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Abstract The hp-Cloud Method is a new and promising
approximation technique which, without relying on a
mesh, can be used in both ®nite and boundary element
methods. In spite of its great success in solving problems
with high accuracy and convergence rates, there are still a
number of aspects to be qualitative and quantitatively
investigated. Among these are: the sensitivity to the weight
functions used in the construction of the Shepard func-
tions, the sensitivity to the class of enrichment functions
used in the p-adaptivity, the sensitivity to the cloud
overlapping, and the variations of the condition number.
This paper describes numerical experiments regarding
some of the many choices allowed by the hp-Cloud
methodology applied to Timoshenko beam problems.
Since the Moving Least Squares Method is used to generate
the partition of unity, some choices of weighting functions
are studied and the results are compared to each other. In
addition, convergence results are presented for successive
h-re®nements, when the number of clouds is increased,
and for increasingly higher order approximation functions
characterizing p-re®nements. Since the new basis func-
tions are in general not polynomials, an adaptive inte-
gration procedure is employed. The ef®ciency of several
types of basis functions is veri®ed. The rates of h and p
convergence are determined as functions of other pa-
rameters. Also, examples of degradation of the stiffness
matrix condition number is displayed and discussed.

1
Introduction
Many continuum mechanics problems like crack propa-
gation, large deformation and shape optimization are
characterized by a continuous change of the domain and

this may require several remeshings. Even when few
meshes are needed, this modeling can be quite expensive
and time consuming besides being error prone. This has
motivated along the last decade a more intensive search
for numerical procedures which preclude the use of a
mesh for accurately representing the solution shape, al-
though an auxiliary mesh may be needed for integration
purposes. Such new concepts have been implemented both
in the Finite Element Method and Boundary Element
Method. The main proposals which follow the meshless
concepts are: Diffuse Element Method, DEM, (Nayroles
et al. 1992); Smoothed Particle Hydrodynamics Method,
SPH, (Gingold and Monaghan 1982); Element Free Galer-
kin Method, EFGM, (Belytschko et al. 1993; Belytschko
et al. 1994; Krysl and Belytschko 1995) and Boundary
Node Method (Mukherjee and Mukherjee 1997); Wavelet
Galerkin Methods (Amarantuga et al. 1994); Reproducing
Kernel Particle Methods (Liu and Chen 1995; Liu et al.
1996); A meshless local boundary integral equation (LBIE)
method (Zhu et al. 1998a; Zhu et al. 1998b); A meshless
local Petrov-Galerkin (MLPG) method (Atluri and Zhu
1998a; Atluri and Zhu 1998b); Partition of Unity Finite
Element Method, PUFEM, (BabusÏka and Melenk 1995);
and the hp-Cloud Method (Duarte and Oden 1995a; Duarte
1995b; Duarte and Oden 1996a; Duarte and Oden 1996b;
Duarte 1996c; Nicolazzi et al. 1997a; Nicolazzi et al.
1997b).

The hp-Cloud Method, which was proposed by Duarte
and Oden (Duarte and Oden 1995a), includes in its for-
malism both the h-enrichment, now interpreted as an in-
crease in the nodal density, and the p-enrichment by
hierarchically multiplying the cloud partition of unity
functions by selected polynomials. In contrast with other
proposals, Duarte and Oden have also laid all the mathe-
matical foundations which support the method and the
adaptivity criteria from its beginning (Duarte and Oden
1995a).

In the present paper, the basic concepts of the hp-Cloud
Method is reviewed and some of the results obtained up to
now are presented. They are concerned with the sensitivity
of the formulation to different choices of the weight
functions used in the Shepard Method, to different choices
of the enrichment functions and to different cloud over-
lapping, as well as the degradation of the condition
number of the ®nal stiffness matrix. The hp-Cloud Method
has been deeply investigated for solving potential and
linear elasticity problems and, presently, one is extending
the investigations for higher order problems. The
®rst steps, which are presented here, are based on the
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Timoshenko beam model which includes the same kind of
dif®culties as the Mindlin/Reissner plate ones. Among
these is the locking problem when solving by conventional
®nite element procedures.

This paper is organized as follows. In Sect. 2, the con-
cepts related to the partition of unity are presented. In
Sect. 3, the procedure to approximate the solution is
presented and in Sect. 4 it is explained how to improve the
approximations by adding new enriched functions. In
Sect. 5, the selected variational principles are outlined
together with numerical results regarding weight function
effects over p-re®nement convergence rates, locking effects
under h and p re®nements, and effects of cloud overlap-
ping. The adopted numerical integration is brie¯y ex-
plained in Sect. 6. Finally, some conclusions are given in
Sect. 7.

