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SUMMARY

The purpose of this work is to present a level set-based approach for the structural topology optimization
problem of mass minimization submitted to local stress constraints. The main contributions are three-
fold. First, the inclusion of local stress constraints by means of an augmented Lagrangian approach within
the level set context. Second, the proposition of a constraint procedure that accounts for a continuous
activation/deactivation of a finite number of local stress constraints during the optimization sequence.
Finally, the proposition of a logarithmic scaling of the level set normal velocity as an additional regularization
technique in order to improve the minimization sequence. A set of benchmark tests in two dimensions
achieving successful numerical results assesses the good behavior of the proposed method. In these
examples, it is verified that the algorithm is able to identify stress concentrations and drive the design to a
feasible local minimum. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The topological optimization of continuous structures has been an area of research of important
recognition in the last decades. While most of the literature focuses on the problem of maximum
stiffness (compliance problem) due to its own mathematical characteristics, in the last years, atten-
tion has regained to the structural problem related to minimizing of mass subject to local stress
constraints. However, this problem possesses some difficulties. One being the difficulty introduced
by local constraints, that is, stress levels at every material point must be constrained according to
failure criteria. Another is related to the so-called stress singularity phenomenon.

The study in [1] is, to the author’s knowledge, the first work addressing topology optimization
problems with stress constraints in the context of continuum structures using the concept of inter-
mediate artificial material Solid Isotropic Microstructure with Penalization (SIMP). This article
emphasizes the difficulty of the treatment of the stress constraint and the singularity phenomenon.
The work in [2] uses the same SIMP approach and a proposal of solution based on the augmented
Lagrangian technique. This approach is extended to multiple loading conditions [3] and contact
boundary conditions [4]. On the other hand, the work in [5] also extended the homogenization
method to treat problems involving stress but to objective functions corresponding to minimum
stress design subject to volume constraint. Also using SIMP concepts, the qp-approach [6] was
tested for topology optimization problems where minimum compliance is the objective function and
local constraints have been locally imposed on von Mises stress of each element [7].
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Some works such as [2, 4, 8] and others calculate the stress in the center of each element by
generating optimization problems numerically challenging because of the large number of local
stress constraints. On the other hand, several works [9–12] do not treat constraints as a local
measure but as a global approximation of the local stress constraints such as the p-norm or
the Kreisselmeier–Steinhauser function. However, it is known that using a global stress measure
decreases the computational expense but usually provides poor local control over the stress distri-
bution. With the aim for overcoming this undesirable side effect, some works have developed some
criteria to improve the use of global approximation. For instance, the work in [13] proposes the use
of the superconvergent patch recovery schemes to evaluate the stress field leading to a more reliable
evaluation of the global constraint. The approach in [14] groups elements in blocks or groups of
elements (block aggregated constraints approach) and thus produce a single stress constraint per
block using the Kreisselmeier–Steinhauser function. Similarly, the study in [15] uses the p-norm
to compute the normalized global stress measure of a set of elements belonging to regions within
the domain. Recently, the work in [12] uses a clustering technique, where stresses for several stress
evaluation points are clustered into groups using a modified p-norm.

A different proposal is based on the concept of topological derivative to solve local stress
constraint problems with different failure criteria, presenting very satisfactory results [8, 16].

In this study, the problem of minimizing the mass of a body subject to local stress constraints is
addressed on the basis of a level set approach. The researchers in [17] are among the first to introduce
the level set method in structural topology optimization problems. On the other hand, the papers
in [18] and [19] relate the information provided by shape sensitivity analysis with the movement
of the level set. It is well known however that these conventional level set methods present some
unfavourable numerical issues. Because of this, alternative level set-based techniques have been
developed for shape and topology optimization [20–26]. For a survey on the level set method, the
reader may refer to [27] and [28], and for a very thorough review regarding the use of different level
set techniques for structural topology optimization, see [29].

One of the first studies using the level set method for problems involving stresses is found in [30],
where a norm of the stress over the domain is used as objective function. In [31] is presented an
extension of that work to irregular domains and non-uniform meshes. The information of the shape
sensitivities of the von Mises stress function is isoparametricly mapped for a uniform Cartesian
mesh in which the equation of Hamilton–Jacobi is solved. A different approach linking the level set
method and stress constraints is due to [32] dealing with stress concentration minimization of 2D
fillets based on the level set description and the extended finite element method (X-FEM).

Early works using the level set method to deal with minimization of mass and stress constraints
were presented at conferences, for example, in [11], where the stress constraints are aggregated in
a single equivalent global constraint, and in [33], where regularized formulations for stress-related
topology optimization are proposed [34]. The study in [35] minimizes a global measure of von
Mises stress subject to a constraint of material volume. The level set controls the domain, and the
background mesh is constantly updated in order to follow the moving boundaries. The work in [36]
uses constraint aggregation techniques to deal with the local nature of the stress dividing the domain
in sub-domains called group constraints. The article in [37] presents a level set/X-FEM approach
to reduce the volume of a structure proposing a single stress constraint (called shape equilibrium
constraint function) for the optimization problem, relieving the computational expenses.

The study in [38] presents an algorithm for stress-constrained problems that relies on tracking a
level set defined via the topological derivative. Also, Zhang et al. [39] used the level set method for
designing stiff structures with less stress concentrations.

This present work deals with the problem of mass minimization subject to von Mises-based stress
constraints imposed locally in a finite number of sample points uniformly distributed along the
domain. The number of these sample points should be enough to identify all possible stress peaks
that may occur during the optimization process. The formulation is based on the level set approach
to control the domain, while the augmented Lagrangian mathematical programming technique is
used to account for the stress constraints in a form similar to that proposed in [2]. This technique
is able to automatically perform the appropriate selection of the relevant (active) stress constraints
among the domain. The main objective is to create an efficient algorithm capable of identifying
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A LEVEL SET APPROACH FOR TOPOLOGY OPTIMIZATION WITH LOCAL STRESS CONSTRAINTS 131

stress concentration regions and change the topology to a feasible local minimum. Being the stress
constraint the main focus of the present work, the implementation of the level set updating was here
restricted, as a first attempt, to the conventional upwind schemes shown in [27, 28].

