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SUMMARY

The derivation of an a posteriori error estimator for frictionless contact problems under the hypotheses of
linear elastic behaviour and infinitesimal deformation is presented. The approximated solution of this problem
is obtained by using the finite element method. A penalization or augmented-Lagrangian technique is used to
deal with the unilateral boundary condition over the contact boundary. An a posteriori error estimator suitable
for adaptive mesh refinement in this problem is proposed, together with its mathematical justification. Up to
the present time, this mathematical proof is restricted to the penalization approach. Several numerical results
are reported in order to corroborate the applicability of this estimator and to compare it with other a posteriori
error estimators. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Computationally efficient adaptive procedures for the numerical solution of variational inequalities
of elliptic type, which arise e.g. in frictionless elastic contact problems, have received special
attention over the last years [1, 2]. This is because powerful mathematical programming algorithms
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396 G. C. BUSCAGLIA ET AL.

have become available, together with efficient numerical methods (such as finite elements [3])
and their integration with solid modelling, visualization of engineering data and automatic mesh
generation.

In any adaptive procedure, a posteriori error estimators play an important role in the process
of assessing the accuracy of the approximate solution. Based on the information given by these
estimators, it is possible to decide whether the adaptive process must be stopped or, if this is not
the case, where and how mesh refinement might be performed more efficiently (see Reference [4]
and the references therein).

In the linear case, several approaches are available to define error estimators for different prob-
lems using the residual equation (see, for example, References [5—9]). To extend these techniques
to variational inequalities, the main difficulty is that the error is not orthogonal to the set of
approximate functions. This feature yields terms in the error equation that depend on the exact
solution and cannot be neglected.

Local a posteriori error estimators for variational inequalities have been proposed by Ainsworth
et al. [1] and applied to the obstacle problem. Following a different approach, Johnson also reports
in Reference [2] an adaptive finite element method for the same problem.

We have used Johnson’s ideas to derive an a posteriori error estimator for the frictionless contact
problem, which differs from the obstacle problem in that an inequality constraint must hold at the
boundary of the domain instead of in its interior. This error estimator is then used in adaptive
finite element solution of test problems to assess the reliability and computational efficiency of
this estimator.

The presentation is organized as follows: In Section 2, the primal formulation of the mathematical
model and its optimality conditions are briefly reviewed. The penalization technique and finite
element approximation are also included. Based on the penalized approach, an a posteriori error
estimator is proposed in Section 3. It is also proved in this section that this estimator provides an
upper bound for the discretization error. Numerical evidence that the optimal order of convergence
is obtained with an adaptive procedure based on this estimator and its comparison with other
a posteriori error estimators in the literature are provided through several numerical experiments
in Section 4.

2. CONTACT PROBLEM

Let us consider a bounded region 2 in R? with boundary I' =T, UT} UT,,, occupied by an elastic
homogeneous body # submitted to surface tractions f over Iy and body forces & over ). Dis-
placements u take a prescribed value in I, (equal to zero for simplicity) and the unilateral contact
between % and a rigid body (foundation) .# potentially takes place over I.

Let T be the stress-tensor field, obtained as the derivative of a potential function /¥ with respect
to the symmetric gradient of displacements

T(u)= %, W(u) = %CVMS - Vu® (1)

where C is the fourth-order elastic tensor satisfying the usual assumptions of symmetry and strong
ellipticity.

Given a local orthonormal system (t,n) at each point x € [, (tangential and outward normal unit
vectors, respectively), we call 6, =Tn-n and o, =Tn -7 the normal and tangential components of
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FINITE ELEMENT APPROACH FOR CONTACT PROBLEMS 397

the force exerted by the foundation # on % across I,.. We also assume that the gap s between
I, and % in the normal direction n is zero.
We define

V={ve(H'(Q))* v=0onT,}
K={veV: g(v)=v-n <0 on I}

where K is the convex set of admissible displacements, i.e. compatible with the kinematical con-
straints over I, and T},.
Given the bilinear form a(-,-) and the linear form /(-),

a(u,v):/QT(u)-VdeQ, l(v):/nbwdQ—i— f-vdl (2)

