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Abstract This paper is concerned with an extension of the
generalized finite element method, GFEM, to nonlinear
analysis and to the proposition of a p-adaptive strategy.
The p-adaptivity is considered due to the nodal enrich-
ment scheme of the method. Here, such scheme consists of
multiplying the partition of unity functions by a set of
polynomials. In a first part, the performance of the method
in nonlinear analysis of a reinforced concrete beam with
progressive damage is presented. The adaptive strategy is
then proposed on basis of a control over the approxima-
tion error. Aiming to estimate the approximation error,
the equilibrated element residual method is adapted to the
GFEM and to the nonlinear approach. Then, global and
local error measures are defined. A numerical example is
presented outlining the effectivity index of the error
estimator proposed. Finally, a p-adaptive procedure is
described and its good performance is illustrated by a
numerical example.

Keywords Finite element method, Meshless methods,
Adaptivity, Error estimation, Nonlinear structural analysis

1
Introduction
The generalized finite element method, (GFEM), [1] and
[2], shares several features with the so-called meshless
methods. In fact, the approximation functions used in the

GFEM are associated with nodal points and the enrich-
ment of the approximation spaces can be done at the
nodes in the same fashion as in the meshless hp-Cloud
method, [3]. But, on the other hand, the partition of unity,
[3, 4], used in the GFEM is provided by Lagrangian finite
element shape functions. Therefore this method can be
understood also as a non-conventional form of the finite
element method. Indeed, both interpretations of the GFEM
are valid and give unique insights into the method.

The nodal enrichment feature of the GFEM, allowing to
avoid mesh refinement is indeed very attractive for
nonlinear analysis. The method opens the possibility to
improve accuracy without excessively increasing of the
computational effort. Among the advantages, one can
mention that a mesh refinement may be unnecessary in
problems involving stress concentrations, [5, 6]. Numeri-
cal locking can also be efficiently affronted by the nodal
enrichment. The same feature could be explored in dam-
age or plasticity localization analysis. Moreover, by using
customized enrichment functions the fronts of damage or
plasticity could be accurately reproduced.

On the other hand, the method naturally suggests an
adaptive scheme to provide automatically the nodal
enrichment. Accordingly, as the polynomial functions fit
very well with the GFEM enrichment strategy, a p-refine-
ment can be considered. Therefore, this paper has two
objectives: to extend the GFEM to material nonlinear
analysis due to progressive damage and to propose a
p-adaptive strategy tailored to the nonlinear approach.

Regarding the adaptive procedure, the error measure
used to control the refinement scheme is evaluated by the
element residual method, [7, 8], which is proposed as a
global measure and also as a local indicator associated to
each cloud. One problem resulting from the such treatment
is that the local error problem can result not well posed.
Then, the additional condition necessary to guarantee
uniqueness of the error problem can be achieved by fol-
lowing the residual equilibration scheme described in [9]
and adapted here to the GFEM. In spite of the error issue be
developed along the text by considering the elements of the
clouds, at the end the consistency with GFEM is recovered,
being the adaptive refinement conducted by using nodal
error values. Such nodal values are estimated here by a
weight mean procedure of the element indicators.

The paper content is outlined as follows. In Sect. 2 and
3 the GFEM and its use on elasticity boundary vale
problems are briefly commented. The nonlinear problem
is treated in Sect. 4. A reinforced concrete beam is
presented in Sect. 5 as a motivation for p-adaptivity. The
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error estimator issue is then addressed in Sect. 6. The
implicit element residual method and its use in the GFEM
is detailed in this section. In particular, local error indi-
cators and global error estimators are proposed, followed
by an analysis of the effectivity index. In the Sect. 7 the
p-adaptive scheme for nodal refinement is described. A
numerical example is then shown in Sect. 7.2 to demon-
strate the efficiency of the adaptive proposition. The final
considerations and conclusions are presented in sect. 8.

2
The generalized finite element method
According to [2], the GFEM was proposed independently
by:

– Babuška and coworkers, initially named as special finite
element method, [10], and later as the partition of unity
finite element method, [11, 12];

– Duarte and Oden, as a meshless formulation in the hp-
Cloud method, [13, 14], and later as an hybrid approach
with the FEM, [15].

It must be noted that a similar philosofy is inserted in the
works of Belytshko, [16, 17], named as extended finite
element method (XFEM).

In GFEM, [2], a set of partition of unity (PU) functions
is employed to enforce interelement continuity, creating
conforming approximations which are improved by a
nodal enrichment strategy. This process of constructing
approximation functions is described on what follows.

Let us consider, e.g., a conventional mesh of linear finite
elements, fKegNE

e¼1, defined by N nodes, fxjgN
j¼1, in a domain

X, see Fig. 1a. The generic patch or cloud xj 2 X is obtained
by the union of the finite elements sharing the vertex node xj.
The assemblage of the Lagrangian interpolating functions
belonging to each element and associated with the node xj

compose the functionNj defined over the support cloud xj,

Fig. 1b. As
PN

j¼1 Nj ¼ 1 at each position x in the domain X,

the set of functions fNjgN
j¼1 constitutes a partition of unity.