In order to obtain a sequence of ideas for a better understanding of the procedure, the paper is
organized as follows. Section 2 states briefly the basic formulation of the problem, presents the
definition of the stress constraint, and states the augmented Lagrangian formulation using the level
set concepts. Section 3 shows the analytical sensitivity analysis of the final Lagrangian functional
and its relation with velocity field of the level set methods. Section 4 presents the optimization
algorithm proposed and some operational details. Section 5 is dedicated to the numerical results
and discussions about the proposed approach. Some conclusions are stated in Section 6. Finally, the
Appendix shows details about the derivatives of the stress constraints based on a failure criterion.

2. FORMULATION OF THE PROBLEM

2.1. Basic statement

Let � be an open domain in Rn .n D 2; 3/ occupied by a linear elastic isotropic body B with a
smooth boundary @� split in three non-overlapping regions

@� D �D [ �H [ �N : (1)

Dirichlet boundary conditions are applied in �D , while �H is submitted to homogeneous Neumann
conditions. Non-zero surface tractions � act on �N . It is assumed that �H may change during the
optimization procedure, while �D and �N remain fixed. It is also assumed that all the admissible
configurations � are defined within a fixed background domain D (Figure 1 ).

The principle of virtual work states that the body B achieves equilibrium when the displacement
field u 2 U satisfies the expression

a.u; v/ D l.v/ 8v 2 V; (2)

a.u; v/ D
Z
�

C".u/ � ".v/ d� ; (3)

l.v/ D
Z
�N

� � v d@�; (4)

whereU and V denote the sets of kinematically admissible displacements and admissible variations,
respectively. The bilinear operator a.�; �/ represents the virtual work of internal forces, and l.�/ is
a linear form accounting for the virtual work of external surface forces. ".u/ D rsu is the linear
strain tensor, and C is the isotropic elasticity tensor. For simplicity reasons, the problem in which

Figure 1. Geometric definitions of a domain composed of solid and voids.
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the loading is design dependent is not addressed here (see, for example, [40]), and therefore, no
body forces are considered in (4).

The problem of minimum mass with local stress (failure) constraints can be stated as

Problem P1:

min
�

m.u/ D
Z
�

�d�;

subject to:

²
a�.u; v/ � l�.v/ D 0; 8v 2 V;

g.u/ 6 0; 8x 2 � ;

(5)

where � is the material density and g.u/ is a stress constraint that must be satisfied almost every-
where in �: This approach, however, is too general for practical optimization purposes, and it will
be rewritten in the present work as a moving boundary problem controlled by a level set function.

2.2. Level set-based formulation

The level set approach in topology optimization consists of relating the boundary @� with the zero-
valued level set of a function � W D ! R:

�.x/ > 0 8x 2 �; (6)

�.x/ D 0 8x 2 @�; (7)

�.x/ < 0 8x 2 Dn.� [ @�/: (8)

Expressions (6)–(8) define the region in D occupied by �; by the boundary @�, and by the com-
plement Dn.� [ @�/. Variations of � modify the corresponding level sets and consequently the
position of the boundary @� [27, 41]. Using the Heaviside function

H.�.x// D
²
1 ; if �.x/ > 0;
0 ; if �.x/ < 0; (9)

it is possible to formulate an alternative expression for Problem P1 as follows:

Problem P2:

min
�

m�.u/ D
Z
D

�.�/dD;

subject to:

²
a�.u; v/ D l�.v/; 8v 2 V;
H.�/g.u/ 6 0; 8x 2 D;

(10)

where

�.�/ D H.�/�1 C .1 �H.�//�2; (11)

a�.u; v/ D
Z
D

C.�/".u/ � ".v/dD; (12)

l�.v/ D
Z
�N

� � vd@�; (13)

C.�/ D H.�/C1 C .1 �H.�//C2: (14)
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Equations (11) and (14) define the fields � and C being dependent of two material phases .�1;C1/
and .�2;C2/. It is assumed that the material 1 occupies the domain � while the material 2 is occu-
pied by the complementDn.�[@�/. In the present case, the properties of material 2 are assumed to
have null values or, by operational reasons during the solution of the equilibrium equations, values
significantly lower than those of material 1, that is, �2 << �1 and kC2k << kC1k.

The use of the Heaviside function within the integral expressions has consequences that are
worthy of careful discussion. One of the advantages of this approach is the possibility of using a
fixed mesh over which the domain � evolves guided by the function �. Within this context, the
frontier @� does not coincide in general with the elements boundaries, and therefore, many of them
are cut by @� in two parts belonging to materials 1 and 2, respectively. A possible way of getting
rid of this ambiguous situation is to conform the discretization to the crossing boundary by means
of remeshing [35] or, for example, by using discontinuous functions of X-FEM type [32, 37]. These
options, however, introduce extra computational effort and will not be followed in the present work.
Consequently, two technical questions must be addressed. The first one is related to the computa-
tion of the integral term a�.u; v/ and particularly on those elements cut by @�. The second one is
the definition of the stress constraint in those cut elements. These two questions are discussed in the
following items.

