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SUMMARY

This paper addresses the issue of a p-adaptive version of the generalized finite element method
(GFEM). The technique adopted here is the equilibrated element residual method, but presented under
the GFEM approach, i.e., by taking into account the typical nodal enrichment scheme of the method.
Such scheme consists of multiplying the partition of unity functions by a set of enrichment functions.
These functions, in the case of the element residual method are monomials, and can be used to build
the polynomial space, one degree higher than the one of the solution, in which the error functions
is approximated. Global and local measures are defined and used as error estimator and indicators,
respectively. The error indicators, calculated on the element patches that surrounds each node, are
used to control a refinement procedure. Numerical examples in plane elasticity are presented, outlining
in particular the effectivity index of the error estimator proposed. Finally, the p-adaptive procedure is
described and its good performance is illustrated by the last numerical example. Copyright � 2004
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The generalized finite element method (GFEM) [1, 2], shares several features with the so-called
meshless methods. In fact, the approximation functions used in the GFEM are associated with
nodal points and the enrichment of the approximation spaces can be done at the nodes in
the same fashion as in the meshless hp-cloud method [3]. On the other hand, the partition
of unity [3, 4], used in the GFEM is provided by finite element shape functions. Therefore,
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this method can also be understood as a non-conventional form of the finite element method.
Incidentally, each cloud, i.e. the nodal region of influence, is built by a set of finite elements
which surrounds each node as detailed in Reference [5]. Indeed, both interpretations of the
GFEM are valid and give unique insights into the method.

The characteristic of nodal enrichment of the GFEM suggests an adaptive scheme to provide
an automatic control. Moreover, as the polynomial functions fit very well with the GFEM
enrichment strategy, a p-refinement can be taken into account. Therefore, the main objective
of this paper is to present a p-adaptive strategy for the GFEM. The error measure used as an
indicator to control the refinement scheme is evaluated by the element residual method, [6, 7].
Similarly, a global measure and also a local one associated with each element are proposed.
These measures are found after solving a local Neumman boundary problem with residuals as
data for each finite element. However, the local problems to be solved may not have a unique
solution. The additional conditions necessary to guarantee uniqueness of the error problem can
be achieved by following the residual equilibration scheme described in Reference [8] and
adapted here to the GFEM. In spite of the error issue to be treated by elements, in coherence
with GFEM the adaptive refinement must be conducted by nodal error values. Such nodal
values are estimated here by a weighted average procedure of the element indicators.

The paper content is outlined on what follows. In Sections 2 and 3 the GFEM and its use
in elasticity boundary value problems are briefly commented. Then a numerical application
is presented in Section 4. The error estimator issue is addressed in Section 5. The implicit
element residual method and its use in the GFEM is detailed in Section 5.1. In particular,
local and global error estimators are proposed in Section 5.2 and an equilibrium strategy to
the residual is presented in Section 5.3. Section 6 is devoted to the validation of the proposed
estimators by controlling the effectivity indices computed in some classical elasticity problems.
In Section 7 the p-adaptive scheme for nodal refinement is described. A numerical example is
then shown in Section 8 to verify the efficiency of the adaptive proposition. Final considerations
and conclusions are presented in Section 9.

2. THE GENERALIZED FINITE ELEMENT METHOD

According to Reference [2], the GFEM was proposed independently by:

• Babuška and coworkers, initially named as special finite element method [9], and later as
the partition of unity finite element method [10, 11].

• Duarte and Oden, as a meshless formulation in the hp-cloud method [12, 13], and later
as an hybrid approach with the FEM [14].

A similar philosophy is inserted in the works of Belytschko [15, 16], for discontinuous
solutions and is called extended finite element method (XFEM).

In the GFEM [2], a set of partition of unity (PU) functions is employed to enforce interele-
ment continuity, creating conforming approximations which are improved by a nodal enrichment
strategy. This process of constructing approximation functions is described on what follows.

Let us consider, e.g. a conventional linear finite elements mesh, {Ke}NE
e=1 (being NE the

number of elementos Ke), defined by N nodes, {xj }Nj=1, in a domain �, see Figure 1(a). The
generic patch or cloud �j ∈ � is obtained by the union of finite elements sharing the vertex
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Figure 1. Enrichment scheme of the cloud �j : (a) cloud �j = {Ke |Ke ⊃ xj }; (b) partition of unity
function Nj ; (c) local approximation function Lji ; and (d) enriched shape function �ji = Nj × Lji .

node xj . The assemblage of the Lagrangian interpolating functions belonging to each element
and associated with node xj composes the function Nj defined over the support cloud �j . As∑N

j=1 Nj = 1 at every point x in the domain �, the set of functions {N}Nj=1 constitutes a
partition of unity. Let us denote the following set of q linearly independent functions, defined
at each cloud �j as

Ij
def= {Lj1(x), Lj2(x), . . . , Ljq(x)} def= {Lji(x)}qi=1 with Lj1(x) = 1 (1)

The generalized finite element shape functions associated with node xj result from the enrich-
ment, i. e. the multiplication, of the PU functions of the cloud �j by each of the components
of (1):

{�ji}qi=1 = Nj (x) × {Lji(x)}qi=1 (2)

The linear combination leading to such shape functions can be understood by considering the
representation depicted in Figure 1 for the case of approximations defined in R2. The enrichment
scheme is obtained by multiplying a PU function (bi-linear) of C0-type, Figure 1(b), and with
compact support �j , by the function Lji(x), Figure 1(c), named in Reference [1] as a local
approximation. The resulting shape function �ji(x), Figure 1(d), inherits characteristics of both
functions, e.g. the compact support of the PU and the approximate character of the local
function.
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For instance, the generalized global approximation for the displacements, denoted as ũ(x),
can then be described as a linear combination of the shape functions associated with each
node:

ũ(x) =
N∑

j=1
Nj (x)

{
uj +

q∑
i=1

Lji(x)bji

}
⇒ ũ = �TU (3)

where uj and bji are nodal parameters associated with the components Nj (x) and Nj (x)·Lji(x)

of the shape functions, respectively. The continuity of this function is granted by the compact
support of the PU (Nj (x) = 0 on the boundary of �j ), which also allows the pasting together
of different local functions (Lji(x)) specially chosen to each cloud �j .