2
Partition of unity
The FEM-hp-Clouds is a method which is applicable to
arbitrary domains and makes use of a randomly distrib-
uted set of nodes for describing the approximated solu-
tion. Based on error estimators and indicators, the
accuracy is increased by appropriate h, or p, or both en-
richments. In order to build the approximation functions,
the Shepard Method (Lancaster and Salkauskas 1981) is
used with radial functions with variable support as weight
functions.

In order to introduce the hp-Cloud approximation
functions, one initially considers an arbitrary set QN of N
points xa 2 �X , where �X denotes the closure of the domain
X � Rn, n � 1; 2 or 3, that is

QN � fx1; x2; . . . ; xNg; xa 2 �X : �1�
Around each point xa, a neighborhood xa is associated
such that the union of all such neighborhoods covers the
domain �X. Now one can de®ne Clouds and partition of
unity.

Clouds are the elements xa of an open covering FN of
the domain. For each cloud there is an associated point xa.

Partition of Unity subordinated to the open covering FN

is the class of functions LN � ua x� �f g such thatP
a ua�x� � 1 for every x 2 �X.
There are some additional and more restrictive de®ni-

tions of partition of unity but all it is needed here is the
requirement that the sum of the functions ua�x� be equal
to one at every point x � �X . In order to obtain an ad-
missible set LN , a weight radial function Wa x� � is de®ned
for each cloud xa and has this cloud as its compact sup-
port.

Hence, the functions ua�x� are obtained by using the
Shepard functions which are simply computed as

ua�x� �
Wa x� �PN
b�1 Wb x� � : �2�

It is apparent that the shape of the partition of unity ap-
proximations ought to be dependent on each choice of the
weight functions and it is presently reported the use of four
of them. The essential criteria is to attribute a greater weight
to the nearest points xa of x than those located at farther

distance and to have the global continuity required by the
problem. This is here accomplished by using decreasing
weight functions which are restricted to be nonzero only
over its support, here referred to as cloud. The reason for
this approach is to obtain local representations similar to the
global approximation functions of the Finite Element
Method, resulting therefore in sparse coef®cient matrices.

As examples of one-dimensional weight functions, one
can mention: the tent function built by two straight seg-
ments which is similar to those used by BabusÏka and
Melenk (1997) in the PUFEM Method; splines which are
zero together with its ®rst ``p'' derivatives at the cloud
boundary; singular functions in terms, e.g., of (1/
xÿ xaj j�q multiplied by functions which are also zero to-

gether with its ®rst ``p'' normal derivatives at the cloud
boundary; trigonometric functions; and so on.

3
Approximation in the cloud
Consider a weight function, Wa�x� � 0, 8 x 2 �X; with
Wa�x� 2 Cl

0�xa�, that is, Wa�x� lies in the space of con-
tinuous functions together with its derivatives up to the
order l and, in addition, has the cloud xa as its compact
support. The clouds are here de®ned as balls, B, with ra-
dius h and centered at the points xa 2 QN . Hence, the
weight function associated with the ath cloud can be
written as Wa�x� � W�xÿ xa� and the associated partition
of unity function is evaluated as

ua�x� �
Wa x� �PN
b�1 Wb x� � : �3�

By de®ning a functional over the space Cl
0��X� as

f ; g� �x�
XN

a�1

Wa�x� f �xa�g�xa� �4�

one can easily show that the partition of unity LN allows
the approximation of a continuous function u: �Xÿ!R,

with �X � Rn, n � 1, 2 or 3 by

�Lu� x� � �
XN

a�1

ua�x�ua �5�

where ua � u�xa�.
Notice from the relation (5) that the functions of the

partition of unity plays the role of the approximation
functions used in Finite and Boundary Element methods,
except that they do not always have an explicit form and
have to be numerically evaluated at each integration point.
Moreover, these functions do not have the selective
property ua�xb� 6� dab if more than one cloud covers any
of the QN points or singular weight functions are not used
(Duarte 1995b; Lancaster and Salkauskas 1981). Therefore,
as in the Least Square Method, the value of the approxi-
mation Lu at the point xa is in general not equal to ua as
usually occurs in FEM and BEM. In addition, note that the
covering of an arbitrary integration point is unknown
beforehand, so, one must ®rst to identify the covering
clouds of a given integration point and then to compute
the partition of unity functions as well as its derivatives at
that point.
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It has been proved (Duarte and Oden 1996b) that the
best choice is to use the Shepard functions, which are
inexpensive to compute and meet the proposition stated in
the previous section, and to p-enrich this set by multi-
plying them by linearly independent functions. If one
denotes the enrichment set of M functions by

Li�x�; i � 1; . . . ;Mf g, the full set of approximation func-
tions is

FN �
u1L1 u2L1 � � � uN L1

u1L2 u2L2 � � � uN L2

..