2.3. State equations

The finite element counterpart of expression (12) involves the integration over all elements, some
of which are crossed by the boundary @�. In these cases, the material property distribution is
discontinuous within the element (expression (14)), and the integration operation must take this
fact into account. A possible approximation of it is using a representative constant value for C that
accounts for the volume fraction of each material within the element:

a�.u; v/ D
XNel

eD1

Z
De

C.�/".u/ � ".v/dD;

�
XNel

eD1

Z
De

Ce".u/ � ".v/dD;
(15)

where

Ce D aeC1 C .1 � ae/C2; (16)

ae D

Z
De

H.�/dDZ
De

dD

: (17)

This approximation is indeed analogous to the common use of the ersatz or intermediate material.
However, it must be emphasized that in this case, there is no microstructure involved but an element
partially covered by �. Because of this, the relationship between C and area fraction was assumed
to be linear.

2.4. Stress constraint definition

In the way Problem 2 is presented in (10), the stress constraint g.�.u// must be satisfied almost
everywhere in D. Nevertheless, this condition is inevitably transferred sometime during discretiza-
tion to a finite number of constraints commonly associated to the integration points or nodes of
the mesh. Being aware of this fact, it has been chosen here to substitute, at formulation level, the
continuum constraint g in (5) by a finite number of stress constraints gr defined at sample points
xr 2 D; r D 1; : : : ; Nr (it is expected that the quantity and distribution of these sample points is
linked with the discretization in the sense that provides a consistent approximation of the continuum
case). It must be noted that just those points xr belonging to�must be effectively considered within
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the constraint set. Thus, in order to avoid the problems associated to the discontinuous inclusion–
exclusion of constraints as long as the boundary of � pass over a sample point, a regularization
scheme is here proposed. Aiming at this, let "r.u/ be the strain evaluated at xr 2 D and � r the
stress tensor defined by

� r WD C1"r.u/: (18)

The classical von Mises stress criterion can be written as

�vMr
�adm

� 1 6 0 ; �vMr D

r
3

2
sr � sr ; sr D dev.� r/; (19)

where �adm is the yield stress. Let Hr.�/ also be a function that computes the volumetric (area)
fraction of material 1 contained in a neighborhood �r of x.r/ as follows:

Hr.�/ D
1

ar

Z
D

Ir.x/H.�/dD; (20)

in which

Ir.x/ D
²
1 ; if x 2 �r ;
0 ; if x … �r ;

and ar D

Z
D

Ir.x/dD; (21)

are the indicator function and the physics volume (area) of the neighborhood �r , respectively.
Figure 2 shows a schematic representation of these functions. In this way,Hr.�/ varies continuously
between 0 and 1 as long as � covers �r .

Using the definitions earlier, our purpose is to define a stress constraint gr that follows the
continuous variation of Hr.�/ during the movement of @� in such a way that the stress at xr be

Figure 2. Representation of the indicator function Ir .x/ and Heaviside function H.�/ at a sample point xr
with neighborhood �r .

Figure 3. Sample point xr and its neighborhood�r being intercepted by the border @�. In this case, xr … �,
but the stress constraint may become active because � \�r ¤ ;, that is, Hr .�/ ¤ 0.
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Figure 4. Function ‰.Hr .�// for different values of q:

significant whenever�\�r ¤ ;. Figure 3 shows a sample point xr whose corresponding constraint
gr might become active even though this point is outside �. A possible expression to accomplish
this task is

gr.u; �/ D ‰.Hr.�//
�vMr
�adm

� 1 6 0; (22)

with

‰.Hr.�// D Hr.�/
q : (23)

The purpose of function ‰ is enhancing the stress value of a point whose area fraction is 0 <
Hr.�/ < 1. Figure 4 shows the behavior of ‰.Hr.�// for different values of q 2 .0; 1�. It is clear
that (23) represents a regularized version of the discontinuous 0 � 1 function.

It is important to remark that regardless the point xr is inside or outside the body, the
corresponding stress � r is always calculated by Equation (18) and the stress constraint by
Equation (22). The variable that turns this stress significant or not is the area fraction Hr.�/. The
use of the function ‰ is conceptually related to the singularity stress phenomenon and therefore
to the qp-approach [6] and more indirectly, to the �-relaxation [42] used in [1]. Nevertheless, it is
important to remark once again that, different from these last mentioned works, the present approach
involves no intermediate material. Expression (22) should then be interpreted as a regularized way
to effectively consider the stress of a sample point as long as the boundary �H moves in D.

On the basis of all these considerations, the minimization problem is reformulated as follows:

Problem P3:

min
�

m�.u/ D
Z
D

�.�/dD;

subject to:

²
a�.u; v/ D l�.v/; 8v 2 V;

gr.u; �/ 6 0; r D 1; : : : ; Nr

(24)

where gr .u; �/ is given by (22) and Nr is the total number of sample points xr in D.
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2.5. Augmented Lagrangian-based formulation

Following the conventional augmented Lagrangian approach [43, 44], the stress constraints of
Problem P3 are raised up to the objective function by means of a penalization comprised by a linear
and quadratic term. The main idea consists of defining a sequence ¹˛kr º; k D 1; 2; : : : converging
to the Lagrange multipliers ˛r that satisfy the necessary optimality conditions of P3. The problem
then takes the following new expression:

Problem P4: for given values of penalization factor ck and Lagrange multipliers ˛kr , solve the
minimization

min
�

J k.�/;

J k.�/ D

Z
D

�.�/dD C

NrX
rD1

´
˛kr hr.u; �/C

ck

2
Œhr.u; �/�

2

μ
;

(25)

a�.u; v/ D l�.v/; 8v 2 V; (26)

where u is the solution of (26) and hr.u; �/ is a function of the r-th stress constraint given
by [43, 44]:

hr.u; �/ D max

´
gr.u; �/I �

˛kr

ck

μ
: (27)

Once the minimum is achieved (or after a conveniently specified number of iterations), verify
the condition: ˇ̌̌

˛kr g
k
r

ˇ̌̌
< "; (28)

where " is a small tolerance. If (28) is not satisfied, update the Lagrange multipliers and penalization
factor:

˛kC1r D max
°
˛kr C c

kgkr I 0
±
;

ckC1 D ˇck; ˇ > 1; 0 < ck < cmax; 8k 2 N:

(29)

Let k D k C 1 and restart the process.