3. THE MODEL BOUNDARY VALUE PROBLEM - FUNDAMENTAL EQUATIONS

Let us consider the linear elasticity boundary value problem, BVP, defined in the domain
� ∈ R2 with a reference system x-y.

Find u such that:




∇T�(u) + b = 0 in �

u = û on �D

t(u) = t̂ on �N

(4)

where

• uT def= [ux uy] is the displacement vector;
• �D and �N denote complementary parts of the boundary �� where the Dirichlet and

Neumman conditions are defined, respectively;
• � = D� is the stress tensor;
• � is the strain tensor;
• D is the constitutive rigidity tensor;
• b is the vector of body forces;
• t = �n, is the traction vector;
• û and t̂ are prescribed displacement and traction vectors;
• n is the unit normal on the boundary ��.

Let U be the set of kinematically admissible functions and V denotes the space of admissible
variations. Then, the corresponding variational form of this problem can be stated as

Find u ∈ U such that: B(u, v) = F(v) ∀v ∈ V (5)

where

• U and V ⊂ H1(�).
• H1(�), the Hilbert space of degree 1, is the standard Sobolev space of square integrable

functions whose first derivatives are square integrable as well, and that is defined on the
domain �;
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• the following variational operators are defined:

B(u, v) =
∫ ∫

�
�T(v)�(u)lz dx dy

F(v) =
∫ ∫

�
vTblz dx dy +

∫
�N

vT t̂lz ds

• vT def= [vx vy] is the test function vector;
• �(v) is obtained by the symmetric part of the gradient operation over v;
• lz is the dimension of the elastic body in z direction (thickness), assumed here as constant

by simplification.

Let now Uh ⊂ U be the subspace spanned by a set of kinematically admissible GFEM
functions and Vh be the respective subspace of V. Thus, the Galerkin approximation of (5)
results from:

Find ũ ∈ Uh such that: B(ũ, ṽ) = F(ṽ) ∀ṽ ∈ Vh (6)

where ũ and ṽ are obtained from expression (3) as

ũ(x) =
N∑

j=1
Nj (x)

{
uj +

qj∑
i=1

Lji(x)bji

}
⇒ ũ = �TU (7)

ṽ(x) =
N∑

j=1
Nj (x)

{
vj +

qj∑
i=1

Lji(x)cji

}
⇒ ṽ = �TV (8)

It must be outlined that the system of equations resulting from (6) can be positive semi-
definite if the set of shape functions is linear dependent. This kind of system can be solved
efficiently by the iterative procedure described in References [2, 17].

4. NUMERICAL EXAMPLE

Aiming to illustrate the enrichment strategy of the GFEM, the problem of a L-shaped plane
elastic body, firstly studied under the GFEM approach in Reference [14], is used. The structure,
with the geometry shown in Figure 2(a) and thickness lz, is loaded by tractions that produce
the following displacement field according to Reference [18]:

ux = A1

2G
r�1{[� − Q1(�1 + 1)] cos �1� − �1 cos(�1 − 2)�} (9)

uy = A1

2G
r�1{[� + Q1(�1 + 1)]sin�1� + �1sin(�1 − 2)�} (10)

in which

• ux and uy are the displacements components at directions x and y, respectively;
• A1 is an arbitrary constant;
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Figure 2. L-shaped domain: (a) geometry; (b) mesh used to p-refinement (p-GFEM); (c) strongly
graded mesh (hp-GFEM); (d) mesh used to psol-GFEM1 and psol-GFEM2.

• �1 = 0.544 483 737 and Q1 = 0.543 075 579 are constants determined so that solutions
(9) and (10) satisfy the equilibrium and the free boundary conditions on the sides CD
and DE;

• the plane strain condition is considered with � = 3 − 4�;
• G = E/2(1 + �) and E is the Young modulus (in this example the solution is calculated

as a function of E);
• the Poisson ratio � = 0.3.

The stress components which are used to load the body along the sides AB, BC, EF and
FA are:

�x = A1�1r
�1−1{[2 − Q1(�1 + 1)] cos(�1 − 1)� − (�1 − 1) cos(�1 − 3)�} (11)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:2373–2398
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�y = A1�1r
�1−1{[2 + Q1(�1 + 1)] cos(�1 − 1)� + (�1 − 1) cos(�1 − 3)�} (12)

�xy = A1�1r
�1−1{(�1 − 1)sin(�1 − 3)� + Q1(�1 + 1)sin(�1 − 1)�} (13)

Since the loading satisfies the equilibrium, only rigid body constraints need to be applied as
it is shown in Figure 2.