Let us assign the following set of q linearly independent
functions, stated to each cloud xj as:

Ij ¼deffLj1; Lj2; . . . ; Ljqg ¼deffLjigq
i¼1 with Lj1 ¼ 1 ð1Þ

The generalized finite element shape functions associated
to the node xj result from the enrichment, i.e. the multi-
plication, of the PU functions of the cloud xj by each of
the components of (1):

f/jig
q
i¼1 ¼Nj � fLjigq

i¼1 ð2Þ
The linear combination leading to such shape functions
can be understood by considering the representations
depicted in Fig. 1 for the case of approximations defined in
R2. The enrichment scheme is obtained by multiplying a
PU function (bi-linear) of C0-type, Fig. 1b, and presenting
compact support xj, by the function Lji, Fig. 1c, named in
[1] as a local approximation. The resulting shape function
/ji, Fig. 1d, inherits characteristics of both functions, e.g.,
the compact support of the PU and the approximate
character of the local function.

For instance, the generalized global approximation for
the displacements over X, denoted as ~uuðxÞ, can then be
described as a linear combination of the shape functions
associated to each node:

~uuðxÞ ¼
XN

j¼1

NjðxÞ uj þ
Xqj

i¼2

LjiðxÞbji

( )

) ~uu ¼ UTU

ð3Þ
where uj and bji are nodal parameters respectively
associated with the components Nj and Lji of the shape
functions. The continuity of this function over the entire

Fig. 1. Enrichment scheme of the cloud xj
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domain is granted by the compact support of the PU
(ðNÞjðxÞ ¼ 0 on the boundary of xj). The special func-
tions Lij determine the local character of the resulting
approximation.

3
The Boundary value problem–fundamental equations
Let us consider the linear elasticity boundary value prob-
lem, BVP, defined in the domain X 2 R2 where a reference
system x-y is attached.

Find u such that:
$TrðuÞ þ b ¼ 0 in X
u ¼ ûu on CD

tðuÞ ¼ t̂t on CN

8
<

:
ð4Þ

where uT ¼def
ux uy

� �
is the displacement vector, CD and CN

denote complementary parts of the boundary oX of the
region occupied by the solid in X, where the Dirichlet and
Neumman conditions are defined respectively, r ¼ De is
the stress tensor, e is the strain tensor, D is the constitutive
stiffness tensor, b is the vector of body forces, t ¼ rn, is
the traction vector, ûu and t̂t are the prescribed displace-
ment and traction vectors, n is the unit outward normal to
the boundary oX.

The corresponding variational form of this problem can
be stated as:

Find u 2H1ðXÞ such that:

Bðu; vÞ ¼ lðvÞ 8 v 2H1ðXÞ with u ¼ ûu on CD

ð5Þ
where H1ðXÞ, the Hilbert space of degree 1, is the standard
Sobolev space of square integrable functions whose first
derivatives are square integrable as well, and that is defined
on the domain X, the following variational operators are
defined:

Bðu; vÞ ¼
ZZ

X

eTðvÞrðuÞlz dx dy

lðvÞ ¼
ZZ

X

vTblz dx dyþ
Z

CN

vT t̂tlz ds

vT ¼def
vx vy

� �
is the test function vector, eðvÞ is obtained

by the gradient operation over v, lz is the dimension of
the elastic body in z reference direction (thickness),
considered here as constant.

The Galerkin approximation of (5) corresponds to a
solution belonging to the space of finite dimension ~XX built
by the kinematically admissible GFEM shape functions.
Thus, the Galerkin approximation results from:

Find ~uu 2 ~XX such that: Bð~uu; ~vvÞ ¼ lð~vvÞ 8 ~vv 2 ~XX ð6Þ
where ~uu and ~vv are obtained from the expression (3) as:

~uuðxÞ ¼
XN

j¼1

NjðxÞ ujþ
Xqj

i¼2

LjiðxÞbji

( )

) ~uu¼UTU ð7Þ

~vvðxÞ ¼
XN

j¼1

NjðxÞ vjþ
Xqj

i¼2

LjiðxÞcji

( )

) ~vv ¼UTV ð8Þ

The system of equations resulting from (6) is positive
semi-definite due to the linear dependency of the set of

shape functions. This kind of system can be solved effi-
ciently by the iterative procedure proposed in [2] and [18].

4
Nonlinear analysis
In this work, the nonlinearity is introduced in the BVP by
the material constitutive model. The material nonlinear
response is related to the propagation of microcracks in
concrete and it is modeled on the basis of continuum
damage mechanics. The Mazars’ damage model presently
selected, [19], models the concrete as an elastic medium
subjected to progressive damage. On verifying the con-
stitutive model the approach adopted is nonlocal, [20], in
order to avoid mesh dependence. Accordingly, a
weighted average of the equivalent tensile strains is
composed over a region of influence at each reference
position and then used in the damage criterion. Such a
region is defined by a radius rnl physically associated to the
maximum aggregate size.