Ly

the solution of the Signorini problem without friction is given by the following minimization
problem: find u € K such that

u=1arg Uirellt;.](v), J(v)= %a(v, v) — I(v) 3)

or, equivalently
u=arginf L(v), L(v)=J(v)+(v) 4)
v

where Ig is the indicator function of the convex set K.
As it is well known, this constrained optimization problem is formally equivalent to the saddle
point (inf-sup) problem: find u€V and 2€ A" such that

(u2)=arginf sup {J(0)+ (A*,9(v))} (5)

AreAt
where the admissible convex cone A™ for the Lagrange multipliers A is defined by
A ={2*eH VX (T,);2* > 0aeonl}

and (-,-) denotes the duality pairing between H~'/3(T.) and H'?(T.). From the mechanical point
of view, 1 represents the reaction (dual force) associated with the unilateral kinematical restriction
gu)=u-n < 0 imposed on I.

Conditions for existence and uniqueness of the solution for all these abstract problems are
thoroughly analysed in References [10—12]. The solution u € K of (3) is characterized by the
following variational inequality problem: find u € K such that

a(u,v —u) = l(v—u), Yvek (6)

Moreover, this solution is also solution of the saddle point problem (5) which is characterized by:
find (v, 1) €V x At such that
a(u,v) + (A, 0) =1(v), YveV
(7
(X =2 g)) <0, VA*eAt
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Another possible way to solve the primal problem (3) is to use penalty techniques. In this case,
the indicator function Ix is approximated by a penalty function P,=¢"'P, ¢>0, satisfying the
following conditions [12, 13]:

P:V —9R is weakly lower semicontinuous
P(v) = 0, P(v)=0 if and only if veK
P is Gateaux differentiable on V

For the contact problem without friction, a natural choice for P, satisfying the above properties is
given by

1 1
P(v)= /F Slo@ P L= <2—8[g<v)]t[g<v)]+>

where [-]* is the positive part of [-]. In this approach, the solution u, given by the penalty method
is now characterized by the unconstrained minimization problem: find u, € V such that

u, =arg inf {J,(v)=J(v) + P(v)} ®)

Moreover, due to the properties of J,, u, is also given by the following non-linear variational
equation: find u, €V such that

o) + (L0000 ) =10). Woe ©)

As was shown by Kikuchi and Oden [12], the sequence (u., j((1/¢)[g(u)]")) strongly converges
to (u,4) in V x H=Y*(T,) as ¢ — 0. Above, j is the Riesz map from H'*(T,) to H~'*(T,).

In order to obtain approximate solutions, a finite-dimensional counterpart of all these variational
problems must be built using, for instance, finite elements. Actually, taking linear triangular finite
elements and denoting by / the set of indices i such that x; €I} is a nodal point, the convex set
K can be approximated by

Ky={v, €Vy: g(on(x;)) <0, iel}
Then, the approximated solution u;, € Kj of (3) is given by

up = arg D:relgh J(vp) (10)
where V, is a finite-dimensional subspace of V. Thus, u; is the solution of the minimization
of a quadratic functional with inequality constraints. The solution could be obtained by several
mathematical programming algorithms. The LEMKE method, for example, finds the solution u;, in
a finite number of steps. Another possibility is to use a mathematical programming technique like
the one proposed by Herskovits [14], also applied by Fancello and Feijoo in an optimal contact
shape design context [15] (see also References [16, 17]).
On the other hand, the penalty approach consists of: find u,, €V, such that

Uy = arg wiren;{Jg(vh) =J(vy) + P(vn)} (11)
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which means that u,, is the solution of the minimization of a functional defined on the finite-
dimensional subspace V;, of V. This solution is also given by the following non-linear variational
equation which is the finite-dimensional counterpart of (9): find uy, € V, such that

a(ugp, vy) + <%[9(”sh)]+ag(vh)> =Il(vy), VvpeV, (12)

However, it is well known that penalty formulations have the drawback that numerical instabilities
arise for small values of &. In order to overcome this difficulty, several procedures were pro-
posed. Among them, the augmented-Lagrangian technique (see Reference [18]), which provides
the approximate solution u;, of (10) as the limit of a sequence of penalized problems. The spe-
cific augmented-Lagrangian algorithm we use is described in the appendix (see also References
[17, 15, 19]).