In this example, the stress components are singular on the point D which corresponds to the
position r = 0.0. In order to evaluate the influence of such singularity over the rate convergence
of GFEM approximation, four different sequences of refinements are performed:

p-GFEM: a bi-linear PU, provided by the finite element shape functions, is built over the
mesh of the Figure 2(b). Then a uniform polynomial enrichment is done, for the degree p

ranging from 1 to 8. For each degree p, the set of functions (1) is constructed by the monomials
necessary to obtain the corresponding degree of the approximation. Details of this strategy are
presented in the next section, where the space of the polynomials shape functions is defined.

hp-GFEM: in Figure 2(c) a sequence of strongly graded mesh, with the size of the elements
decreasing in geometric progression toward to point D, is used to build a bi-linear PU. The
distribution enrichment degree p varies linearly from the node D (p = 1) to the boundaries
ABC and EFA (p = pmax). This means that each cloud �j is enriched with a specific set of
monomials Ij which corresponds to the p degree assigned by its position.

psol-GFEM1: the mesh of the Figure 2(d) is used to build a bi-linear PU. The enrichment
of the approximation is performed by a special set of functions Ij , which is obtained by
including the solution of the problem in the early mentioned set of monomials, i.e.:

1 − ux(x)

ux(xj )
for the approximation of the displacement ux (14)

1 − uy(x)

uy(xj )
for the approximation of the displacement uy (15)

Note that the above expressions are normalized to minimize the round-off errors of the results
[3], and becomes null at x = xj to allow the direct imposition of the essential boundary
conditions. The sequence of approximations is obtained by a uniform p-refinement performed
for all the clouds, ranging from p = 1 to 5. At each approximation, expressions (14) and
(15) multiply the PU functions of the clouds that contain the elements hatched by the vertical
dashed lines in Figure 2(d).

psol-GFEM2: the same procedure of psol-GFEM1 is used, except from the fact that the
solution enrichment, with expressions (14) and (15), is performed for all the clouds.

For each sequence of refinements described above, the energy norm defined as

‖ũ‖U(�)
def= [B(ũ, ũ)]1/2 (16)

was computed and presented in Tables I and II. Because the displacement field is known,
expressions (9) and (10), the exact energy norm can be calculated as 2.8825490[A2

1a
2�lz/E]1/2
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Table I. Uniform p-refinement. Comparative results of the normalized energy norm
given by FEM and GFEM analysis, the first one presented in Reference [18]. NDF

means number of degrees of freedom.

p-FEM p-GFEM

NDF

[‖ũ‖2
U(�)

E

A2
1a2�lz

]1/2

NDF

[‖ũ‖2
U(�)

E

A2
1a2�lz

]1/2

39 2.7459827 39 2.7459827
103 2.8115681 123 2.8115681
167 2.8196208 207 2.8359994
255 2.8402228 333 2.8492349
367 2.8537151 501 2.8605256
503 2.8619213 711 2.8654549
663 2.8672439 963 2.8695395
847 2.8706381 1257 2.8723141

Table II. Comparative results of the normalized energy norm given by three types of
GFEM enrichment. NDF means number of degrees of freedom.

hp-GFEM psol-GFEM1 psol-GFEM2

NDF

[‖ũ‖2
U(�)

E

A2
1a2�lz

]1/2

NDF

[‖ũ‖2
U(�)

E

A2
1a2�lz

]1/2

NDF

[‖ũ‖2
U(�)

E

A2
1a2�lz

]1/2

13 2.6466652 69 2.8522972 109 2.8825490
41 2.7513684 181 2.8815017 221 2.8825490

111 2.8631708 293 2.8823148 333 2.8825490
223 2.8799921 461 2.8825275 501 2.8825490
391 2.8821166 685 2.8825465 725 2.8825490

and used to compute the error in energy norm given by

‖e‖U = √
B(e, e) =

√
B(u, u) − B(ũ, ũ) (17)

In this relation the orthogonality condition of the Galerkin approximation [4], is used and
e = u − ũ is the error of the approximate solution ũ. The behaviour of the GFEM analysis
for the present problem can be observed in the Figure 3, where the logarithm of the error
in energy norm is plotted versus the logarithm of the number of degrees of freedom (NDF).
The present problem is also solved in Reference [18], with the mesh of the Figure 2(b) and
a sequence of p-uniform refinements for the hierarchic FEM. The results of such analysis,
named here p-FEM, are reproduced in Table I and Figure 3 and are compared with the GFEM
analysis.

The low rate of convergence of the p-FEM can be explained by the kind of solution
of the problem analysed which is not smooth. A similar behaviour is reproduced by the
p-GFEM. Such similarity was already expected because, for a regular mesh, the approximate
space spanned by the FEM hierarchic shape functions is equivalent to the space built with
the monomial enrichment of the PU functions used in the p-GFEM. The exponential rate
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Figure 3. Relationship between error in energy norm and number of degrees of freedom
(NDF) for different kinds of refinement strategies.

of convergence is recovery by the hp-GFEM analysis. This is accomplished thanks to the
sequence of meshes and corresponding polynomials degrees properly selected to each cloud.
An equivalent convergence could be achieved with the hierarchic version of FEM and the
same sequence of geometric meshes. However, the enrichment strategy avoiding the side and
internal nodes of the standard hierarchic FEM is an important advantage of the GFEM analysis.
Therefore, the task of building conform approximations becomes quite straightforward. A non-
uniform h and p approximation can be easily used without concerns about the connectivity of
the mesh [2], which is a very interesting characteristic in an adaptive approach. The possibility
to take advantage of such a enhancement motivated the present work, leading to the error
measure and refinement strategy described in the next sections.