3. OPTIMIZATION BY MOVING THE LEVEL SET

A classic way of modifying � in (25) in order to obtain a minimization sequence consists of solving
the time differential equation of Hamilton–Jacobi

@�.x.t/; t/
@t

� v.x.t// � r�.x.t/; t/ D 0; (30)

where v.x.t// is the velocity for every point x.t/ on the boundary. Because n D �r�=kr�k, we
can rewrite the equation earlier as

@�.x.t/; t/
@t

� vn.x.t//kr�.x.t/; t/k D 0; (31)

where vn D v � n is the velocity normal to the boundary @�, that is, for all x.t/ with �.x.t// D 0.
Equation (31) is known as the level set equation [27, 28, 41]. A key issue in this equation is the
choice of a proper field vn that guarantees that for a sufficiently small time interval 	t , the new
field � decreases J k.�/. Following the same arguments used by [19] and [18], it is concluded that
the derivative dJ

d�
Œı�� provides this information. The next subsection describes the calculus of this

derivative as well as its convenient postprocessing to obtain an efficient field vn.
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3.1. Sensitivity analyisis

The total derivative dJ
d�
Œı�� must be calculated considering the satisfaction of the state equation. To

this purpose, the Lagrangian function £ is defined as follows:

£.�; u;�/ D
Z
D

�.�/dD C

NrX
rD1

°
˛rhr.u; �/C

c

2
Œhr.u; �/�

2
±

C a�.u;�/ � l�.�/ 8u;� 2 V;

(32)

being � 2 V a Lagrangian multiplier. The total variation of £ with respect to �; u;� is

ı£.�; u;�/ D
@£

@�
Œı��C

@£

@u
Œıu�C

@£

@�
Œı�� ; (33)

where ı�, ıu , and ı� are admissible variations of the respective arguments. For a given �, a point
is stationary in relation to .u;�/ if it satisfies

@£

@�
Œı�� D 0 and

@£

@u
Œıu� D 0 : (34)

Applying condition (34a) in (32), the state equation is recovered. On the other hand, the second
condition (34b) provides what is commonly known as adjoint equation:

a�.�; ıu/ D �
NrX
rD1

²
Œ˛r C chr.u; �/�

@hr.u; �/
@u

Œıu�
³
D 0 8ıu 2 V: (35)

Figure 5. Example of a sample point xr (coinciding with a node of the finite element mesh) and its
neighborhood �r .

Figure 6. Beam problem.
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It is shown in detail in the Appendix that the derivative of hr.u; �/ takes the form

@hr.u; �/
@u

Œıu� D CrAr.u; �/ � "r.ıu/; (36)

where Ar.u; �/, given by Equation (A.11), is a tensor that contains the derivatives of the stress
constraints with respect to the stress invariants. Substituting (36) in (35),

a�.�; ıu/ D �
NrX
rD1

Œ˛r C chr.u; �/�CrAr.u; �/ � "r.ıu/ 8ıu 2 V; (37)

whose solution provides the adjoint field �. Finally, the partial derivative of £.�; u;�/ with respect
to � is

@£

@�
Œı�� D

Z
D

Œ.�1 � �2/C .C1 � C2/".u/ � ".�/�
@H.�/

@�
Œı�� dD

C

NrX
rD1

²
Œ˛r C chr.u; �/�

@hr.u; �/
@�

Œı��

³
8u;� 2 V:

(38)

Because hr.u; �/ D max
®
gr .u; �/I �˛rc

¯
, two cases are possible:

(1) If hr.u; �/ D gr.u; �/, then

@hr.u; �/
@�

Œı�� D
�vMr
�adm

@‰.Hr.�//

@Hr.�/

@Hr.�/

@�
Œı�� ; (39)

@Hr.�/

@�
Œı�� D

1

ar

Z
D

Ir.x/
@H.�/

@�
Œı�� dD; (40)

Figure 7. Beam problem: initial level set domain.

Figure 8. Beam problem: optimal structure with mass ratioD0.4628.
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−1 −0.9 −0.8 −0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0

Figure 9. Beam problem: stress constraint distribution (maxD.gr / D 6:2 � 10�3).

and thus,

@hr.u; �/
@�

Œı�� D

Z
D

Ir.x/
ar

�vMr
�adm

@‰.Hr.�//

@Hr.�/

@H.�/

@�
Œı�� dD: (41)

(2) If hr.u; �/ D �˛rc , then

@hr.u; �/
@�

Œı�� D 0: (42)

To end this issue, let us call upon the identity‡

@H.�/

@�
Œı�� D ı.�/ı�;

where ı.�/ is the Dirac function. Let us also assume then that the state .�; u;�/ satifies the equations
in (34), that is, state and adjoint equations. Therefore, the variation of the Lagrangian function (32)
is given by

ı£.�; u;�/ D
@£

@�
Œı�� D

dJ

d�
Œı�� D

Z
D

G.�/ı.�/ı�dD; (43)

where

G.�/ D

8̂̂̂
ˆ̂<
ˆ̂̂̂̂:

.�1 � �2/C .C1 � C2/".u/ � ".�/

C

NrX
rD1

°
Œ˛r C cgr .u; �/�

Ir .x/
ar

�vMr
�adm

@‰.Hr .�//
@Hr .�/

±
; if gr.u; �/ > �˛rc ;

.�1 � �2/C .C1 � C2/".u/ � ".�/; if gr.u; �/ < �˛rc ;

(44)

it is known as shape gradient density [45, 46].