In the next section we prove that our a posteriori error estimator, based on the penalized
formulation (12), yields an upper bound for the error in the approximate solution. In other words,
we will prove that for a given ¢

||1/t{; - u{:hH < C’/l*

where || - || is an appropriate norm specified in the next section, C is a constant independent of %
and ¢, and n* our a posteriori error estimator.

3. A POSTERIORI ERROR ESTIMATOR FOR THE CONTACT PROBLEM

Let us assume that we have a family 7, of regular triangulations of the domain €2 such that any
two triangles in 7, share at most a vertex or an edge. Given an interior edge / we choose an
arbitrary normal direction n, and denote by 7Tj, and 7oy the two triangles sharing this edge with
ny pointing outward Ty,. If n, =(ny,ny), we define the tangent v, =(—np,n1). When /€T, ny is
the outward normal. Then, we denote by

[T(up)n), = [T(un)|ouwns] — [T(up)|inns]

the jump of T(uy)n, across ¢ in the direction n,.

Let & be the set of interior edges of 7, and for an element 7, let E; be the set of edges of
T. Moreover, for a given T € 7, we denote by T the domain defined by 7 and all elements in
Ty, sharing a common vertex with 7. Finally, we denote by |T| and |/| the area of the element T
and the length of the edge 7.

In this section, we present an a posteriori error estimator suitable for automatic mesh refinement
in the numerical evaluation of the contact problem by finite elements. As stated above, the initial
gap s between I, and the rigid foundation % is assumed to be zero in order to simplify our
presentation. Also, the standard notation for Sobolev spaces, norms and seminorms will be used.
In particular, the seminorm in the space (H'(€2))* will be denoted by |v|; o. Moreover, the bilinear
form a(-,-): V x V — R satisfies the following properties:

la(u,v)| < Mlu|1 qlvl.0, Yu,v€V

a(u,u) = oc|u\ig, YueV
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Let us consider the penalized formulation defined in (9)
a(us,v) + (& [g(u)] ", g(v)) = L(v), YveV
Moreover, the approximate finite element solution of (13) verifies (12)
a(usn,vn) + (e~ [g(un)] - g(on)) = I(vn), Yoy € Vi
Let us also introduce the non-linear form
A(u,v) = a(u,v) + (&~ [9()]", g(v))
From the above definitions and notations, the following lemma can be established.

Lemma 1. There exists a positive constant C such that

(13)

(14)

u—vfi o + lle”*([g)]" = [gIDI5.r. <CA(u,u — v) — A(v,u —v)), Vu,veV

Proof. From the coercivity property of the bilinear form « it follows that
au — ol o + 79I = [T D)5r,

<a(u —v,u—v)+ / e ([g)]" — [g()I)([9()]* — [g(v)]")dD

L
Moreover, the positive part of a function defines a monotone operator, that is

(91" = [g()I)H([g)]" = [g)]") <([g()]" = [9(v)] "N g(u) — g(v))

Hence, the lemma is satisfied with C = (min{o, 1})~".
On the other hand, taking v =wv;, in Equation (13) and using (14) we obtain

A(ue, Uh) —A(ugh,l]h):o, vUl’l EVh

Now let us define the global error estimator n* and the local error estimator 1 by

12
n* = { > (11?)2}
TeT,

12
= {|T/R2d9+ S dr}

/GET l/
where
R=b+div(T(uy)) inT, VT €7,
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is the residual of the local equilibrium equation at element level T € 7, and

[[T(ush )I/l}] N g]
0 Y/ C T,

J) = (19)
20/~ Tugn) v

_2{(an(ush) + 8_1 [g(ush )]+)I/l + (O-r(ush))f} V£ C Fc
is the residual of the equilibrium equation at element boundaries.