From the Table II and Figure 3 it is possible to see that the better results are obtained with
the psol-GFEM1 and psol-GFEM2. This is not a surprise since the exact solution is used to
enrich the PU functions. In the case of psol-GFEM2, the results are not plotted because of
scale reasons, since the error is too small to be drawn. When the enrichment is performed
in the whole domain, the approximate solution can be considered as the exact one for any
p-degree. There are, of course, some errors due to the lack of precision of the applied boundary
conditions, numerical integration and round off errors. On the other hand, for psol-GFEM1
analysis, the behaviour of the convergence rate is similar to the one of the hp-GFEM. The
reason for this fact may be found at the set of elements that in the Figure 2(d) are marked
with horizontal dashed lines. These elements have their four nodes enriched with monomials
but only two of them, the closest ones of the singular point, have the solution enrichment. In
this region the approximation is not able to exactly reproduce the solution function because
the enrichment is not complete for all the nodes of the elements. In Reference [19], such a
region is named blending sub-domain and it is shown that its presence can negatively affect
the accuracy and the rate of convergence of the method. Two strategies aiming to overcome
this problem are described, the first based on the Hu–Washizu variational principle and the
other one through a enhanced strain field.
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In spite of these facts, it is important to point out other advantages of the GFEM, such
as the possibility of improving the approximation with non-polynomial functions enrichment.
Several works have already been published in this context as References [20–22] and in the
XFEM approach it can be mentioned the contributions of [15, 16, 23]. Another interesting
characteristic is related to the presence of distorted elements, Figure 2(d). Differently from the
standard FEM, in GFEM the cloud-based hierarchic forms build the approximation directly in
the global coordinate system, retaining the accuracy of the spectral order p and providing the
completeness of the shape functions [14].

5. ERROR ESTIMATOR

The p-adaptive procedure described in Section 7 is tailored to the nodal enrichment approach
of the GFEM. In short, each node associated with a cloud that presents the largest local errors
is selected for polynomial refinement so that the accuracy can be improved in the next solution
of iterative step. The element residual method (ERM) introduced in References [24, 25] and
extensively studied in References [26–29], can conveniently estimate the energy norm of the
local approximation of the error at the element level. However, to achieve a measure that can
be used as an error indicator in the context of the GFEM, it is necessary to define a local error
associated with each cloud. This is obtained by considering such measure as an average value
of the approximation error estimated on the boundaries and in the interior of the elements
that share each vertex node. This is the subject of the next subsections, i.e. the adaptation of
the ERM to the GFEM approach. Still in the GFEM context, a different strategy is used in
Reference [17] to estimate the error energy norm. In such work a recovery GFEM solution is
constructed and it is used to govern a h-adaptive refinement.

5.1. Implicit element residual method

The ERM described here is based on the formulation presented in References [6, 7]. In the
following discussion, such method is adapted to the GFEM approach taking into account the
enriched approximation functions of the Section 2. Two important issues can be pointed out.
The first one, discussed in Section 5.2, refers to the indicator error which should be defined
at the cloud level instead of the element level as it is usual. The other one is related to the
strategy to equilibrate the residual and it is described in Section 5.3.

Firstly, let us consider the solution up of problem (6) and given by expression (7). The
index p denotes the polynomial character of the resulting approximation. Accordingly, in the
case of � ∈ R2, the set of linearly independent functions stated in (1) is represented as

I
p
j

def= {1, prs
j1(x), prs

j2(x), . . . , prs
jq(x)} (18)

where, pji is a typical monomial of degree r(i) in x and degree s(i) in y, associated with the
cloud �j , and defined by

prs
ji (x) =

(
x − xj

hx
j

)r(i) (
y − yj

h
y
j

)s(i)

(19)

being hx
j and h

y
j characteristic sizes of the cloud in x and y directions, respectively.
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The space spanned by the shape functions and resulting from the product of the PU functions
by the set of polynomials I

p
j is denoted as Xp. The error of an approximation up belonging

to such space can be defined as

ep = u − up (20)

where u refers to the exact solution of the BVP. By replacing, u = ep + up into (4), a new
problem to the error function ep can be stated as

Find ep such as

∇T�(ep) + r�(up) = 0 in �

ep = 0 on �D

t(ep) = r�(up) on �N

(21)

where the residual functions are defined in the domain and on the boundary of the body,
respectively, as

r�(up) = ∇T�(up) + b in �

r�(up) = t̂ − t(up) on �N

(22)

Here, it is assumed, without loss of generality, that the essential boundary conditions are
exactly satisfied. One important remark refers to the smoothness of the error function that is
not the same as the one of u. Actually, the term ∇T�(ep) may be not defined in some regions
such as the common boundaries between neighbouring elements. Therefore, problem (21) must
be understood by considering its weak form as it is done later in this subsection.

Before writing the weak form, it is interesting to formulate problem (21) locally for each
element K that builds some cloud, aiming to achieve local measures of the error. In this case, a
new natural boundary condition must be imposed at the edges between K and its neighbouring
elements, (�K\��). Such a condition defines the correspondent error in the tractions t(up).
However, as the true traction is unknown, it is replaced by 〈t(up)〉a = 1/2{t(up)+ t(u∗

p)}, that
denotes the average of the approximate tractions evaluated on �K\�� from the values t(up)

defined at K and its neighbouring elements (t(u∗
p)). Finally, the BVP associated with the local

error can be described as follows:

In the element K, find ep such as:

∇T�(ep) + r�(up) = 0 in K

ep = 0 on K ∩ �D

t(ep) = r�(up) on K ∩ �N

�(ep)n = 〈t(up)〉a − t(up) on �K\��

(23)

Note that the above problem becomes a Neumman or mixed problem as the element K lies
in the interior of the domain or intersects the body boundary.
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Now, the weak solution can be searched for. In Reference [6], the Galerkin approximate
form of this problem can be accomplished by taking the bubble-like function space. Here, an
analogous space can be build by using the set of shape functions of the GFEM. In this case,
a ‘cloud-bubble’ character of each function is acquired by considering its respective compact
support, by following the concept illustrated in Figure 1. Taking the previous considerations into
account the function space, named X0

p+1, can be defined by using the GFEM shape functions
analogously as in Reference [16]:

X0
p+1(K) = {v0

p+1 ∈ Xp+1(K); �p(v0
p+1) = 0; v0

p+1 = 0 on �K ∩ �D} (24)

where �p :Hr (K) → Xp(K) is the local interpolation operator and r is defined according
to Reference [6]. Presently, instead of Hr (K), the polynomial space Xp+1(K) ⊂ Hr (K)

is used. The motivation for this choice is the assumption that the most important part of the
error can be represented by the monomial terms with one degree higher than the one of the
approximate solution space Xp of up. This assumption produces the space X0

p+1(K) (the

kernel of the operator �p) spanned by the functions v0
p+1 that belong to the space Xp+1(K)

and vanish on the boundary �K∩�D. Summarizing, what is being considering is the projection
of the error onto the space X0

p+1(K). Such space can be generated, in the case of the GFEM,
by the shape functions (2) as it will be described on what follows.