3.2. Velocity field

A Taylor expansion of the objective function is formally given by

J.� C tı�/ D J.�/C t
dJ

d�
Œı��C #

�
t2
�
: (45)

It is shown in the literature (see, for example, [18, 19]) that choosing ı� based on (31)

‡Verify the distinction in notation between the variation ı� and the Dirac function ı.�/.
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ı� D
@�

@t
D vnkr�k; (46)

with

vn D �G.�/; (47)

it is obtained that, for a small enough t > 0, the value of J decreases:

J.� C tı�/ D J.�/ � t

Z
D

G2.�/ı.�/kr�kdD C #
�
t2
�
< J.�/: (48)

In other words, using vn D �G.�/ in the solution of the level set equation (31) is equivalent to move
the boundary @� in direction vnn with an amplitude proportional to the period of time integration
Œ0; T �. The choice of a value for T will be justified later.

3.3. Level set regularization and treatment on the normal velocity field

It is also known that in order to obtain efficient minimization sequences, different improvements on
vn are convenient, so long as they satisfy descent condition (48).
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Figure 10. Beam problem: distribution of the Lagrange multipliers at each node in the last iteration.

0 50 100 150 190
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

iteration number

re
sp

on
se

 fu
nc

tio
n

objective function
mass ratio

Figure 11. Beam problem: convergence of the objective function and mass ratio.
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Figure 12. Beam problem: convergence of the penalty terms of the objective function.

Figure 13. L-problem: model.

Figure 14. L-problem: initial level set domain for Figures 15–18.
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The first consideration is related to the inclusion of a classic perimeter regularization that has the
effect of smoothening the boundary [46, 47]. A consistent way of doing that is by modifying the
objective function by the addition of a perimeter penalization term P.�/:

NJ .�/ WD J.�/C P.�/; (49)

P.�/ D

Z
D


ı.�/kr�kdD; (50)

where 
 > 0 is a penalization factor. Deriving this new expression, it is easy to show that the field
G.�/ modifies to

NG.�/ WD G.�/ � 
� ; � D div n; (51)

where � plays the role of average curvature of the level set.
Other observed phenomenon in the present problem is that the velocity field (44) has severe

variations in amplitude as a consequence of local stress constraints naturally appearing because of
arbitrary moving geometries. This characteristic has the undesirable effect of locking the boundary:
only very limited portions of the boundary moves, while all the rest remains almost static. To avoid
this effect, we propose a modified definition for vn that provided significant improvements:

Glog.�/ D

²
ln. NG.�/C 1/;

� ln.� NG.�/C 1/;
if NG.�/ > 0;
if NG.�/ < 0:

(52)
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Figure 15. L-problem: (a) optimal structure; (b) stress constraint distribution for q D 0:25; and (c) level set
surface of the optimal structure. The mass ratio is 0.5437 and maxD.gr / D 3:5 � 10�3.
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Because this operation preserves the signal of vn, it also satisfies the descent condition (48).
In addition, although the field Glog.�/ calculated in (52) is defined everywhere, just its value

on the boundary @� should be accounted for in (48). Among different techniques available to
extend/regularize this field over D [17, 19, 47], the most performing for the present case was the
Hilbertian method proposed in [48], providing a new velocity field G�.�/ from Glog.�/. Finally,
after performing all operations earlier, the velocity field vn is normalized by

vn D
�G�.�/

max.jG�.�/j/
: (53)

4. DISCRETIZATION AND NUMERICAL IMPLEMENTATION

The finite element method (FEM) is employed to solve the state equation (10) and the adjoint
equation (37). The problem is generically formulated for any dimension but tested here with only
2D numerical examples under plane stress conditions. For the implementation of the examples, we
used a single mesh to discretize the level set function and for the analysis of finite elements, which
uses a quadrilateral bilinear element.

For the discrete solution of the Hamilton–Jacobi equation (31), an upwind finite difference
scheme is used. Furthermore, a reinitialization procedure is performed to maintain the level set
function as a signed distance function. For details about the numerical solution schemes for
Equation (31), we refer the readers to [18, 19, 27, 28].
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Figure 16. L-problem: (a) optimal structure; (b) stress constraint distribution for q D 0:5; and (c) level set
surface of the optimal structure. The mass ratio is 0.5099 and maxD.gr / D 2:3 � 10�3.
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Figure 17. L-problem: (a) optimal structure; (b) stress constraint distribution for q D 0:75; and (c) level set
surface of the optimal structure. The mass ratio is 0.4802 and maxD.gr / D 5:1 � 10�3.

4.1. Optimization algorithm

With the sensitivity analysis of (44), we naturally defined a velocity field vn for the level set
equation (31). The optimization process should lead the structure to a local optimal design. The
optimization algorithm to solve Problem P4 is then summarized in the succeeding text:

External loop:

(1) Initialization of the level set function �0 as a signed distance function defining the initial
guess �0 � D.

(2) Define k D 1, ck > 0, ˛kr 2 R.
(3) Perform the internal loop to minimize function J k

�
�; ˛kr ; c

k
�

obtaining �k .
(4) Update ck and ˛kr using (29).
(5) k D k C 1. Return to step 3.

The step 3 of the external loop, called internal loop, consists of the minimization of objective
function J k for fixed given values of ck and ˛kr . However, as indicated in [44], the minimization
in 3 may be performed partially or, equivalently, substituted by a sufficient descent condition. For
practical purposes, this means that a fixed number of minimization iterations, say Niter , must be
accomplished prior to the Lagrange multipliers updating in 4. Then, the iterative procedure for a
sufficient decrease of J k.�; ˛kr ; c

k/ is the following:
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Internal loop: for j D 1 to j 6 Niter:

(1) Obtain the discretized fields uj and �j by solving, respectively, the state equation (26)
and adjoint equation (37).