Lemma 2. For all we'V we have

Aug, w) — A(ugy, w) = XT: {(R,W)T + % > (J/,w>/}

(€ET

where

(R,w)T:/ R-wdQ
Qr

<J/,W>/ :/ J/ -wdl

I

Proof. From the definition of A(-,-) and from (13) and (14) it follows that
A(us» W) - A(”L‘h» W) = l(W) - a(”sh: W) - <871 [g(uz:h)]+a g(W)>

After integration by parts, the above expression can be rewritten as

Aug, w) — A(ugy, w) = XT: {(R,W)T — / T(ug)n - wdF} + fwdll — <8_1[g(ugh)]+,g(w)>
or

Ly

= ; {(RaW)T + % > (J/,W>/}

(€ET

Then, from Lemmas 1 and 2 and Equation (15) we obtain

le|? o+lle ™2 ([g(ua)] T —[g(ua) T} 1 < C(A(s €)—A(uz, €))

= C(A(uz, e—vy)—A(ug, e—vy))

= C;{(R»evh)'ﬂrl > <J/aevh>/} (20)

2/€ET
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Now, let us take the Clément interpolation of e which will be denoted by e'. Hence, the following
estimations are verified (see Reference [20])

le = e'llo.r < CIT|"2Je], 7
lle = e'llo.c < C|£]"e], 7

where 7T is the union of all the elements sharing a vertex with 7. From these properties and
Equation (20) we finally obtain

1/2
_ 1
leff o + [l A([g(u)]™ = [9(ue)] )5y, < C {;(ITIIIRH%,T + 5/253 /J/H%ﬁ/)} lel1.0
/€ET

12
<C {XT: WZT} lel1.o=Cn"le|.0

This expression provides the proof of the following theorem.

Theorem 1. There exists C >0 such that the global estimator #* satisfies

Ius - ushll,Q < C’7*

e 2 (g~ [9Cuea)T ) lo.r. < Cn*

4. NUMERICAL TESTS WITH THE PENALIZED FORMULATION

In this section, we will perform adaptive analysis in several contact problems using the estimator 1™
(Equation (16)). More specifically, due to the fact that the solution u,, of (12) and the penetration
term &~ '[g(ug;,)] are polluted with numerical error when ¢ is small, we use for u,, the solution u,,
and for ¢~ '[g(uy)] the solution Au; (which plays the role of the force exerted by the foundation
Z on 2 across I,) obtained by the augmented-Lagrangian method described in the Appendix (see
also References [15, 17, 19]). In the following examples, we adopted &' =2/3¢¥ and y=10"8
for the residual of the complementarity relation between /A4, and the gap [g(uy;)].

The numerical performance of the proposed estimator and its comparison with others in the
literature will now be considered. Within the context of an adaptive procedure, an error estimator
will be deemed efficient if the sequence of adaptive meshes produces an optimal reduction rate of
the estimated error.

In addition to the previously introduced global estimator #* (Equation (16)) we will also
consider another alternative, even though not originally proposed for unilateral problems, the

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:395-418
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Babuska—Miller estimator [5] #BM

1/2
oM = { ) (n‘%M)Q} 1)

TEeT,
. 1/2
2
=i [ ] 210 [0y ar @)
T /€ET l
where
R=b+div(T(uy,)) in T, VT € 7, (23)

is the residual of the local equilibrium equation at element level 7 € .7, and

[T(uen )] VY € &
0 v/ C T,
JPM = (24)
2(f = T(ugn)n) VL C Iy
0 V¢ C T,

To our knowledge, no error estimator for the Signorini problem is available for comparison. Notice
that #BM corresponds to our estimator 1™ if the contribution of the contact boundary is neglected
(i.e. treated as a Dirichlet boundary).