A new boundary value problem, for each element K of a cloud, can now be written in the
variational form as

Find ẽp ∈ X0
p+1(K) such that:

BK(ẽp, v0
p+1) =

∫
�K∩�N

(v0
p+1)

Tr�(up)lz ds

+
∫

�K\��
(v0

p+1)
T[t(up)]lz ds +

∫ ∫
K

(v0
p+1)

Tr�(up)lz dx dy (25)

In the above formulation, [t(up)] = 1/2{t(u∗
p)− t(up)}, ẽp is the Galerkin approximation of the

error function ep, actually defining the error indicator function, and v0
p+1 is the test function

of the problem. Both of them are described by the GFEM functions as

ẽp = (�0
p+1)

TIK (26)

v0
p+1 = (�0

p+1)
TV0 (27)

where the vector �0
p+1 is built by the set of shape functions of expression (2), after eliminating

from the set {�p+1
ji } the terms of the subset {�p

ji}. Here the functions Lij are defined by the
set of monomials (18) required to reproduce exactly complete polynomials of p + 1 degree, in
the case of the set {�p+1

ji }, and p in the case of the set {�p
ji}. IK and V0 are nodal parameter

vectors associated to each shape function of the set X0
p+1(K). The vector IK, in particular,

is named the vector of error indicators.
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Nevertheless, the last integral in problem (25) requires that the second derivative of the
displacement approximation function must be defined everywhere in the discretized domain. In
general this is not the case for the solution found for problem (6), so in Reference [30] it is
suggested a different representation that can be obtained after replacing the residual definitions
(22) in (25) and rewriting [t(up)] as it was defined:

BK(ẽp, v0
p+1) =

∫
�K∩�N

(v0
p+1)

T[t̂ − t(up)]lz ds

+
∫

�K\��
(v0

p+1)
T1/2[t(u∗

p) − t(up)]lz ds

+
∫ ∫

K
(v0

p+1)
T[∇T�(up) + b]lz dx dy (28)

The term with �(up) can be integrated by parts which gives, after applying the divergence
theorem:

BK(ẽp, v0
p+1) =

∫
�K∩�N

(v0
p+1)

T[t̂ − t(up)]lz ds

+
∫

�K\��
(v0

p+1)
T1/2[t(u∗

p) − t(up)]lz ds +
∫ ∫

K
(v0

p+1)
Tblz dx dy +

−
∫ ∫

K
(�T(v0

p+1)�(up)lz dx dy +
∫

�K
(v0

p+1)
Tt(up)lz ds (29)

Finally, taking into consideration the definitions of the operators B(•, •) and 〈•〉a a new
description to the Galerkin approximation of the error problem can be given by

Find ẽp ∈ X0
p+1(K) such that:

BK(ep, v0
p+1) = LK(v0

p+1) ∀v0
p+1 ∈ X0

p+1(K)
(30)

where

LK(v0
p+1)

def=
∫ ∫

K
(v0

p+1)
Tblz dx dy − BK(up, v0

p+1)

+
∫

�K∩�N

(v0
p+1)

T t̂lz ds +
∫

�K\��
(v0

p+1)
T〈t(up)〉alz ds (31)

The above problem leads to the following system of equations, at each element K:

KK
er IK = RK (32)
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where

KK
er =

∫ ∫
K

(B0
p+1)

TCB0
p+1lz dx dy (33)

RK =
∫ ∫

K
(�0

p+1)blz dx dy − KKU +
∫

�K∩�N

(�0
p+1)t̂lz ds

+
∫

�K\��
(�0

p+1)〈t(up)〉alz ds (34)

KK =
∫ ∫

K
(Bp)TCBplz dx dy (35)

B0
p+1 = L(�0

p+1)
T (36)

Bp = L(�p)T (37)

where L is the gradient operator of the strain field.

5.2. Error measures

Local values of the energy norm of the function ep obtained at each element can be
estimated as

ẼK
def= ‖ẽp‖U(K) = [BK(ẽp, ẽp)]1/2 (38)

where ẼK defines the error indicator for the element K. The global error estimator is computed
from the contribution of the local indicators:

‖ẽp‖U =
√ ∑

K∈�
Ẽ

2
K (39)

In the classical FEM the error indicators given by (38) can be used to define an adaptive
procedure over the elements. However, in the GFEM, as it was already been pointed out at the
beginning of Section 5, the p-refinement procedure is based on a nodal enrichment strategy.
This approach motivates the introduction of a new error measure associated with the node (or
the cloud) instead of that one attached to elements.

A simple way to define the error measure associated with each cloud �j is by the weighted
average of the error indicators, given by (38), of the elements K contained in �j . Therefore,
a nodal error indicator can be stated as:

Ẽ�j

def= ∑
K∈�j

VK‖ẽp‖U(K)

V�j

(40)

where the volume of each element VK is employed as the weight and V�j
= ∑

K∈�j
VK is

the total volume of the cloud �j .
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5.3. The equilibrated residual

Considering inner elements, BVP (30), corresponds to a Neumman problem as it involves
only natural boundary conditions. As a consequence the problem to be approximated may not
have a unique solution. This issue can be overcome building the approximate error with the
functions of the space X0

p+1(K) (24), that is a quotient space with the null space factored
out. Even so, according to Reference [7], by using of the quotient space is not a guarantee of
eliminating all spurious modes of the approximate error solution which arises from the locally
defined boundary data. An efficient strategy do solve this problem can be achieved by requiring
that the boundary data r�, t(up) and 〈t(up)〉a be in equilibrium with the interior residual r�.
The accomplishment of this actually means to guarantee that the local error problem is well
posed. Several strategies to impose such equilibrium have been proposed so far, among them
References [8, 25, 31, 32].