The resulting nonlinear structural problem can be
solved using an incremental and iterative scheme. Thus, by
assuming that the solution at the instant t is known, at
t þ Dt the problem to be solved is:

$TrðtþDtuÞ þ tþDtb ¼ 0 in X

tðtþDtuÞ ¼ tþDt t̂t in CN

tþDtu ¼ tþDtûu in CD

ð9Þ

The Galerkin approximation of the variational form for the
problem (9) can then be searched for. In R2, denoting by L
the differential operator matrix and by B the operator
which relates displacement vector U to the strain vector e:

LT ¼def o=ox 0 o=oy
0 o=oy o=ox

� �

B ¼ LUT ð10Þ

the following algorithm is used to obtain the equilibrium
iteratively by the Newton-Raphson method:

For it ¼ 1; 2; . . . ;�iit; . . . ; imax
t

wðit�1Þ ¼ tþDtFext � tþDtF
ðit�1Þ
int

tþDtKðit�1Þ
sec DUðitÞ ¼ wðit�1Þ

tþDtUðitÞ ¼ tþDtUðit�1Þ þ DUðitÞ

ð11Þ

where the superscript it denotes the iteration and DUðitÞ is
the displacement increment. The out-of-balance load
vector is represented by wðit�1Þ, whereas tþDtFext is the
externally applied nodal force vector and tþDtFint is the
equivalent nodal force to the stress distribution. The fol-
lowing initial conditions must be imposed at the beginning
of each time step:

tþDtUð0Þ ¼ tUð
�iitÞ; tþDt Kð0Þsec ¼ tKð

�iitÞ
sec ; tþDt F

ð0Þ
int ¼ tF

ð�iitÞ
int

where �iit denotes an iteration in which the convergence
criterion is verified.

Considering only plane states and adopting the Mazars’
damage model the secant stiffness matrix can be obtained
from:
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tþDtKsec ¼
ZZ

X

BTð1� DÞCBlz dx dy ð12Þ

where C is the initial elastic stiffness tensor and 0 < D < 1
is the scalar variable related to the present deteriorated
local state of the material. The nodal force vectors are
constructed as follows:

tþDtFext ¼
ZZ

X

UtþDtblz dx dyþ
Z

CN

UtþDt t̂tlz ds ð13Þ

tþDtFit

int ¼
ZZ

X

UrðtþDtupÞlz dx dy ð14Þ

The convergence criterion for the iterative procedure is
based on the energy norm increment given by:

kDupkU¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DUðitÞTwðit�1Þ
q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNDF

i¼1

DU
ðitÞ
i wðit�1Þ

i

� �
v
u
u
t

ð15Þ
where NDF denotes the number of degrees of freedom.

5
Reinforced concrete beam problem as a motivation
for p-adaptivity
The structural problem to be considered is a simply
supported reinforced concrete beam of rectangular cross
section depicted in Fig. 2. The loading is composed by two
concentrated forces applied symmetrically with respect to
the middle section. The region between the applied forces
is submitted to an uniform bending then inducing a
diffuse damage distribution.

The adopted values for the Mazars’s model parameters
(AT ;BT ;AC;BC; ed0), the elastic properties for concrete and
steel and the radius rnl for the nonlocal approach are as
follows:

AT ¼ 0:7 BT ¼ 8000 AC ¼ 0:85 BC ¼ 1050

ed0 ¼ 0:00007 Ec ¼ 29200 MPa Es ¼ 196000 MPa

mc ¼ 0:2 ms ¼ 0:3 rnl ¼ 3 cm

It must be noted that the Mazars’s parameters were
identified on the basis of experimental response [21]. A
linear elastic behavior is assumed for steel, the concrete
and reinforcement are assumed to be perfectly adherent.

Two static simulations where performed on the same
structure, one by the conventional FEM and one by GFEM.
The finite element meshes defined in each case are shown
in Fig. 3, being composed by quadrilateral bilinear ele-
ments. Mesh I has 1376 degrees of freedom. On the other
hand, in Mesh II a few elements where used aiming to
emphasize the GFEM enrichment advantage. The set Ij of
independent functions used in the nodal enrichment is
represented as:

Ij ¼ pj1; pj2; pj3; . . . ; pjqjðpÞ

n o
with pj1 ¼ 1 ð16Þ

Presently, the parameter qjðpÞ corresponds to the number
of monomials required to reproduce exactly complete
polynomials of p degree, with respect to the global
coordinate system. This fact guarantees the polynomial
completeness of the approximation, even with meshes of
distorted elements (there is no need to be concerned about
awkward-looking meshes, as long as the elements present
straight sides and, of course, with all interior angles
between 0 an 180�). The monomials are bubble like
functions presenting null values at node xj and are
normalized by a characteristic mesh dimension defined as
the greatest linear distance among nodes composing the
cloud xj. The assumptions used in the simulation are as
follows:

boundary conditions: prescribed forces and displace-
ment restrictions were imposed in a distributed form over
small elements, as indicated in Fig. 3;

reinforcement: in both meshes the steel bars were
considered directly in the element formulation [22];

numerical integration: the Gauss-Legendre Quadrature
rule was employed. In Mesh I, 2� 2 Gauss points were
used, whereas 4� 4 points were used for Mesh II near at
the constraints and at the distributed load. For the rest of
elements in Mesh II, 6� 6 Gauss points were used in order
to properly capture the damage evolution;

non-local analysis: the adopted radius is compatible
with concrete analysis and avoids mesh dependence;

tolerance and load steps: in order to control the
convergence of the iterative procedure, a tolerance was
considered to the incremental energy norm. A constant
value of 0:5% related to the first elastic step was adopted
aiming to keep the same stop criterion for all the iterative
procedure. Due to the strong nonlinearity observed from
the loading level of 12 kN, a proper loading path was
defined. At the beginning, four load steps were applied,
each of them representing 9% of the total loading value

Fig. 2. Reinforced concrete beam–geome-
try and reinforcement distribution–
dimensions in cm
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prescribed. Then, one step of 4% was applied, followed by
26 steps of 1% and 17 steps of 2% of the total loading.
This peculiar form of applying the loading is due to the
high nonlinearity observed after 12 kN;

stiffness matrix assemblage: in order to preserve sta-
bility of the numerical response, in the course of residual
elimination, the stiffness was kept constant once a damage
level (D ¼ 0:87) was surpassed;

The nodal enrichment was not applied uniformly.
Higher polynomial degrees were used at the nodes where
the damage was highest. The final distribution for the
polynomial degrees attached to the nodes is indicated in
Fig. 3.