(2) Compute the velocity field vnj .uj ;�j / by means of Equation (53).
(3) Solve the level set equation during a time integration period 	Tj , TjC1 D Tj C 	Tj ;

chosen such that J.�jC1/ 6 J.�j /.
(4) If

ˇ̌
J.�jC1/ � J.�j /

ˇ̌
6 ", then stop the iterative process; otherwise continue.

(5) j D j C 1. Go to step 1.

The discrete version of the level set equation (31) is given by

�iC1 D �i �	t
�
vnj kr�

ik
�
; (54)

where i D 1 : : : m is the number of level set updatings for a given normal velocity vnj during the
time integration period 	Tj D m	t . The time integration period 	Tj is analogous to the step size
of a line search minimization in the descent direction provided by the velocity vnj . The number
of updatings m is conveniently chosen to satisfy a descent condition given in step 3 of the internal
minimization loop. The numerical technique used here is an explicit first-order upwind scheme (see,
for example, [27, 28]) where 	t must satisfy the so-called CFL condition:

	t D 	tCFL 6
min.	x/

max jvnj
; (55)

being 	x the minimum grid size.
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Figure 18. L-problem: (a) optimal structure; (b) stress constraint distribution for q D 1; and (c) level set
surface of the optimal structure. The mass ratio is 0.4598 and maxD.gr / D 2:1 � 10�3.
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Figure 19. L-problem: convergence of the objective function and mass ratio for q D 0:5.
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Figure 20. L-problem: convergence of the penalty terms of the objective function for q D 0:5.
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Figure 21. L-problem: distribution of the Lagrange multipliers at each node in the last iteration for the case
where q D 0:5.
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Figure 22. L-problem: (a) initial level set domain; (b) obtained design for q D 0:5; and (c) stress constraint
distribution with maxD.gr / D 5:6 � 10�3. The mass ratio is 0.5066.

It has been noted in the numerical experiments that parameters m (associated to the time inte-
gration period) and Niter (associated to the number of internal loops) have appreciable influence
on the final optimal configuration. The first one is somehow limited by the descent condition of
step 3 of the internal loop. In the present implementation, the objective function is tested periodi-
cally, and the time integration period 	Tj is chosen when J.�j / stops decreasing (similarly to an
inexact step determination). The choice of Niter is more heuristical. At present, it has been chosen
Niter D 20 in most cases, unless particular cases indicated.

4.2. Sample points stress evaluation

In the present implementation, the sample points xr do coincide with the nodes of the finite element
mesh. This distribution of sample points is consistent with the objective of enforcing the stress
constraint all over the domain. It is then possible to say that with this choice, the number and position
of sample points follow the resolution of the stress field provided by the finite element mesh. The
corresponding neighborhood �r is squared with a length of a finite element size (Figure 5). In this
way, there is no overlapping among distinct neighborhoods, that is, �ri \�rj D ; for i ¤ j , and
all of domain D is covered by the neighborhoods.

Moreover, because bilinear quadrilateral elements are used, the strain field is discontinuous
among elements. Thus, the strain "r.xr/ at a node xr is computed using a classical recovering
technique given by the average of the elementar strains attached to the node:
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"r.U/ D
NeX
eD1

Be.xr/Ue
Ne

; (56)

where Ne is the number of elements e attached to node xr , Be.xr/ is the array of shape func-
tion derivatives of element e, and Ue is the array of nodal displacements of element e. The
stress at this node is then computed by (18) and the stress constraint by (22) where the value of
Hr.�/ was computed using the procedure proposed in [49] in which an exact Heaviside function
is used.

5. NUMERICAL RESULTS

In all examples, the densities of the solid and weak materials are respectively �1 D 1 and �2 D 10�3.
The Young’s modulus of the solid material is normalized to E D 1 and E2 D 10�3 Pa for the weak
material. The Poisson’s ratio is set at � D 0:3. In the loading region, it is assumed that the boundary
�N is kept fixed during the whole optimization process, that is, �.�N ; t / � 0 8t . Besides this, it is
imposed that velocity vn at the boundary �N is null. The examples are presented in 2D under plane
stress state.

The number of sample points where the stress constraint is evaluated coincide with the number of
nodes in the mesh. The Lagrange multiplier vectors are initialized with a vector of zeroes, and the
maximum penalization factor is limited as cmax D 10c.
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Figure 23. L-problem: (a) initial level set domain; (b) obtained design for q D 0:5; and (c) stress constraint
distribution with maxD.gr / D 1:7 � 10�3. The mass ratio is 0.5630.
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At each iteration j of the internal loop, a numberm 6 32 of the first-order scheme (54) updatings
are performed with a time step 	t set up to 	t D 0:1.min.	x/=max jvnj/. The number m may be
less than 32, once the descent condition 3 of the internal loop is satisfied. The value of 	t may also
be reduced if the objective function is not decreasing.

Concerning reinitialization, the classical scheme given in [27, 28] to recover a signed distance
function was used. In the examples in the succeeding text, the level set function was reinitialized
every four updating steps.

The extension/regularization treatment for vn described in Section 3.3 was used in all numerical
examples. In all converging diagrams, each iteration corresponds to a normal velocity vnj calcula-
tion, that is, to an iteration of the internal loop.
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Figure 24. L-problem: results for different meshes and q D 0:5; (a) initial level set domain; (b) final design
for coarse mesh (mass ratio = 0.4791); (c) stress constraints distribution for coarse mesh (maxD.gr / D
3:2 � 10�3); (d) final design for refined mesh (mass ratioD0.4623); and (e) stress constraints distribution

for refined mesh (maxD.gr / D 4:0 � 10�3).

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2014; 99:129–156
DOI: 10.1002/nme



150 H. EMMENDOERFER JR. AND E. A. FANCELLO

5.1. Beam problem

The first example deals with a pure bending of a beam. DomainD is the rectangle shown in Figure 6
with L D 1 m. A pure moment is applied with a convenient pressure distribution with maximum
value of p D 30 Pa varying linearly from the axis of the beam. The yield stress is �adm D 35 Pa.
Considering symmetry, a mesh of 80�40 is used for half the structure. The initial level set is shown
in Figure 7.