In the present work, the method proposed in Reference [8] is used. The following discussion
summarizes the fundamental steps of the procedure. The overview of the method is given here
mainly with the purpose of indicating how this strategy can be applied in the GFEM approach.

The method consists of introducing a new traction distribution �K along the boundary
of each element K in order to equilibrate the original set of boundary data. The equi-
librium is then verified if the resulting force and moment are null for each element
K, i.e.

∫ ∫
K

r�lz dx dy +
∫

�K∩�N

r�lz ds +
∫

�K\��
[t(up)]lz ds +

∫
�K

�Klz ds = 0 (41)

∫ ∫
K

(	yrx
� + 	xr

y

�)lz dx dy +
∫

�K∩��
(	yrx

� + 	xr
y

�)lz ds

+
∫

�K\��
(	y[tx(up)] + 	x[ty(up)])lz ds +

∫
�K

(	y�Kx + 	x�Ky )lz ds = 0 (42)

where 	x and 	y are the distances between a generic point x in the element K and an arbitrary
reference position x0 of �, measured in the reference directions x and y, respectively, Figure 4.
In order to facilitate the determination of the traction distribution �K, the concept of equivalent
nodal forms must be used. According to Reference [8] and as it is shown in Reference [33],
in the case of linear geometric mapping of the master element, Equations (41) and (42) can
be replaced by the following nodal conditions:

�̂
K

j +
∫ ∫

K
�j r�lz dx dy +

∫
�K∩�N

�j r�lz ds +
∫

�K\��
�j [t(up)]lz ds = 0 (43)

in which the residual force associated with the nodes can be defined as

�̂
K

j
def=
∫

�K
�̂j�

Klz ds (44)
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Figure 4. Scheme illustrating the distances 	x and 	y between the arbitrary point x0 and the point
where a boundary data (in the case t (up)) is applied over a generic finite element of a mesh.

and �̂
T
j is a sub-matrix with the shape functions associated with the node x in x and y

directions:

�̂
T
j =

[
Nj (x) 0 prs

j1(x) · · · prs
jq(x) 0

0 Nj (x) 0 prs
j1(x) · · · prs

jq(x)

]
(45)

Note that the shape functions, obtained by the expression (2), result from the multiplication of
the PU functions by the set of polynomials given by (18).

In the particular case of the GFEM, it is important to point out that only the components
of the residual forces associated with the PU (the first two columns of (45)) can affect the
equilibrium. This means that only such components must be considered in Equation (43). In
fact, the other components, associated with the enrichment functions are self-equilibrated and,
as a consequence, they do not need to take part in this procedure. For this reason, the definition
of �̂j , (45), can be modified by using a more simple matrix:

�̂
T
j =

[
Nj (x) 0

0 Nj (x)

]
(46)

The residual forces �̂
K

j are then resolved into components applied to the sides of the elements.
In Reference [8] this is performed by employing the Maxwell force diagrams in a very physical
insight. The resulting discrete side forces are finally replaced back by statically equivalent
traction distributions �K described by a linear interpolation of nodal parameters associated
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with each edge of the element K. Such parameters are obtained aiming to guarantee a unique
interaction between adjacent elements.

6. NUMERICAL EXAMPLES

Two numerical examples are presented here in order to illustrate the application of the equili-
brated element residual method with the GFEM approach. The main goal of this section is to
show that good global and local error measures can be obtained if the error is approximated
in the space X0

p+1, which is built by the enriched shape functions of the GFEM.

6.1. Linear bending problem

In Figure 5, a 2-D plane stress problem is represented, being the loading prescribed by the
following expressions:

qx = 240y

c
− 120 (47)

qy = 120y

L
− 120y2

cL
(48)

The exact analytical solution to this classical elasticity problem is given by [34]

ux = 1

E

(
120

cL
x2y − 92

cL
y3 − 60

L
x2 − 240

c
xy + 138

L
y2 + 120x − 46c

L
y

)
(49)

uy = 1

E

(
− 40

cL
x3 − 36

cL
xy2 + 120

c
x2 + 36

L
xy + 36

c
y2 + 46c

L
x − 36y

)
(50)

where ux and uy are, respectively, the displacement in x and y directions.
The problem is solved by the conventional FEM, with a mesh of 10 quadrangular elements

of linear approximation. Therefore, the approximate solution (up) is linear. The objective of this
example is to show the performance of the error measures defined in Section 5 by considering
two kinds of cloud-bubble spaces, discussed on what follows. The enrichment strategy is not
intended to be used here for the approximate solution but only for the REM. Numerical tests

Figure 5. Geometry and loading. Young’s modulus E = 1 × 107, Poisson coefficient � = 0.3,
thickness t = 1.0, L = 100 and c = 10.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 60:2373–2398



2390 F. B. BARROS, S. P. B. PROENÇA AND C. S. DE BARCELLOS

in which the error measures are estimated for enriched solutions are presented in the next
subsection.