. ..
. . .

. ..
.

u1LM u2LM � � � uNLM

8>>><>>>:
9>>>=>>>; �6�

Equation (6) illustrates the special case of uniform en-
richment, but the procedure allows to enrich each cloud
xa independently from one another. That is, the number
and the kind of enrichment functions may vary from cloud
to cloud.

Another great advantage is that these functions Li can
be almost anything, that is, they be can polynomials,
trigonometric functions, singular functions, Trefftz func-
tions, and so on. The more representative of the physical
problem they are the greater is the convergence rate. In-
deed, very high convergence rates have been achieved
when a wise selection of the enrichment scheme is used,
specially if one knows some information about the solu-
tion, like, e.g., order of singularity, directions of anisot-
ropy, among others.

4
Weight and enrichment functions
Some aspects of the numerical implementation of the hp-
Cloud method to Timoshenko beam problems are investi-
gated with the intent to better understand the behavior of
this procedure in more complex multi-dimensional boun-
dary value problems. So, one considers hereafter one
dimensional approximations applicable to the problems

under consideration. Initially, one restricts ourselves to the
situation where every point x =2QN is covered by only two
clouds. Since the only requirement is that the set of Clouds
covers �X, every point x must belong to at least one cloud. But
notice that if a region is covered by just one cloud, the
partition of unity will consist of a single constant function
over such a region, as shown in Fig. 1. When this occurs, the
gradients of this approximating function are zero and do not
contribute to the potential energy functional and, in some
cases, may lead to almost singular stiffness matrices. These
effects are further discussed in Sect. 5. Next, one considers
only the cases in which every point is covered by two Clouds.

Among the several functions which could be chosen,
four particular ones are reported in this paper. As a matter
of illustration, consider a sequence of four points with
coordinates: x0, x1, x2, and x3 such that x0 < x1 < x2 < x3.
Therefore, these points de®ne intervals of length

h0 � x1 ÿ x0; h1 � x2 ÿ x1; h2 � x3 ÿ x2 : �7�
The partitions of the unity which cover a point x in the
interval x1±x2 are de®ned by two weight functions, w1�x�
and w2�x�. The considered weight functions are the fol-
lowing:

(i) Tent function

w1�x� �
xÿx0

h0
x 2 x0; x1� �

x2ÿx
h1

x 2 x1; x2� �
�

�8�
(ii) LN-1 function

w1�x� � 1� xÿ x1

h0

� �4

1ÿ xÿ x1

h1

� �4

x 2 x0; x1� �

�9�
(iii) LN-2 function

w1�x� � 1� xÿ x1

h0

� �2

1ÿ xÿ x1

h1

� �2

x 2 x0; x1� �

�10�

Fig. 1a, b. Model with two nodes, A and D, with cloud overlapping; a Weight functions; b Partition of unity
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(iv) PT function

w1�x� �
cos2 p�x1ÿx�

2h0
x 2 x0; x1� �

cos2 p�xÿx1�
2h1

x 2 x1; x2� �

(
�11�

and the w2�x� functions are respectively de®ned by in-
creasingly by one the x and h indices.

The tent function results in an approximation function
which is also a piecewise linear function and therefore has
continuity C0�X�. The LN-1 function (Nicolazzi et al.
1997a; Nicolazzi et al. 1997b) is a C3�X� function. The LN-
2 function is a variant of the former and is C1�X�, as well
as the PT weight function. The tests performed indicate
differences in the performance of these functions. Figure 2
qualitatively depicts these four weight functions over the
interval 0; 1� �.