Figure 4 illustrates the confront between experimental
measurements, [21], and numerical results. The curves
describe the relationship between the applied load and
displacement at a point in the middle section. Both
simulations, conducted with conventional FEM and GFEM,
are coincident and give results close to the experimental
ones. The simulation was stopped at the loading level
30 kN due to the fact that plasticity of the steel was not
considered.

Figures 5a and b present the damage distribution
obtained in the simulations at a loading level of
F ¼ 14:4 kN. Close similarity in the damage distribution
for the FEM and GFEM analysis can be observed. The FEM
results are more localized, but complementary simulations
with GFEM by imposing higher polynomial degrees also
resulted in the same localized shape. On the basis of the
promising results, an investigation about the possibility for
an automatically nodal enrichment naturally appears.
Accordingly, instead of fixing ‘a priori’ the polynomial
degrees, a control over the approximation error could be
used to drive the enrichment. This idea is developed in the
following.

Fig. 4. Static analysis

Fig. 5. Damage distribution

Fig. 3. Boundary conditions and adopted dis-
cretization (NDF = number of degrees of freedom,
a ¼ 0:008 333 cm)
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6
Error measure
A p-adaptive procedure, tailored to the GFEM approach,
needs a nodal error indicator. Here, this is obtained by
considering such measure as an average value of the
approximation error estimated on the boundaries and in
the interior of the elements that share each vertex node. As
a consequence, the contribution of the enrichment func-
tions of each cloud is evaluated by the error indicator of
the elements contained by the associated cloud. Aiming to
determine the error measure of the elements it was
adopted the element residual method (ERM), following the
formulation presented in [7] and extended in [23, 24] to
take into account the nonlinear aspects of the problem.

Accordingly, the space of approximating polynomial
functions is preliminarily stated at the element level, being
represented by XpðKÞ ¼ vp 2H1; vpjK 2 Pp;

�
K 2 Xg,

where vpjK refers to the restriction of the function vp to
the element K 2 X and Pp is the complete polynomial
space of maximum degree p.

We denote the Galerkin’s approximation of the problem
(9) obtained at the load step t þ Dt by tþDtup. The
respective error of approximation is defined as:

tþDtep ¼ tþDtu� tþDtup with tþDtep 2H1 ð17Þ
One important aspect is that the nonlinear material
behaviour of the medium implies that
rðtþDtuÞ � rðtþDtupÞ 6¼ rðtþDtepÞ, thus increasing the
difficulties of the error analysis. One way to overcome this
problem consists in assuming a continuous stiffness var-
iation with the numerical refinement. Then the following
relation can be used:

rðtþDtuÞ � rðtþDtupÞ �
or

oe

�
�
�
�

tþDtup

e ðtþDtu� tþDtupÞ
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

tþDtep

ð18Þ
where orðuÞ=oejtþDtup

stands for the local stiffness

associated to the solution tþDtup.
Replacing then (17) and (18) into (9) a new BVP results,
now leading to an estimate tþDte�p to the discretization
error tþDtep:

$T or

oe

�
�
�
�

tþDtup

eðtþDte�pÞ
" #

þ rXðtþDtupÞ ¼ 0 in X

tþDte�p ¼ 0 in CD

or

oe

�
�
�
�

tþDtup

eðtþDte�pÞ
" #

n ¼ rCðtþDtupÞ in CN

ð19Þ

where the volume and boundary residual functions are
respectively given by:

rXðtþDtupÞ¼def
$TrðtþDtupÞ þ tþDtb in X

rCðtþDtupÞ¼def tþDt t̂t� tðtþDtupÞ in CN

ð20Þ

Here, it is assumed that the essential boundary conditions
are exactly satisfied.

Due to the linearization imposed by (18), the quality of
the error estimation becomes strongly dependent on the
closeness of the functions tþDtu and tþDtup. Such a con-
dition can be met by providing a sufficiently small load
step.

The problem (19) can now be locally formulated in each
element aiming to achieve local measures of the error.
However, a new natural boundary condition must be
imposed at the edges between the element K and the
neighboring elements, (oK n oX). This condition is re-
lated to the jump in the traction vectors between adjacent
elements. Moreover, as the true traction is unknown on
oK n oX, it is assumed that it can be estimated by the
average of the approximate tractions htðtþDtupÞim evalu-
ated by taking the values defined at K and its neighboring
elements. Therefore the new boundary condition can be
given by:

or

oe

�
�
�
�

tþDtup

eðtþDte�pÞ
" #

n ¼ htðtþDtupÞim

� tðtþDtupÞ on oK n oX ð21Þ

Now, the weak solution can be searched for. In [7], the
Galerkin approximate form of a linear error estimator
problem is accomplished by taking the bubble-like func-
tion space. Here, an analogous space can be built by using
the set of shape functions of the GFEM. In this case, the
local character of each function is acquired by considering
its respective compact support, following the concept
illustrated in Fig. 1. Taking the previous considerations
into account, the bubble-like function space, named X0

pþ1,
can be defined by using the GFEM shape functions as:

X0
pþ1ðKÞ ¼ v0

pþ1 2 Xpþ1ðKÞ; Ppðv0
pþ1Þ ¼ 0;

n

v0
pþ1 ¼ 0 on oK \ CD

o
ð22Þ

where Pp : HrðKÞ ! XpðKÞ is the local interpolation
operator and r is defined according to [7]. Presently,
instead of HrðKÞ, the polynomial space Xpþ1ðKÞ �Hr

ðKÞ is used, as it is assumed that the most important part
of the error can be represented by the monomial terms one
degree higher than those of the approximate solution
space XpðKÞ of up. This assumption produces the space
X0

pþ1ðKÞ (the kernel of the operator Pp) spanned by the
functions v0

pþ1 that belong to the space Xpþ1ðKÞ and
vanish on the boundary CD. Summarizing, what is being
considering is the projection of the error onto the space

X0
pþ1ðKÞ. Such space can be generated, in the case of the

GFEM, by the shape functions (2) as it will be described on
what follows.

A new boundary value problem, for each element K,
can now be written in the variational form as:

Find tþDt~eep 2 X0
pþ1ðKÞ such that:

B
tg
Kð ~tþDt~eetþDt~eep; v0

pþ1Þ ¼LKðv0
pþ1Þ 8 v0

pþ1 2 X0
pþ1ðKÞ

ð23Þ
where
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B
tg
K¼

def
ZZ

K

eTðv0
pþ1ÞrtgðtþDt~eepÞlz dx dy ð24Þ

LKðv0
pþ1Þ ¼

def
ZZ

K

ðv0
pþ1Þ

TðtþDtbÞlz dx dy

�BKðtþDtup; v0
pþ1Þ

þ
Z

oK\CN

ðv0
pþ1Þ

TðtþDt t̂tÞlz ds

þ
Z

oKnoX

ðv0
pþ1Þ

T tðtþDtupÞ
D E

m
lz ds ð25Þ

and

rtgðtþDt~eepÞ ¼
orðupÞ

oe

�
�
�
�

tþDtup

eðtþDt~eepÞ ð26Þ

In the above formulation, tþDt~eep is the Galerkin approxi-
mation of the error function tþDte�p, actually defining the
error indicator function and v0

pþ1 is the test function of the
problem. Both of them are described by the GFEM
functions as:

tþDt~eep ¼ ðU0
pþ1Þ

T tþDtI v0
pþ1 ¼ ðU0

pþ1Þ
TV0 ð27Þ

where the vector U0
pþ1 is built by the set of shape functions

of the expression (2), after eliminating from the set f/pþ1
ji g

the terms of the subset f/p
jig. Here the functions Lij are

defined by the set of monomials required to reproduce
exactly complete polynomials of pþ 1 degree, in the case
of the set f/pþ1

ji g, and p in the case of the set f/p
jig. tþDtI

and V0 are nodal parameter vectors associated to each
shape function of the set X0

pþ1ðKÞ. The vector tþDtI is the
vector of error indicators.

The above problem results in the following system of
equations, to each element K:

tþDtKK
er

tþDtIK ¼ tþDtRK ð28Þ
where IK is the vector of error indicators and one
employs:

– the stiffness matrix (in which Ctg stands for the tangent
modulus expression of the Mazars’ constitutive damage
model, [23]) given by:

tþDtKK
er ¼

ZZ

K

ðB0
pþ1Þ

T tþDtCtgB0
pþ1lz dx dy ; ð29Þ

with

B0
pþ1 ¼ LðU0

pþ1Þ
T ð30Þ

– the generalized vector of the residual forces:

tþDtRK ¼
ZZ

K

ðU0
pþ1Þ

TtþDtblz dx dy

þ
Z

oK

ðU0
pþ1Þ

T tþDthKlz ds

þ
Z

oK\CN

ðU0
pþ1Þ

TtþDt t̂tlz ds

þ
Z

oKnoX

ðU0
pþ1Þ

T tðtþDtupÞ

 �

m
lz ds

�
Z Z

K

eTðU0
pþ1ÞrðU0

pþ1Þlz dxdy tþDtU ð31Þ

At this point, a comment regarding the introduction of the
vector tþDthK appearing in (31) should be given. The BVP
(19), corresponds to a Neumman problem as it is formu-
lated at the element level and involving only natural
boundary conditions. Except for the elements intersecting
the boundary oX this formulation is somewhat unsatis-
factory due to the possible lack of continuity. As a con-
sequence the problem to be approximated may not have
an unique solution. In order to guarantee the uniqueness
of the solution, one strong requirement is that the

boundary data rC, tðtþDtupÞ and tðtþDtupÞ
D E

m
be in equi-

librium with the interior residual rX. This is accomplished,
for instance by following the strategy proposed in [9].
Such strategy consists of introducing a new traction dis-
tribution hðxÞ along the boundary of each element K in
order to equilibrate the original set of boundary data. This
traction distribution is defined such that, at each element

K, the corresponding set of vectors tþDtRK
j , associated to

the nodes j 2K, produces null force and moment resul-

tants. To achieve this condition only the components of
tþDtRK

j related to the PU functions are necessary. In fact,
the other components, associated to the enrichment
functions, are self-equilibrated and take no part in this
procedure. The new boundary data obtained leads, at the
end of the step t þ Dt, to the vector tþDthK. More details
about this issue, specially related to the GFEM approach
can be found in [23, 24].