The following parameters were used: q D 0:5 for the exponent in (23), penalization factor c D
0:08, updating ˇ D 1:2 and 
 D 0:01 for the perimeter regularization. The optimization procedure
was stopped after 19 external iterations considering a number of iterations Niter D 10 for the
internal optimization loop.

The final result is displayed in Figure 8 where an I-like profile was achieved, similar to that
obtained in [2]. The mass ratio (final mass/total mass) is 0.4628 in the optimal structure. In Figure 9
is shown the distribution of (nodal) stress constraints. As expected, in the inner part of the horizontal
bars, the stress constraint function is inactive, being close to zero on the external regions. The maxi-
mum value achieved for the constraints is maxD.gr/ D 6:2� 10�3, which means a small violation.
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Figure 25. Crack problem: model and stress constraint distribution with high stress concentration at the
fracture tip (maxD.gr / D 0:4628).
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Figure 26. Crack problem: (a) initial level set domain and (b) optimal structure for q D 0:5. The mass ratio
is 0.2945.
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This correlates to the distribution of the Lagrange multiplier values at the nodes shown in Figure 10.
Note that most of them have zero value except those nodes of constraint activation. In addition, the
distribution is quite regular, suggesting a good behavior of the algorithm. The history of the objec-
tive function is seen in Figure 11. Figure 12 shows the linear and quadratic contributions of the stress
penalization terms (Equation (25)) converging to zero as expected and the convergence history of
the perimeter constraint P.�/.

5.2. L-problem

This example is the classic benchmark problem of topology optimization considering stress
constraints. Figure 13 shows the model clamped at its top boundary and submitted to a resultant
force P D 1 N applied at the middle of the right side. The length is L D 1 m, and the yield stress
�adm D 42 Pa.

DomainD was discretized with 80 elements along the longest sides in both horizontal and vertical
directions giving a total of 4,096 quadrilateral finite elements and 4,257 nodes. Therefore, there exist
Nr D 4; 257 sample points for the stress evaluation. The optimization was run using the following
parameters: c D 0:15, ˇ D 1:2, and 
 D 0:01. The exponent q was tested for the following
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Figure 27. Crack problem: stress constraint distribution for q D 0:5 (maxD.gr / D �5:04 � 10�2).
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Figure 28. Convergence of the objective function and mass ratio for the crack problem (q D 0:5).
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values: q D 0:25, q D 0:5, q D 0:75, and q D 1. From the initial level set domain in Figure 14,
the corresponding final designs and the constraint distribution for each of the four cases are shown
in Figure 15–18. From the final mass ratio of each case, it is possible to see that the smaller the
value of q, the more robust the design. This is consistent with the proposed constraint expression
in which the stress of points localized near the boundary (even outside of it) are progressively
considered as q decreases. It must be observed that in all cases including the case q D 1, that is, no
enhancement, the reentrant corner with high stress concentration is eliminated with a well-defined
arch. It is important to emphasize that among the four cases run the maximum value of the stress
constraint is maxD.gr/ D 5:1 � 10�3.

The convergence history of the objective function for q D 0:5 is shown in Figure 19. In this case,
the minimization was stopped after 17 updates of external loop and Niter D 20 fixed iterations
for each subproblem (internal loop). Figure 20 shows the convergence of the penalty terms of the
objective function (both figures for q D 0:5). The distribution of the Lagrange multipliers is shown
in Figure 21.

A characteristic of the level set method is the dependence of the final design in relation to
the initialization. Figures 22 and 23 show different initializations. To improve convergence, the
penalization factor values were modified to c D 0:1 and c D 0:18, respectively. We used q D 0:5

for both examples. The optimal structures obtained at the end of the optimization process satisfy the
constraints imposed in the problem. The layouts are quite different from the previously obtained;
however, the rounding radius of the corner shows that the stress concentration has been detected and
eliminated.

Finally, two mesh sizes were compared. The first one is that used in the previous cases, while the
second has 160 elements along the longest sides in both horizontal and vertical directions, totaling
16,384 quadrilateral finite elements and 16,705 nodes. Figure 24 shows the results obtained.

5.3. Crack problem

This example emulates the fracture mode I of a squared plate of length L D 1m and fracture length
L=2. A unitary force is applied to open the fracture therefore producing high stresses at the fracture
tip (Figure 25). The main objective of this example is to verify if the proposed approach is able to
achieve a feasible design and a local minimum for the mass. Only the right symmetric part of the
plate was partitioned with a mesh of 100�50 elements and 5,151 nodes (equal to the number of stress
sample points). The following parameters were used: q D 0:5, c D 0:3, ˇ D 1:2, and 
 D 0:01.
The yield stress is �adm D 23 Pa. The initial and final configurations are shown in Figure 26(a) and
(b), respectively. The final design eliminates the stress singularity, and a feasible design is achieved.
The distribution of the stress constraint values is shown in Figure 27. The convergence graphs of
mass and penalization terms are shown in Figures 28 and 29. It is possible to see that the penalization
terms converge to zero, as expected for a feasible design.
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Figure 29. Convergence of the penalty terms of the objective function for the crack problem (q D 0:5).
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6. CONCLUDING REMARKS

A new approach combining a level set moving boundary and augmented Lagrangian technique was
used to solve the structural (topological) optimization problem of mass minimization under local
stress constraints. Some observations should be emphasized:

(1) It is proposed the definition of a neighborhood around each sample point (node) in such a way
that the activation of the stress constraint associated to the sample point is proportional to the
overlapping between the current domain and the considered neighborhood. In this way, the
activation/deactivation of stress constraints associated to the sample points is performed in a
continuous way as long as the boundary moves over the background domain D. The stress
measured, however, remains local in the sense that it represents the stress at xr and not its
average over a neighborhood.