Two basis were chosen as enrichment functions. The
®rst one consists of polynomial functions

Li�x� � xiÿ1 for i � 1; 2; . . . ;M; x 2 X

and the second one consists of trigonometric functions

L1�x� � 1

Li�x� � sin
ipx

2l

Li�1�x� � cos
ipx

2l
; i � 2; 4; 6; . . . ;M; x 2 X

The coordinate x is measured as a global coordinate in the
same way as in the weight functions, although they could
as well be de®ned in terms of local coordinates. Here l is a
representative length of the size of the domain, which
de®nes a wave length for each trigonometric function.

5
Numerical results
Presently, one is concerned with Timoshenko beam model
problems because it is a higher order problem when

compared to elasticity and potential problems, presents
the same sort of locking problems as the Mindlin/Reissner
plate models, and brings the advantages of being one
dimensional. Consider a cantilever Timoshenko beam,
Fig. 3, loaded either by a concentrated load, F � 1000 N, at
its tip or by a distributed sinusoidal load, q � 1000 sin
�px=l�N/m, over its length, l.

For comparisons with analytical solutions, one consid-
ers the Total Potential Energy Functional

P �
Z l

0

EI

2
W2
;x �

GAs

2
�v;x �W�2 ÿ q � v

� �
dxÿ F � v�l�

�12�
where: E and G are the longitudinal and transversal
modulus of elasticity, respectively; I and As are the re-
spective moment of inertia and shear area of the trans-
versal cross section; and v and W are the linear and
angular cross section displacements, respectively, and
belong to the space of functions H1�X�.

After applying the Principle of Minimum Potential
Energy, which requires that the ®rst variation of the
above functional be equal to zero for any kinematic
admissible displacement ®eld, one obtains the
following differential equations and boundary condi-
tions:

ÿEI W;xx � GAs�v;x �W� � 0 �13�
ÿGAs�v;xx �W;x� � q �14�
W�0� � 0 M�l� � EI W;x � 0 �15�
v�0� � 0 Q�l� � GAs�v;x �W� � F

In the ®rst load case, only the concentrated tip load is
applied and the solution is:

v�x� � F

2EI
l � x2 ÿ x3

3

� �
� F

GAs
� x �16�

W�x� � Fx

EI
� x

2
ÿ l

� �
�17�

and, under the distributed load q�x� � a � sin�px=l�, the
solution can be written as:

v�x� � a

EI

l

p

� �4

� sin
p
x

lÿ l

p

� �3

�xÿ 1

p
x3

6
ÿ l � x

2

2

� �" #

� a

GAs

l

p

� �2

� sin
px

l
� l

p
x

" #
�18�

Fig. 2. Weight functions de®ned over the interval [0, 1]

Fig. 3. Timoshenko beam loading
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W�x� � a

EI
ÿ l

p

� �3

cos
px

l
ÿ 1

� �
� l

p
x2

2
ÿ l � x

� �" #
�19�

Presently, one considers the beam to be l � 0:45 m long,
except in locking models where one takes l � 16 m, and
the remaining data are as follows:

E � 1:97 � 1011 Pa As � 1:33776 � 10ÿ4 m2

G � 7:576923 � 1010 Pa I � 8:118207 � 10ÿ7 m4

Using these data, several models were solved for investi-
gating characteristics of the cloud methodology. In all of
them the cloud centers are equally spaced, symmetric, and
with equal radii, h. Among the several aspects which de-
serve consideration, the next four subsections discuss
some of the ®rst concerns. Moreover, the convergence
results are measured in relative error energy norm, that is

E �
���������������
U ÿ U0

U0

r
�20�

where U and U0 are the strain energies evaluated through
the ®rst two terms of Eq. (12) for the approximate and
exact solutions, respectively.

5.1
Weight function effect on p-refinement
Here only two clouds centered at the beam ends were used
and the number of enrichment functions for each weight
function was increased. The relative error energy norm
versus the number of polynomial or trigonometric en-
richment functions for the four different weight functions
de®ned in Eqs. (8)±(11) are shown in Fig. 4. Here, the
analytical solution is reached with the tent weight function
and 3 polynomial enrichment functions, because the so-
lution for the problem is a cubic polynomial as indicated
in the corresponding curve. The fact that the solution is a
polynomial also suggests that the relatively low rates of

convergence observed in Fig. 4b is due to the type of en-
richment functions used. The trigonometric functions
would be more appropriate to problems with harmonic
solutions.

The results shown in Fig. 4b for the trigonometric en-
richment present, local plateaus, that is, the addition of a
new cosine enrichment function sometimes does not
strongly improve the approximate solution. This suggests
that the solution is almost orthogonal to some of the co-
sines used in the enrichment set.