Let us now introduce a variant of our estimator as a consequence of the following consideration.
The expression of J* along I is (see Equation (19))

I =2((0u(uen) + e [g(ug)] I + oo(ugn)7)

which can be rewritten as

J{* = 2(([an(ueh)]+ - [Gn(ush )]_ + 8_1 [g(ush )]+)I’l + G‘c(ush )T) (25)

where

[6,(u)]” = — min{0, g, (1)}

The tangential component o;(u.;, )7 is clearly identified with a spurious friction which is an evidence
of local error because our problem is frictionless. On the other hand, a positive value (traction) in
the normal component, given by [6,(uy )] 5, is also an evidence of local error because we have
an unilateral contact problem, i.e. traction forces are not allowed along the contact boundary [.
On the other hand, when ,(u.) is negative some cancellation will occur with the penetration
term &~ '[g(uy,)]" (which plays the role of a reaction force). However, due to the fact that the
solution u,, of (12) and the penetration term &~ '[g(u,;,)] are polluted with numerical error when &
is small, this cancellation is unlikely to occur. As mentioned in the beginning of this section, this
was the reason to use for ug, the solution w,;, and for ¢~ '[g(us)]" the solution A, obtained by
the augmented-Lagrangian method.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2001; 50:395-418
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The considerations above enable us to provide, as an alternative to n™*, the following estimator:
n** identical to n* with J along I, defined now by J,*

I =2 ([on ()] 1+ 0e(tye)0) (26)
It should be noted that these three error estimators (#*,#** and #®M) only differ in the term J,
associated to the contact boundary (Equations (19), (24) and (26)). The #™* global error estimator
proposed in this work contains all the terms that contribute to the error. The modified estimator
n™* only contains some of the previous terms (they are the terms identified with spurious friction
forces in a model which is frictionless, and spurious traction forces in a surface which only
admit compression forces) while in the BabuSka—Miller estimator, all these terms are neglegted.
Therefore, for a given finite element mesh, the value of the estimated error obtained with the n*
estimator is bigger than the value obtained with the %M estimator. In turn, the value obtained
with the n™* will be between the other ones two.

The numerical examples presented in this section (in particular, see Example 3, Figures 18, 20
and 22) corroborate the above-mentioned. Therefore, in an adaptive analysis we will hope that
using the #™*-estimator the elements in the contact region should be smaller than the elements
obtained with the nBM-estimator (see Example 3). Despite the formal differences among these
estimators, it is important to note that during the adaptive process, the contribution of J;* in the
global error spreads quickly to zero. Then in the limit (from the computational point of view the
second or third adaptive iteration) the final behaviour of these three estimators should be similar.

It is necessary to point out that our estimator can be modified in order to be applied in more
efficient methods to solve the contact problem. As an example, we can mention how to make this
modification for the constraint function method [21, 22]. In this case it is enough to replace the
contact force A with the equivalent force ¢/g(u). Nevertheless, we decide to work with the direct
penalization because it corresponds to a stronger nonlinearity.

4.1. Adaptive procedure

The adaptive procedure we perform is the same regardless of the specific estimator considered.
Given an initial mesh 7, consisting of Ny elements, we will successively refine the mesh, gen-
erating new meshes 77, J,, etc., with numbers of elements approximately given by N; =4N,,
N, =4Nj, etc. Each one of these meshes is generated using the advancing front technique
[19, 23-28] trying to produce a uniform distribution of the local error estimator over all
elements [29].

The error estimators are used to define the relative desired element size at each element 7 in
the old mesh according to

T C

new —

h hlq (27)

nr

where Al is the diameter of the elements in the new mesh at the location of the triangle 7' in
the old mesh, which has diameter 4, and yields a local error estimator 7. The normalization
constant C is the expected local error indicator equally distributed over all elements in the new

mesh
C=N""?y (28)
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where 1 is one of the considered error estimators and N is the desired number of elements in the
new mesh.