Once the function tþDt~eep is obtained for each element,

local values of the energy norm ~EEK¼defktþDt~eepkUðKÞ ¼RR
K eTðtþDt~eepÞrðtþDt~eepÞlz dx dy

h i1=2
can be estimated and

the error indicators by element can be defined. The local
measure consistent with GFEM can then be formulated by
defining the error indicator at each cloud as:

~EExj
¼def
X

K2xj

VKktþDt~eepkUðKÞ=Vxj
ð32Þ

where Vxj ¼
P

K2xj
VK and VK are the volumes of the

cloud and the element respectively. In fact, the expression
(32) corresponds to the average of the values found at each
element that shares the vertex node of the cloud, weighted
by the respective volume.

Finally, the global measure that represents the estimated
error can be defined as the sum of the local values
evaluated at each element K:

ktþDt~eepkU ¼
def

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

K2X

~EE2
K

r
ð33Þ
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6.1
Effectivity index of the global error measure:
a numerical example
In order to look at the quality of the adopted error
measure as an estimation of the global error, tþDtep, an
example illustrated in Fig. 6a is solved. The example con-
sists of a concrete plate under plane stress conditions and
subjected to compression body forces (b ¼ 1000 kN/m3).
The natural boundary condition is represented by the
distributed force (q ¼ 450 kN/m2) along side AB. The
material behaviour is simulated by the Mazars’ Damage
model with local approach (rnl ¼ 0), being the values for
the parameters adopted as: AT ¼ 0:7, BT ¼ 8000,
AC ¼ 0:85, BC ¼ 1050 and ed0 ¼ 0:000067. The exact ref-
erence solution is assumed to be the numerical solution
obtained by a discretization of 2400 bi-linear elements.
Such conclusion was stated after several numerical tests
that show a convergence of the results for the one found
with this discretization. The global error is then estimated
using the mesh depicted in Fig. 6b and composed of
bi-linear elements without considering polynomial
enrichment, as the aim is only to verify the effectivity of
the global measure.

At the end of each load step, the error is estimated by
the measure (33) and compared to the following inner
product:

tþDtðrer; eerÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZZ

X

½rðtþDtuÞ � rðtþDtupÞ�½eðtþDtu�tþDt upÞ�lz dx dy

v
u
u
t

ð34Þ

where u stands for the adopted exact solution. In esti-
mating the error at each element K, the space X0

2ðKÞ
¼ v0

2 2 X2ðKÞ �H1; Ppðv0
2Þ ¼ 0; v0

2 ¼ 0 in CD

� �
is

employed.
The global effectivity index h is given by the ratio

between the two measures (33) and (34). Such an index
results always close to the unity for each load step, as it is
shown in Fig. 7. As a conclusion, the norm (33) estimates
the error measure very well, at least for this kind of
problem.

7
A proposition for p-adaptivity
A small value for the error measure defined in the Sec. 6
must not be confused with a guarantee for a precise

description of the structural behaviour along the loading
history, since the errors due to integration processes are
not considered here. The aim of the adaptive refinement
proposed here, and summarized in the algorithm 1, is to
control only the error of the approximation at the end of
each load step, i.e. ktþDt~eepkU, by keeping it at a sufficiently
small value.

As a part of the strategy proposed here, after equilib-
rium be verified at the load step t þ Dt, the measure
ktþDt~eepkU is computed for each cloud. The option to
clouds is justified by its consistence with GFEM treatment.
This option is summarized in the algorithm 2. Accord-
ingly, a new loading step can be applied only if the
maximum error comparing all the clouds is lower than a
certain tolerance TOLer. A refinement of the PU functions
should be conducted based on the cloud error indicators.
Once a new enriched approximation is defined, the
present load step must be repeated. But, in order to do
that, the results obtained for the previous load step must
be made compatible with the set of additional degrees of
freedom introduced by the new approximation and with
the necessary quadrature order of integration, as well.
The sequence of refinement, data transference and
re-equilibrium analysis is repeated until the tolerance
is met. The strategy adopted for such transference is
described in the next section.

7.1
On the transference of variables
By conducting a nonlinear analysis by GFEM and sup-
posing that at the end of some load step a refinement
action is indicated by the adaptive procedure, the
number of nodal degrees of freedom and also the

Fig. 7. Global effectivity index at the end of each load step

Fig. 6. Concrete plate – E ¼ 29 200 MPa, m ¼ 0:2
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number of integration points increases. In particular, the
change on the number of integration points aims to
guarantee precision of the integration based on the
Gaussian Quadrature. Prior proceeding with the analysis
by reapplying the same load step, a consistent procedure
for transference of information from the old to the new
set of variables becomes necessary. In GFEM the trans-
ference of information attached to the nodal parameters
does not require any special strategy, as the improved

approximation contains the old set of degrees of free-
dom. To illustrate this let’s consider a cloud xj where
the sets of approximation functions and nodal parame-
ters are represented as follows:

ðUpÞTj ¼
Nj 0 pj2Nj 0 ��� 0 pjqjðpÞNj 0
0 Nj 0 pj2Nj 0 ��� 0 pjqjðpÞNj

� �

ð35Þ

UT ¼ ux
j u

y
j bx

j2 b
y
j2 � � � bx

jqj
b

y
jqj

h i
ð36Þ

After refinement leading to an approximation of order
pþ 1 the matrix of basis functions assumes the form:

The new set of functions contains the old one as can be
noted. As a consequence the expanded vector of nodal
parameters is built by direct transference of the old one
and by attribution of null values to the added parameters.