Figure 5 show the respective evolution of the condition
number, ratio between the greatest and the smallest stiff-
ness matrix eigenvalues, for both cases. The trigonometric
enrichment seems to result in rates of variation similar for
any weight function. The polynomial functions, in con-
trast, seems to result in rates of variation of the condition
number dependent on the type of the weight functions
used.

Comparison between Figs. 4a and 5a indicates that, as
the degree of the weight function increases so does the
rates of change of the condition number, but the rate of
convergence slightly decreases. It can be noted that the
function LN-1 is an incomplete polynomial of degree 8, the
LN-2 function is of degree 4 and the tent function is of
degree 1. The PT function is trigonometric in nature, but
does not deviate excessively from a fourth degree Taylor's
expansion. Accordingly, its results does not deviate very
much from those obtained from the LN-2 function.

5.2
Locking effect under p and h refinements
For this study a long beam, l � 16 m, was considered
instead. An h-re®nement was performed by increasing
the number of clouds in the model for some kinds of
weight functions and types and number of enrichment
functions. The results for the relative error energy norm
versus the number of degrees of freedom in the model
for different weight functions, and 1 and 3 polynomial

Fig. 4a, b. Relative error energy norm E versus the number N of polynomial a and trigonometric b enrichment functions for
different weight functions and for a two cloud Timoshenko beam model
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enrichment functions are shown in Fig. 6a. Figure 6b
shows the same results when 1 and 4 trigonometric
enrichment functions are used. In Figure 6a, the curve
for the tent weight function with the polynomial en-
richment is not shown. The reason is the following: for
each cloud, the weight function is a polynomial of de-
gree one and the enrichment functions. Li are of degree
two. Therefore, the enriched partition of unity is able to
represent a complete cubic polynomial and the exact
solution can be obtained for the entire beam with a
single cloud. Clearly, and a priori knowledge about the
nature of the solution of the problem can be used to
choose appropriate weight and enrichment functions in
order to accelerate the convergence or even to obtain
the exact solution. Figure 6 show that the locking effect
is present for low order functions and diminishes as the

degree of the approximating functions grows. This is
indicated in the ®gures, where the models with only one
enrichment function per cloud show nearly no conver-
gence, while for three and four functions the rate of
convergence is considerable.

Finally, Fig. 7 show the corresponding evolution of the
condition number for both types of enrichment functions
versus the number of degrees of freedom. It is observed
that the condition number tends to grow exponentially
with p-enrichment, while the growth in the h-enrichment
happens with constant or decreasing rates. This tendency
is in accordance with observations made by Duarte
(Duarte 1996c) in connection with plane elasticity and
potential problems.

Since one needs here only Co continuity and the tent
weight function showed better results as far as conver-

Fig. 5a, b. Condition number C versus number of polynomial a and trigonometric b enrichment functions for different weight
functions and for a two cloud Timoshenko beam model

Fig. 6a, b. Relative error energy norm versus the number of degrees of freedom for different weight functions and polynomial a
and trigonometric b enrichment functions for a long Timoshenko beam models under h-re®nement
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gence rates and condition numbers are concerned, one
has restricted the following studies to this sort of weight
function which, in addition, has lower computational
cost.

5.3
Modified variational principle
Since the partition of unity functions do not have the
selective properties due to the arbitrariness of the cloud
overlapping, that is uj�xi� 6� dij, one usually applies the
Dirichlet boundary conditions through Lagrange multi-
pliers. In order to avoid increasing the size of the stiffness
matrix, these multipliers are identi®ed to the force and
bending moment reactions. These are now written in
terms of the displacement ®eld variables at the boundary
point in the respective Modi®ed Minimum Potential
Energy functional which now reads as

PM �
Z l

o

EI

2
W2
;x �

GAs

2
�v;x �W�2 ÿ q � v

� �
dx

ÿ F � v�l� ÿ EI W;x�Wÿ �W�jx�0

ÿ GAs�v;x �W��vÿ �v�jx�0 �21�
Hence, in the next examples, in which the nodes are cov-
ered by more than one cloud, the boundary conditions are
only approximately met. In Fig. 8, is shown that the error
involved in the boundary condition enforcement also de-
cays as a p-enrichment is effected. The reason for this
solution behavior is that now such boundary conditions
are not strongly imposed by lines/columns eliminations,
but, instead, are applied through stress components which,
in addition, have a slower convergence rate than the dis-
placements.