As mentioned before, our remeshing algorithm is based on the advancing front technique. In
this technique, the mesh generator tries to build equilateral triangles in the metric defined by the
variable metric tensor S which, at point X of the actual (old) mesh, takes the value defined by

1
SX)=—I 29
=306 (29)
where I is the identity second-order tensor in the plane, A,.w(X) is the diameter of an element
to be generated at point X and dynamically defined along the mesh adaptation process described
below.

4.1.1. n-adaptive procedure.

1. For each element compute the local error #7 and the global error #.

2. Given a number of elements N in the new adapted mesh, the expected local error indicator,
equally distributed on all elements in the new triangulation is given by (28).

3. The element size at element level 7 in the old mesh is estimated using expression (27).

4. From the information at element level, different approaches [3] can be chosen to find the
distribution at finite element nodal level /ey (P).

5. In the remeshing algorithm it has been assumed that all triangles in the new mesh will be
equilateral; as this will never happen, the new mesh will only approximately consist of the
desired number of elements. To force the equality between these two numbers, the element
size h at nodal level, must be scaled. In particular, for the /e (P) distribution the expected
number of elements in the new finite element mesh is given by

4 1
Ne,..,. = —= [ —dQ 30
€lnew \/§ /Q h2 ( )

6. Then, the scaled value for the element size at nodal level P is given by

N,
Tnen(P) = A/ =35 X hew (P) (31)
7. Generate the new mesh and return to the step 1.

4.2. Examples

For all the examples presented in this section the following analyses have been performed.

1. Stress analysis for meshes with quasi-unifom element size %, /2, h/4 and h/8, (sometimes
also 1/16).

2. For the coarse and the most refined uniform mesh, the domain distribution of the error
estimator n* (denoted by EtaT in the figures) is presented.

3. Using the estimator #™ and the adaptive process described before, a 3 or 4-level adaptive
analysis is performed. The first adapted mesh is obtained applying the adaptive procedure
to the first coarse mesh taking the same number of elements. As mentioned, the automatic
mesh generator [27] used in this work is based on the advancing front technique and cannot
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Figure 2. Problem 1. Adapted meshes.

control exactly the number of elements to be generated. Hence, the first adapted mesh has
roughly the same number of elements as the coarse mesh has. The associated finite element
meshes are presented together with the domain distribution of the error estimator n* (denoted
by EtaT in the figures).

. The reduction rate for each estimator as a function of the number of nodes of the associated

mesh, is also presented using log(error estimator) vs log(number of nodes) figures. In these
figures, only the estimators #* and #®™ are plotted, since the associated values for the »**
estimator are practically identical to #®™. Also the notation ‘um’ and ‘am’ are used for
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Figure 3. Problem 1. »* error distribution for the coarse and the most refined uniform meshes.
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Figure 4. Problem 1. n™* error distribution for n*-adaptive procedure.

results obtained with uniform and adapted meshes. In the same figures, the maximum values

max ,, %

of the estimator #*, denoted by
respectively.

n™, are also plotted for uniform and adapted meshes,
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Figure 6. Problem 1. Contact reaction evolution for uniform meshes.

Problem 1. The first example is a plane stress problem with unilateral boundary conditions
inducing a discontinuity on the contact reaction stresses distribution along the contact boundary
I'.. The data of the problem are described in Figure 1 together with the first coarse uniform mesh
which has 29 nodes and 39 elements. The finest uniform mesh (%/16) has 4728 nodes and 9181
elements. Figure 2 shows the sequence of meshes obtained with the adaptive procedure taking 1™
as the error estimator (34 nodes and 47 elements for the first, 127 nodes and 214 elements for the
second, 512 nodes and 942 elements for the third and 2156 nodes and 4143 elements for the most
refined adapted mesh). As mentioned, the first adapted mesh is obtained applying the adaptive
procedure on the first coarse mesh and taking the same number of elements for the two meshes.
The distribution of the error estimator for uniform and adaptive refinements are shown in Figures
3 and 4, respectively. Since no singularities are found in this problem, the adaptive procedure
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Figure 7. Problem 1. Ty, stress distribution for the most refined
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Figure 8. Problem 2. Data.