According to Section 5.1, the space where the error functions should be projected (X0
2), is

built by the following shape functions of the GFEM:

(�0
2)

T
j =



Nj (x) · x − xj

hj

0 Nj (x) · y − yj

hj

0

0 Nj (x) · x − xj

hj

0 Nj (x) · y − yj

hj


 (51)

Moreover, aiming to improve the error measure it is possible to enlarge the space dimension
(X0

2,3) by introducing new functions such as

(�0
2,3)

T
j =


Nj (x) · x − xj

hj

0 Nj (x) · y − yj

hj

0

0 Nj (x) · x − xj

hj

0 Nj (x) · y − yj

hj

Nj (x) ·
(

x − xj

hj

)2

0 Nj (x) ·
(

y − yj

hj

)2

0

0 Nj (x) ·
(

x − xj

hj

)2

0 Nj (x) ·
(

y − yj

hj

)2



(52)

This possibility is discussed in Reference [30] and it is named here as REMp+1,p+2 while the
(X0

2) option is denoted as REMp+1.
Since the exact solution for the displacements is known, the following exact error mea-

sures can be evaluated: one to each element, ‖ep‖U(K), and another one globally, ‖ep‖U =√∑
K∈� ‖ep‖2

U(K)
. Such measures and the approximate values given by (38) and (39) can

then be employed to compute the effectivity indices, defined by


K = ẼK

‖ep‖U(K)

local effectivity index (53)


 = ‖ẽp‖U
‖ep‖U global effectivity index (54)

The effectivity indices can be employed to express the quality of the error measures of the
linear solution of the FEM mesh adopted. The results are depicted in Figure 6 by considering
the two possibilities for the error approximation. As a first conclusion it can be noted that
the error is better approximated by the REM2,3, giving values closer to unity. However, the
REM2 performance is also quite reasonable. Actually, this possibility could be employed in a
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Figure 6. Local effectivity indices. Global relative error is 57.13% of the energy norm of the solution:
(a) REM2—global effectivity index 
 = 0.820; and (b) REM2,3—global effectivity index 
 = 0.878.

Figure 7. Global effectivity index (REM2) for a nested sequence of meshes.

context where the costs associated with the increasing of space dimension plays an important
rule (specially when the processing time is a key issue).

In face of the above discussion the analysis of the convergence of the error measure is
performed only to the REM2. With this objective a nested sequence of three meshes is used.
The first of them is the original mesh of 10 elements, Figure 6, and the following two meshes
are obtained by dividing each element of the previous mesh by four equal new elements. The
points depicted in the Figure 7 correspond to the global effectivity index of each mesh. The
results found indicate the increased performance of the error measure as the global effectivity
index gets closer to unity as a consequence of the refinement process.

6.2. Circular hole in an infinite plate

Now the classical problem of a infinite plate with a circular hole, in plane strain state, sub-
jected to unidirectional tension �∞ is considered, Figure 8(a). A FEM mesh with quadrangular
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Figure 8. Circular hole in an infinite plate: (a) geometry and loading; and (b) finite element mesh.

elements of four nodes is shown in the Figure 8(b) and it is used to build the PU linear func-
tions. The analysis is performed over the domain ABCDE. Symmetry conditions are imposed
on the edges AB and DE. The following stress distribution obtained from the elastic solution
[34], is imposed on the edges BC and CD:

�x = �∞
[

1 − a2

r2

(
3

2
cos 2� + cos 4�

)
+ 3a4

2r4 cos 4�

]
(55)

�y = �∞
[
−a2

r2

(
1

2
cos 2� − cos 4�

)
− 3a4

2r4 cos 4�

]
(56)

�xy = �∞
[
−a2

r2

(
1

2
sin 2� + cos 4�

)
+ 3a4

2r4 cos 4�

]
(57)
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Figure 9. Local effectivity index 
K to each element K. Global relative error
is 9.7% of the energy norm of the solution.

The resulting displacement field is described by its components in the x and y directions:

ux = �∞a

8G

{
r

a
(� + 1) cos � + 2a

r
[(1 + �) cos � + cos 3�] − 2a3

r3 cos 3�

}
(58)

uy = �∞a

8G

{
r

a
(� − 3) sin � + 2a

r
[(1 − �)sin � + sin 3�] − 2a3

r3 sin 3�

}
(59)

where G = E/[2(1+�)] and � = 3−4�. The adopted values to the parameters are the following:
a = 1.0, b = h = 4.0, E = 1.0, � = 0.3 and �∞ = 1.0. In order to represent the curved
boundary EA the linear blending function method, proposed in Reference [35], was adopted.

The local and the global estimations of the error are obtained after employing the REM2
with the space of approximations built by the functions given in (51). By knowing the exact
elastic solution, the same procedure described in Section 6.1 can be used to calculate the
effectivity indices.

In Figure 9, the local values 
K to each element K are represented. One observes that
for the great majority of the elements such values are close to the unity, indicating the good
quality of the local error estimator. However, the same performance is not found in the elements
far away from the hole, probably due to some interference of the fictitious imposed Dirichlet
boundary conditions. Even so, the global effectivity index 
 is 0.939, very close to the unity,
meaning a good accuracy of the global error measure.

7. THE ADAPTIVE PROCEDURE

The adaptive procedure used here, described by algorithm (1), is based on the strategies
proposed in References [6, 30]. Essentially, the idea behind the procedure is to find an optimal
p-approximation over a fixed mesh that produces, under an adopted tolerance, a uniform
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distribution of the energy norm of the error. Such procedure is tailored here to the GFEM
approach, by accounting for the nodal polynomial enrichment. So, in the place of the element
indicators, the refinement is conducted by the nodal indicators Ẽ�j

stated in (40).
In short, two kinds of error measures and three parameters are used in the refinement

process:

• the relative global error indicator:

Ẽ%
def= ‖ẽp‖U√

(‖up‖U)2 + (‖ẽp‖U)2
× 100% (60)

where ‖up‖U is the energy norm of the approximate solution and
√

(‖up‖U)2 + (‖ẽp‖U)2

is an estimated value to the energy norm of the exact solution;
• the local error indicator Ẽ�j

, given by (40).
• the parameters: �, TOLerror and pmax. Such parameters explained on what follows are very

important to define the rate of convergence of the refinement and its stopping criterion.
Basically, in each step of the refinement process, the error indicator Ẽ�j

of each cloud �j

is compared to a local tolerance given by �Ẽmax, where Ẽmax is the maximum value Ẽ�j

found at the considered step. The parameter � works then as the enrichment controller. The
dimension of the space of the approximated solution is increased by enrichment of the PU
functions associated with the clouds, where the local errors exceed a threshold (Ẽ�j

> �Ẽmax).