Algorithm 1. p-adaptive algorithm – nonlinear analysis

Read the data for the geometry, loading and approximation
Read t;TOLer;TOLU; pmax; ip

t ¼ 1, Dt ¼ 1
{Load step application}

repeat
{Adaptive procedure}

loop
Assemble tþDtDF;tþDt Fext;

tþDt K
ð0Þ
sec

Solve the system tþDtK
ð0Þ
secDUð0Þ ¼tþDt DF

Update tþDtUð0Þ

Calculate the damage
Assemble tþDtF

ð0Þ
int

Calculate wð0Þ ¼ tþDtFext � tþDtF
ð0Þ
int

it ¼ 0
{Newton-Raphson Iterative Procedure}

repeat
it ¼ it þ 1
Assemble tþDtK

ðitÞ
sec

Solve the system tþDtK
ðitÞ
sec DUðitÞ ¼ wðitÞ

Update tþDtUðitÞ

Calculate the damage
Assemble tþDt F

ðitÞ
int

Calculate wðitÞ ¼ tþDtFext � tþDtF
ðitÞ
int

until ðDUðitÞÞTwðit�1Þ < TOLU

Algorithm 2 {Error evaluation and refinement if necessary}
Directly transfer the nodal parameters to the new vector tUðitÞ

Transfer the damage and associated parameters to the new integration points
Algorithm 3 {Proceed with a new equilibration of the load step t}

endloop
t ¼ t þ Dt

until the last load step be reached

newðUpÞTj ¼
Nj 0 pj2Nj 0 � � � 0 pjqjðpÞNj 0

0 Nj 0 pj2Nj 0 � � � 0 pjqjðpÞNj

"

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ðUpÞTj

pjqjðpÞþ1Nj 0 � � � 0 pjqjðpþ1ÞNj 0

0 pjqjðpÞþ1Nj 0 � � � 0 pjqjðpþ1ÞNj

#

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additional functions
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Related to the set of sample points for integration by Gauss
Quadrature the strategy to be adopted for variable trans-

ference requires a certain criterion. In fact, some of the
variables attached to that points, as the damage values,
have direct influence over the nonlinear structural
behaviour. The strategy suggested here is detailed in [23,
25] and can be summarized as follows. The old set of
integration points can be used to build a function
describing the damage distribution over each cloud. It is a
simple procedure of fitting a function to a set of variables
associated to a set of positions and can be performed, for
example, by adopting the least square method for each
cloud separately. As a consequence of such local proce-
dure, the the variable damage at a single element has
several descriptions, each one associated to one of the
nodes of such element. An unique and global description
can be achieved by multiplying the functions of each cloud
by the corresponding PU function and summing the
resulting product. Essentially, the PU concept is used just
like in the definition of the GFEM approximation to
impose the continuity over local descriptions of the
variable damage. From this description the values of the
variables attached to the new Gauss points can be
obtained. However, the equilibrium verified with the old
set of variables can be violated by assuming the new one.
Thus, after the variables transference, the equilibrium
analysis to the step t must be restarted as indicated by
algorithm 3. In this way the displacement field results
become compatible with the new nodal parameters and
quadrature order.

7.2
Numerical Example
The problem illustrated by the Fig. 8a was originally
proposed in [19] and corresponds to a notched concrete
plate of thickness lz ¼ 12 cm, subjected to two equal and
opposite horizontal forces F. The presence of the notch
induces the formation and growth of a damage zone
around and ahead its extremity.

The numerical analysis was performed under plane
strain conditions, considering monotonical loading and
limited to the onset and growth of damage stages up to the
maximum load capacity of the structure. The nonlocal
approach was employed with the radius rnl ¼ 1:5 cm. The
parameters of the Mazars’ damage model related to the
kind of concrete considered are: AT ¼ 0:8, BT ¼ 20 000,
AC ¼ 1:4, BC ¼ 1850 and ed0 ¼ 0:000 123.

The discretization and boundary conditions adopted
are depicted in the Fig. 9. The distribution of the poly-
nomial enrichment was determined by the adaptive algo-
rithm proposed in [7] and fitted to the nonlinear case in
[23]. The error indicator associated with each cloud was
employed. The maximum value computed among all
clouds was compared to the other ones indicating which
cloud should have its local approximation improved.
A polynomial enrichment was then performed, i.e., the
polynomial degree of the present approximation was

newUT¼ ux
j u

y
j bx

j2 b
y
j2 ��� bx

jqðpÞj b
y
jqðpÞj

h

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
UT

bx
jqðpÞjþ1¼0b

y
jqðpÞjþ1¼0 ��� bx

jqðpjþ1Þ¼0b
y
jqðpjþ1Þ¼0

i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
addedparameters

ð37Þ

Algorithm 2. Algorithm that evaluates the error and invoques the
p-refinement – load step t þ Dt

for K ¼ 1 to NEL do
Assemble tþDtKK

er ;
tþDt hKetþDtRK

equi

Solve the system tþDtKK
er

tþDt
IK ¼ tþDtRK

equi

Calculate tþDt ~EEK ¼ ktþDt~eepkUðKÞ
ktþDt~eepk2

U ¼ k
tþDt ~eepk2

U þ tþDt ~EEK

� 2

end for
ktþDt~eepkU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ktþDt~eepkU
q