Figure 9. Problem 2. First uniform mesh and adapted meshes.

and the sequence of uniform meshes produce an optimal reduction rate of the error estimator.
The performance of the different error estimators are presented in Figure 5. The derivative of the
contact reaction along the boundary has a point of discontinuity (see Figure 6). As expected, this
discontinuity produces a concentration of elements in the neighbourhood of this point during the
adaptive process. Moreover, this point of discontinuity is clearly depicted by the distribution of
the stress T,,. Figure 7 shows this distribution for the most refined uniform (4728 nodes) and
adapted (2156 nodes) meshes, respectively.

Problem 2. The second example is again a plane stress problem but now the discontinuity
is induced by the distribution of applied loads on I and (less severe) by the contact reaction
distribution. The data of the problem are shown in Figure 8. The first coarse uniform mesh,
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Figure 10. Problem 2. #™ error distribution for the coarse and the most refined uniform mesh.
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Figure 11. Problem 2. #™ error distribution for #™-adaptive procedure.

with 126 nodes and 200 elements, is shown in Figure 9. The most refined mesh (%#/8) has 6601
nodes and 12 800 elements. Figure 9 also shows the sequence of meshes obtained with the adap-
tive procedure taking n* as the error estimator (the first mesh has 143 nodes and 240 elements,
the second has 541 nodes and 998 elements and the third has 2229 nodes and 4299 elements).
The distribution of the error estimators for uniform refinement and the n*-adaptive procedure are
shown in Figures 10 and 11, respectively. Since no strong singularities occur in this problem,
the adaptive procedure and the sequence of uniform meshes produce an optimal reduction rate
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Figure 13. Problem 2. T, stress distribution for the most refined
uniform mesh (%/8) and the last adapted mesh.

of the error estimator. The performances of the different error estimators are presented in
Figure 12. The two points of discontinuity are clearly detected by the distribution of the stress T,,.
Figure 13 shows this distribution for the most refined uniform mesh (6601 nodes) and for the last
adapted mesh (2229 nodes), respectively. As expected, these discontinuities produce a concentra-
tion of elements in the neighbourhood of these points. Finally, Figure 14 shows the evolution of
the contact reaction for the sequence of uniform meshes.

Problem 3. The third example is a continuous beam, modeled as a plane stress problem, under
the action of a uniform vertical load and with discontinuous rigid unilateral contact support inducing
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Figure 14. Problem 2. Contact reaction evolution for uniform meshes.
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Figure 15. Problem 3. Data.
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Figure 16. Problem 3. First uniform mesh and adapted meshes.

a strong singularity. The data of the problem is shown in Figure 15. The first coarse uniform mesh
which has 126 nodes and 200 elements is shown in Figure 16. The most refined mesh (%/8) has
6601 nodes and 12800 elements. Figure 16 also shows the sequence of meshes obtained with
the adaptive procedure taking 1™ as the error estimator. The evolution of the error estimators for
uniform refinement and the adaptive procedure are shown in Figures 17 and 18, respectively. Due
to the singularity, a strong concentration of elements in the neighborhood of this point is obtained.
Moreover, only the adaptive procedure produces an optimal reduction rate of the error estimator.
The performances of the different error estimators are presented in Figure 19.
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Figure 17. Problem 3. #™ error distribution for the coarse and the most refined uniform mesh.
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Figure 18. Problem 3. 4™ error distribution for #™-adaptive procedure.

Figure 20 shows the distribution of the Babuska—Miller estimator #BM for the first adapted mesh,
using n*-adaptive procedure. This distribution is quite similar to the distribution of #* shown in
Figure 18. Its maximum value is approximately 30 per cent less than the maximum of the latter
estimator. Hence, if we use an n®M-adaptive procedure, the appearance of the finite element meshes
will be qualitative similar to the ones obtained with an #*-adaptive procedure. However, near the
point of singularity, the element size will be greater as we can see in Figure 21, where the
finite element meshes obtained with the Babuska—Miller estimator-adaptive procedure are shown.
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Figure 20. Problem 3. Distribution of the #®™ error estimator for the first
adaptive mesh using the #™-adaptive procedure.