(2) A stress constraint function was proposed in such a way that enhances the area fraction
Hr.�/ < 1 that measures the intersection between � and the neighborhood of xr . This is per-
formed by an exponent q < 1. Different values of q were tested with the L-shaped benchmark
problem with successful results. Values of q < 0:25 reached convergence difficulties due to
the almost discontinuous behavior of the stress constraints with respect to the boundary move-
ment. However, it was observed that even in the case with no enhancement, that is, q D 1, the
stress concentrations are identified and eliminated by rounded boundaries.

(3) A very simple recovering technique was employed to obtain a continuous strain field based on
the same bilinear shape functions used for the displacement solution (other techniques could be
tested). Then as pointed out in Section 4.2, a distribution of sample points that are coincident
with the nodes of the (Lagrangian) mesh is consistent with the objective of enforcing the stress
constraint all over the domain. It is then possible to say that with this choice, the number and
position of sample points follow the resolution of the stress field provided by the finite element
mesh.

(4) The conventional numerical solution of the Hamilton–Jacobi equation based on upwind
schemes was used to move the boundary @� despite its well-known problems associated to the
impossibility of creating new holes and the need of reinitialization [18, 19]. Reinitialization is
particularly inconvenient at the end of the minimization process. At this stage, the boundary
movements are usually smaller than those undesirably caused by the reinitialization technique,
the fact that pollutes the solution and hinders complete convergence.

(5) The velocity field vn obtained from the sensitivity analysis showed to be a proper descent
direction. However, the regularization techniques proposed in Section 3.3 were crucial to avoid
premature locking of the boundary movement. The velocity field seems to show a quite irregu-
lar distribution due to the characteristics of the adjoint solution. High stiffness rations between
material phases 1 and 2 as well as stress constraints cause peak values in the adjoint solution
that are transferred to vn. This difficulty has been overcome here using the proposed loga-
rithmic scaling (expression (52)) and the Hilbertian velocity extension proposed by [48] to
regularize the distribution of vn along D.

(6) The classical benchmark example L-shape was tested for several initial level sets, driving to
different final solutions. The important challenge of feasibility was successfully overcome in
all cases. The optimization algorithm identified the stress concentration and drove to designs
that eliminated undesired corners.

APPENDIX: DERIVATIVE OF THE FAILURE FUNCTION

A material failure criterion consists of a function g capable of identifying how far a material point
submitted to a quasi-static stress state is from failure. It is a usual approach to write the failure
function of any isotropic material as

g.I1; J2; J3; k1; k2; : : :/ D 0; (A.1)
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where k1 and k2 are material parameters, and I1, J2 and J3 are the three invariants of the stress
tensor � .u/ given by

I1 D t rŒ� .u/� D I � � .u/; (A.2)

J2 D
1

2
s.u/ � s.u/; (A.3)

J3 D
1

3
s.u/s.u/ � s.u/; (A.4)

where

s.u/ D P� .u/; P D II �
1

3
I˝ I (A.5)

is the tensor of deviatoric stresses.
The derivative of hr.u; �/ in the direction ıu may be written as function of the invariants of the

stress tensor � r through the chain rule:

@hr.u; �/
@u

Œıu� D
@hr.u; �/
@I1

@I1

@u
Œıu�C

@hr.u; �/
@J2

@J2

@u
Œıu�

C
@hr.u; �/
@J3

@J3

@u
Œıu� :

(A.6)

Calculating the derivatives of the stress invariants in relation to u,

@I1

@u
Œıu� D

@

@t
ŒI � � r.uC tıu/�

ˇ̌̌
ˇ
tD0

;

D I � � r.ıu/ D I � Cr"r.ıu/; (A.7)

D CrI � "r.ıu/;

@J2

@u
Œıu� D

@

@t

�
1

2
sr.uC tıu/ � sr.uC tıu/

�ˇ̌̌
ˇ
tD0

;

D sr.u/ � P� r.ıu/;

D PT sr.u/ � Cr"r.ıu/;

D CrPT sr.u/ � "r.ıu/;

(A.8)

@J3

@u
Œıu� D

@

@t

�
1

3
sr.uC tıu/sr.uC tıu/ � sr.uC tıu/

�ˇ̌̌
ˇ
tD0

;

D sr.u/sr.u/ � PCr"r.ıu/; (A.9)

D CrPT sr.u/sr.u/ � "r.ıu/:

Here, sr.u/ is the deviatoric stress tensor of sample point r . Substituting Equation (A.7)-(A.9) in
(A.6), we have

@hr.u; �/
@u

Œıu� D CrAr.u; �/ � "r.ıu/; (A.10)

where

Ar.u; �/ D
@hr.u; �/
@I1

IC
@hr.u; �/
@J2

PT sr.u/C
@hr.u; �/
@J3

PT sr.u/sr.u/; (A.11)

is a tensor containing the derivatives from the failure function in relation to the stress invariants.
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As hr.u; �/ D max
®
gr.u; �/I �˛rc

¯
where gr .u; �/ is given by Equation (22), then if hr.u; �/ D

gr.u; �/

@gr.u; �/
@I1

D
@gr.u; �/
@J3

D 0;

@gr.u; �/
@J2

D
3

2�adm�vMr
‰.Hr.�//;

and the tensor Ar.u; �/ is given by

Ar.u; �/ D
3

2�adm�vMr
‰.Hr.�//PT sr.u/:

In the case that hr.u; �/ D �˛rc , then

@hr.u; �/
@I1

D
@hr.u; �/
@J2

D
@hr.u; �/
@J3

D 0;

and the tensor Ar.u; �/ is zero.
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