A new step is necessary if the relative global error Ẽ% is larger than an assumed tolerance
TOLerror. The increasing of the polynomial degree of the approximation is locally limited by
the parameter pmax. If in all clouds where Ẽ�j

> �Ẽmax the polynomial degree have already
exceeded the limit pmax, then a smaller value to � should be employed (for instance a value
equivalent to 90% of the original one). The process diverges if pmax is the polynomial degree
of all clouds. In this case it is impossible to reach a solution with a tolerance TOLerror to the
maximum polynomial degree adopted. This situation is controlled by the counter iend.

8. NUMERICAL EXAMPLE

The problem of Section 6.2 is considered once again, aiming to illustrate the p-adaptive proce-
dure discussed in the previous section. The starting mesh is the one represented in the Figure
8(b), where the approximation is linear (p = 1). According to algorithm (1) the numerical
solution obtained is evaluated by the error estimators defined by the REMp+1. The approxi-
mation is enriched by multiplying the PU functions by polynomials with one degree higher
than that one employed at the previous adaptive step. It is very important to point out here the
straightforward way by which the adaptive refinement is performed. Thanks to the enrichment
strategy of the GFEM, no constraints over the approximation functions must be enforced, then
implying in a very flexible adaptive procedure.

The degree of the cloud approximation is identified with the degree of the set of shape
functions generated by the product of the PU functions and the polynomial multipliers (19).
Those polynomials are added to the set Ip

j such that the resulting shape functions are equivalent
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Algorithm 1: p-adaptive analysis.

Read the geometric and loading data.
Read �, T OLerror, pmax , ip = 1.
loop

Assemble K, F
Solves the system KU = F
for K = 1 to NEL do

Assemble KK, �K and RK
equi

Solve the system KKIK = RK
equi

Calculate ẼK = ‖ẽp‖U(K)

‖ẽp‖2
U = ‖ẽp‖2

U + (ẼK)2

end for

‖ẽp‖U =
√

‖ẽp‖2
U

Ẽ% = ‖ẽp‖U/‖up‖U
ifẼ% � T OLerror then

End the algorithm {Convergence of the adaptive procedure}
else if Ẽ% > TOLerror then

n� = 0
iend = 0
repeat

for �j = 1 to N do
Calcula Ẽ�j

= ∑
K∈�j

VKẼK/V�j

end for
Ẽmax = max(Ẽ�j

, �j = 1, . . . , N)

for �j = 1 to N do
if Ẽ�j

� �Ẽmax then
if p�j

< pmax then
p�j

= p�j
+ ip {Enrichment of the cloud �j}

n� = 1
else

iend = iend + 1
end if

end if
end for
if iend = N then

Stop the analysis {TOLerror cannot be reached}
else if n� = 0 then

update � to 90% of its value �
end if

until n� = 1
end if

end loop
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Table III. Global effectivity indices of each adaptive solution step.

Step NDF Ẽ% E% 


1 70 9.101% 9.713% 0.937
2 114 4.946% 5.328% 0.928
3 210 1.950% 2.078% 0.939
4 286 0.974% 1.004% 0.970
5 418 0.227% 0.242% 0.936
6 614 0.050% 0.054% 0.925

Figure 10. The performance of the p-adaptive refinement: (a) polynomial enrichment
of the last adaptive step; and (b) convergence analysis.

to the ones employed in the conventional FEM with hierarchic shape functions for quadrilateral
elements.

The aiming error tolerance (TOLerror) adopted in this example is 0.1%, i.e. Ẽ% � 0.1%. The
convergence of the adaptive process is controlled by � = 0.5. In Table III the error estimator,
the exact relative global error (using the energy norm of the exact global error and exact
solution) and the global effectivity index (54) are presented for each adaptive step and the
corresponding NDF which characterizes the approximation. At step 6, the adaptive procedure
reaches convergence with Ẽ% = 0.1%. The resulting approximation presents the polynomial
degree distribution depicted in the Figure 10(a). Aiming to evaluate the convergence rate of the
adaptive analysis a comparative graphic is shown in the Figure 10(b), in which the logarithm
of the error in energy norm is plotted versus the logarithm of the number of degrees of
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freedom. In such graphic, the results of the p-adaptive analysis are plotted together with the
convergence curve obtained with a sequence of uniform p-enrichment of the mesh represented
in the Figure 8(b). It can be observed that an exponential rate of convergence is obtained for
both of the refinement strategies. However, the use of the adaptive procedure gives, for this
problem, slightly better results.

9. FINAL CONSIDERATIONS

The residual element method fits very well with the nodal enrichment strategy of the GFEM,
not only due to the very direct way of building the approximation space X0

p+1 but also by con-
sidering the manner that the p-refinement is performed. By the numerical examples presented,
the good quality of the adopted error measures was verified, then motivating their employment
as a guide in a p-adaptive procedure. The suggested process, based on the equidistribution of
error indicators associated with the nodes, is validated by a final example. However, a complete
study of such procedure requires a processing time analysis or, even better, a floating point
operations analysis. In spite of being a subject of future works, it is important to antecipate
the information that the equilibrate procedure adopted here shall be improved for reducing the
computational time which is eventually expensive without an equivalent compensation on the
improvement of the numerical accuracy.
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