Figure 22 shows the distribution of the #™ error estimator for each adapted finite element mesh
obtained with the #®M-adaptive procedure.

5. FINAL REMARKS
The proposed adaptive analysis for the contact problems studied in this work, induces a strong
computational cost reduction. In fact, for Problem 1, Figure 7 shows that the adaptive strat-
egy requires half of the nodes needed by uniform refinement to obtain the same results. For

Problem 2, Figure 13 shows that the adaptive analysis requires only 1/3 of the nodes needed by
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Figure 22. Problem 3. #™ error distribution for adapted meshes using an #™-adaptive procedure.

the other refinement technique. Moreover, using the proposed global error estimator as an indicator
of the quality of the approximate solution, we observe that the adaptive strategy requires values
ranging from 1/4 to 1/10 of the number of nodes when compared with the uniform refinement
approach (see Figures 5, 12 and 19).

On the other hand, the numerical performance of the n™ error estimator confirms the theoretical
results presented in Section 3. Moreover, let ./~ be the number of nodes in the finite element mesh
then, for singular contact problems, the optimal reduction rate /(.4 ~'?) is also obtained using
our n-adaptive procedure with # being any of the error estimators n*, n** or #®™. Notice also
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that using our adaptive procedure, the reduction rate associated with the maximum of the error
indicator is of the type @(./"~') (see Figures 5 and 12) and ¢(.#"~'/?) for the third problem (see
Figure 19).

The formal differences among these three error estimators (4%, #** and #BM) are restricted to
the contribution of the contact boundary into the total error estimator. For the nBM-estimator, this
contribution is zero, for the #**-estimator this contribution is associated with friction and to the
positive part of the normal surface traction. For the #*-estimator, this contribution is associated
with the friction surface traction and to the jump between internal and external (reaction) normal
surface traction. Apparently, these contributions become negligible along the adaptive procedure,
rendering all estimators approximately equivalent in what concerns mesh refinement specification.

From the above considerations any of these estimators can be used in contact problems. However,
from a computational point of view, singularities (or discontinuities) are better detected using the
n*-adaptive procedure (see, for example, Figures 18 and 20).

k

APPENDIX A: THE AUGMENTED-LAGRANGIAN ALGORITHM

It is well known that penalty formulations have the drawback that numerical unstabilities arise for
small values of ¢, which in turn are needed to simulate the exact indicator function Ix. More-
over, within this approximation the complementary equation (1, )g(us) =0 is not satisfied along
I.. To overcome this difficulty we use in this paper a penalty function that is the result of an
augmented-Lagrangian formulation (see Reference [18])

2ier

, e , 1 2
0 < da <C, Ps(usha)bsh) = 72 { l:max (0’ Leni + Sg(ush(xi))>:| - 'gh,i} (Al)

The algorithm consists in a sequence of k& traditional penalization problems yielding equilibrated
solutions u,, for fixed values of A, and &f. Then, the minimization procedure is

(0) Given Ay, >0, k=0
(1) Find wu, €V,

Ugkp = arg lél‘f; {%Q(U,U) - I(U) + PS(Ua /Iskh)}
vEV,

(2) Fori el find

1
ie"“h,i = max {09 ;“s"h,i + g(us"h(xi))}
&

(3) If ;“sk+1h,i g(ugkh(x,-)) < ')) VI S 1 STOP
Else: el <e,k =k + 1, GOTO (1).

Step (1) is solved by the quasi-Newton technique and global convergence is achieved for an
equilibrated configuration whose complementary equation (Step (3)) is (numerically) equal to
zero. In the examples shown in this paper, we adopted &' =2/3¢¥ and y = 1073,
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