observing that the second

Figure 5. Transverse bending of a cantilevered [0/45/−45]s

composite plate subjected to 157.6 V.

Figure 6. Twisting of a cantilevered [0/45/−45]s composite plate
subjected to 157.6 V.

Figure 7. Transverse bending of a cantilevered [30/30/0]s composite
plate subjected to 188.8 V.

polynomial degree provided by the serendipity finite elements
of Chee (2000) and the first degree enrichment of the present
are similar. Nevertheless, it should be pointed out that the
GFEM formulation allows such a structure to be analyzed with
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Figure 8. Twisting of a cantilevered [30/30/0]s composite plate subjected to 188.8 V.

the minimum amount of elements, according to the distribution
of piezoelectric patches.

For the transverse bending, as shown in figures 5 and 7,
the GFEM formulation shows good approximation capabilities
as the enrichment degree increases. In addition, it is
important to observe that the GFEM mesh requires the least
number of elements and nodes possible for this distribution of
piezoelectric patches.

For the twisting results, as shown in figures 6 and 8, the
GFEM formulation shows more flexibility to reproduce the
deformed shape compared to the results from the FSDT model
of Detwiler et al (1995) and exhibit convergence behavior for
the first and second degree enrichments.

6. Concluding remarks

The mixed layerwise-HSDT formulation for laminated plates
with piezoelectric layers represents an efficient tool for
modeling adaptive plate structures. The third degree
expansion of mechanical displacements with piecewise linear
discretization of the electric potential is a reasonable kinematic
hypothesis for the phenomenon under analysis. The
verification of the respective implementation was conducted
through comparison with the results of several cases reported
in the literature. The GFEM methodology for the enrichment
of subspaces built with a conventional finite element partition
of unity provides good approximation quality even when using
a fixed finite element mesh. As the enrichment processes is
from the partition of unity, through adding especial functions
defined on global coordinates, the enrichment degree may vary
over the connected domain without loss of conformity. This
also leads to the possibility of enriching only some generalized
unknowns or modeling problems with singularities. Such
improvement may be seen for approximation of either primal
or dual unknowns, logically limited by the hypothesis adopted
for the physical modeling. The formulation is complete in
the sense that it consistently considers the static as well as
the dynamic behavior of adaptive plates. The performance in
dynamic modeling will be the subject of a future publication.
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