5.4
Effect of cloud overlapping
In this study one considers only the tent weight function
with variable coverings due to different, but uniform in

each case, coverage ratios, c. This is de®ned as the ratio
between the clouds radii, h, and the clouds center spacing,
l=nc, where l is the beam length and nc is the number of
clouds minus one. Figure 10a illustrates the case in which
the coverage ratio is less than one.

One can immediately verify the deleterious effect when
the coverage ratio is less than two in Fig. 10a, where the
relative error energy norms for models made of ®ve
clouds and enriched with complete fourth order poly-
nomials are depicted for the concentrated load problem.
On the other hand, when the coverage ratios c are greater
than one the quality also decreases for the same p-re-
®nement, but for the same coverage ratio the results are
improved by increasing the polynomial/trigonometric
enrichment for the sinusoidal load problem. This can be
obviously veri®ed through the Fig. 11 for the concen-

Fig. 7a, b. Condition number C versus the number of degrees of freedom for different weight functions and for the enrichments:
a 1st and 3rd order polynomial and b trigonometric functions

Fig. 8. Comparison of error energy norms for weak and strong
Dirichlet boundary conditions
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trated load problem modeled by 5 and 9 clouds respec-
tively, and in Fig. 12 for the distributed load. The pla-
teaus which appear in Fig. 11 for c � 1 is due to
numerical errors since the exact solution is a third degree
polynomial. But, one can note from Fig. 10b that for the

same p-re®nement the error initially increases and then
decreases as the coverage ratio increases from one up to
®ve.

Therefore one may conclude that no integration point
is to be covered be only one cloud and that the over

Fig. 9. Clouds overlapping ratio c � 2

Fig. 10a, b. Loss of accuracy due to clouds coverage ratio: a less than one for the concentrated load problem and b greater than
one for the distributed load problem

Fig. 11a, b. Loss of accuracy due to coverage ratio greater than one for the concentrated load case
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coverage, which is inconvenient as far as the stiffness
matrix sparsity is concerned, is not as detrimental since
the p-enrichment quickly compensates for the error
increase.

6
Numerical integration
One of the questions still open, concerns to the most
convenient integration scheme to be used. Since the
weight functions are generally not polynomials as well as
enrichment functions, there is an uncertainty in adopting
the most usual integration schemes. Then one has
adopted the Petterson scheme for implementing an
adaptive procedure (Petterson 1968). This scheme pro-
vides a methodology for optimally adding new points to
quadratures, that is, if one is using an n point scheme it
allows us to determine additional n� 1 points with
optimal coordinates and associated integration weights.
Then one has, e.g., the following stages: 1, 3, 7, 15, 31, 63
integration points. One should mention that all the
quadrature points are laid inside the domain of integra-
tion, e.g., between any two consecutive nodes like xn and
xn�1. For higher dimensional problems, one may use this
scheme in the same way as the Gauss-Legendre proce-
dure over an underlying mesh which is used only for
integration purposes.

The present procedure consists in integrating by two
consecutive stages and compare the relative error to a
given tolerance and, if it is still unsatisfactory, one in-
tegrates by adding the new points of the next stage and
repeating the scheme. Although cumbersome, this pro-
cedure avoids neglecting all the previous computations
in the next integration stage, which is critical in the
Boundary Element Method, and provides con®dence in
the performed integrations. The aforementioned exam-
ples were solved by using up to thirty one integration
points.

7
Conclusions
The performed tests con®rms that the hp-Cloud FEM pre-
sents great versatility in the choice of weight and basis
functions. There are indications that the rate of convergence
increases as the degree of weight functions is reduced.
Weight functions with higher degrees should so be reserved
to applications requiring higher smoothness of the ap-
proximate solution. These restrictions are not too serious
since they concern only to weight functions, and the solu-
tion can be better approximated by using higher degree
enrichment functions. The growth of the condition number
of the coef®cient matrix is however of important concern at
this point. As far as coverage is concerned, the recom-
mendation is that no integration point should be covered by
only one cloud and the over coverage, although detrimental,
is preferred since the error quickly decays along the p-en-
richment. However, the over coverage has to be avoided due
to the high increase in the computational costs due to the
partition of unity evaluation and due to a lesser sparsity of
the stiffness matrix. In order to avoid under and over in-
tegration adaptive schemes are recommended for dealing
with arbitrary clouds overlappings and p-enrichments.
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