~EE% ¼ ktþDt~eepkU=k
tþDtupkU

if ~EE% 	 TOLer then
Stop the analysis {Adaptive procedure convergence}

else
nt ¼ 0
iend ¼ 0
repeat

for xj ¼ 1 to N do
Calculate ~EExj

¼
P

K 2 xjVK
~EEK=Vxj

end for
~EEmax ¼ max ~EExj

;xj ¼ 1; . . . ;N
� 

for xj ¼ 1 to N do
if ~EExj


 t~EEmax then
if pxj

< pmax then
pxj
¼ pxj

þ ip {Enrichment of the cloud xj}
nt ¼ 1

else
iend ¼ iend þ 1

end if
end if

end for
if iend ¼ N then

Stop the analysis {The TOLer cannot be reached}
else if nt ¼ 0 then

update t to 90% of its value
end if

until nt ¼ 1
end if

Algorithm 3. New equilibration of the load step t

Calculate the damage
Assemble tF

ð0Þ
int , tF

ð0Þ
ext

Calculate wð0Þ ¼ tFext � tF
ð0Þ
int

it ¼ 0
{Newton-Raphson iterative procedure}

repeat
it ¼ it þ 1
Assemble tK

ðitÞ
sec

Solve the system tK
ðitÞ
sec DUðitÞ ¼ wðitÞ

Update tUðitÞ

Calculate the damage
Assemble tF

ðitÞ
int

Calculate wðitÞ ¼ tFext � tF
ðitÞ
int

until DUðitÞTwðit�1Þ < TOLU
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increased by one degree. Such adaptive process was
introduced into the incremental solution procedure of the
nonlinear problem, being verified at the end of each load
step. Additional details about the above concisely de-
scribed strategy as well as the consistent procedure of
variables transference can be found in [23, 25].

The tolerance of the Newton-Raphson iterative
process was assumed to be 1% of the energy norm of the
first elastic step. The force F ¼ 18:5 kN was applied in 10
load steps (2 of 5 kN, 2 of 2 kN, 3 of 1 kN and 3 of
0.5 kN).

In the expression (29), the tangent constitutive relation
was replaced by the secant one. This procedure was nec-
essary in order to keep the matrix tþDtKK

er positive-defi-
nite, thus assuring the applicability of the error measure
described in the Sect. 6 even in presence of damage. As a

consequence, this error measure cannot be rigorously
considered as a true error estimator. Nevertheless it can be
employed in the adaptive procedure as error indicator
guiding the nodal enrichment, as one can be observe by
the results that follow. In the adaptive algorithm of [23],
the parameters TOLerror ¼ 15%, t ¼ 0:5 and pmax ¼ 8 were
selected.

The numerical integration was performed by employing
4� 4 Gauss-Lobatto points at the great majority of the
elements, except those close to the notch where the 15� 15
rule was used. Such procedure was adopted due to the
high polynomial degree expected for the nodes belonging
to that region and also to better simulate the damage
evolution in it.

In Fig. 8b, the experimental [19] and numerical curves
representing the global response in terms of the force F

Fig. 8. Notched concrete plate –
E ¼ 30 000 MPa and m ¼ 0:2–
measures in mm

Fig. 9. Discretization defined
by the adaptive algorithm
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and notch aperture d are plotted. The adaptive process was
characterized by two refinement stages. The first stage was
trigged at the first elastic step leading to the discretization
shown in Fig. 9a after a sequence of five iterations of the
adaptive enrichment. Such discretization was again mod-
ified at the load step 7, when two more iterations were
done to accomplished the final nodal enrichment depicted
in the Fig. 9b.

Finally, an important issue was not considered here –
the possibility of unrefining or even of unenriching the
approximation in the clouds where the error indicator
becomes much smaller than the average error looked for
(in the sense of equally distributing of the error providing
the optimal approximation). This fact was not observed in
the present problem, but should be considered in a general
implementation if the aiming is to propose an efficient
adaptive procedure. Indeed, the p-unenrichment of the
clouds is very straightforward as long as no restriction
over the approximation has been imposed while
performing the p-refining. On the other hand, the
h-unrefining demands the introduction of a special
strategy to treat this kind of problem. Even so, the using of
the PU concept allows performing this task without
penalizing the efficiency of the GFEM, [18, 26].

8
Final considerations
The fundamental feature of nodal enrichment presented
by the GFEM, aiming to avoid mesh refinement, is very
attractive for nonlinear analysis. Here this feature was
explored by using this method in material nonlinear
problems induced by progressive damage. In spite of the
good response obtained by exploring the possibilities of
using a coarse mesh and prefixing the nodal enrichment,
the method naturally induces an adaptive strategy for
p-refinement. The element residual method has been
adapted in order to generate an error indicator. The
residual element method fits very well with the nodal
enrichment strategy of the GFEM, not only due to the
very direct way of building the approximation space Xpþ1

but also by considering the manner in which the p-
refinement is performed. The error indicator resulting
from the adopted global error measure resulted in a good
effectivity index, according to [23, 24], then motivating
their employment as a guide in the p-adaptive procedure.
The process suggested, based on the equidistribution of
error indicators associated to the nodes, was illustrated by
a final example.

Despite the good results obtained, the adaptive proce-
dure deserves a valuation of the processing time, or even
better, a floating point operations analysis, which was not
conduct here. In fact, due to the sequence of refinement,
data transference and re-equilibrium analysis required to
complete the proposed procedure, the time of processing
can become very long without an equivalent compensation
on the accuracy improvement.
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