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SUMMARY

The purpose of this article is to present a general framework for constitutive viscoelastic models
in finite strain regime. The approach is qualified as variational since the constitutive updates obey
a minimum principle within each load increment. The set of internal variables is strain-based and
employs, according to the specific model chosen, a multiplicative decomposition of strain into elastic
and viscous components. The present approach shares the same technical procedures used for analogous
models of plasticity or viscoplasticity, such as the solution of a minimization problem to identify
inelastic updates and the use of exponential mapping for time integration. However, instead of using
the classical decomposition of inelastic strains into amplitude and direction, we take advantage of
a spectral decomposition that provides additional facilities to accommodate, into simple analytical
expressions, a wide set of specific models. Moreover, appropriate choices of the constitutive potentials
allow the reproduction of other formulations in the literature. The final part of the paper presents a
set of numerical examples in order to explore the characteristics of the formulation as well as its
applicability to usual large-scale FEM analyses. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The main characteristic in viscoelastic models is the existence of a rate of deformations in
the presence of non-zero (constant) states of stress. Moreover, inelastic strains occur in the
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presence of stresses, no matter what their intensity. This behaviour is in contrast with other
models like plasticity or viscoplasticity, where a certain level of stress must be reached before
inelastic deformations appear.

Many different models for viscoelastic materials in finite deformation regime are found in
the literature. However, in contrast with what we see in small deformation models, the choice
of convenient internal variables and evolution laws is neither trivial nor unique, leading to
different formulations. Without claiming to perform a general classification, we would like
to distinguish two possible approaches. From one side, we recall the work of Simo [1] in
which an additive decomposition of stresses in equilibrium and non-equilibrium contributions
is stated and, more relevant, the evolution law is defined as a linear differential equation
based on the non-equilibrium stresses. This approach was later followed, among many others,
by Holzapfel and Simo [2, 3] and more recently by Holzapfel, Gasser and Bonet [4, 5]. This
last work modifies the original approach by including the well-known multiplicative split of
isochoric deformation gradient into elastic and viscous parts and by defining the rate of non-
equilibrium stress (i.e. the evolution equation) at constant total Cauchy deformation C, which
finally provides an evolution equation in terms of viscous Cauchy strain rate Ċv.

Multiplicative decomposition of strains applied to viscoelastic constitutive equations goes back
to the work of Sidoroff [6] and later to References [7–9], among others. In Reference [10] the
ability of different models to reproduce non-linear viscous behaviour is discussed and a model
is proposed that is not restricted to small perturbations away from thermodynamic equilibrium.
Based on a multiplicative decomposition of strain, the model is presented as an extension of
the model proposed in Reference [7] for elastic deformation gradients Fe far from the identity
tensor.

The goal of this work is to provide a general framework for constitutive viscoelastic models
based on the mathematical background proposed in References [11–13]. Thus, the approach
is qualified as variational since the constitutive updates obey a minimum principle within
each load increment. The set of internal variables is strain-based, and thus employs, according
to the specific model chosen, multiplicative decomposition of strain into elastic and viscous
components. In that sense, the present approach is closer to that of Reference [10] or the
spatial model of Reference [5] than to that of Simo.

On the basis of the same theoretical framework, the present approach for viscoelastic models
shares the same technical procedures shown in Reference [11] to deal with the local non-
linear constitutive problem, i.e. the solution of a minimization problem to identify inelastic
updates. However, instead of using the classic decomposition of inelastic strains into amplitude
and direction, we take profit of a spectral decomposition that provides additional facilities
to accommodate, into simple analytical expressions, a wide set of viscous models. The only
requirement is the definition of different isotropic potentials in terms of eigenvalues of strain
and/or strain rates. As a consequence, general expressions for the stress updates as well as for
the (symmetric) material tensor of the tangent matrices are obtained, which can be implemented
independently of the particular potential and corresponding derivatives definitions. In addition,
appropriate choices of the potentials retrieve other formulations in the literature such as, for
example, the isotropic logarithmic-based model of Reference [5].

This article is organized as follows. Section 2 shows the formulation used for the balance
problem. The general approach for irreversible constitutive problems is presented in Section 3,
focusing later on the problem of viscoelastic materials, which is the main contribution of this
paper (Sections 3.2–3.5). In Section 4 a set of numerical examples is shown in order to discuss
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the characteristics of the present approach. Finally, an Appendix includes technical mathematical
operations that, for the purpose of clarity, were omitted in the main text.

2. VARIATIONAL PRINCIPLE FOR BALANCE EQUATIONS

We use this section to present a possible approach for the equilibrium problem. Using conven-
tional notation, let us call

F = ∇0x, C = FTF, B = FFT (1)

the gradient of deformations, the Cauchy strain tensor and the Finger strain tensor, respectively.
In order to circumvent locking in isoparametrical finite elements, the equilibrium will be
stated using the variational formulation proposed in Reference [14]. In this approach, the
pressure field � and volumetric strain field � are assumed to be constant over each element. A
volumetric/isochoric split is performed and the following kinematic tensors are defined:

F̂ = 1

J 1/3 F, J = det(F), Ĉ = F̂TF̂, B̂ = F̂F̂T (2)

F̄ =
(

�

J

)1/3

F = �1/3F̂, C̄ =
(

�

J

)2/3

C = �2/3Ĉ (3)

Let us assume a hyperelastic material for which the internal free energy � allows an additive
decomposition in volumetric and isochoric parts:

�(C̄) = W(Ĉ) + U(�)

The three-field functional H[x, �, �] is defined as

H[x, �, �] =
E∑

e=1

∫
� 0

�(C̄) + �(J − �) d�0 − TFe(x) (4)

where TFe(x) is the work of external forces. This functional can also be stated incrementally,
i.e. for given values [xn, �n, �n] it is possible to write a potential of the type

H[xn+1, �n+1, �n+1] =
E∑

e=1

∫
� 0

�(C̄n+1) + �n+1(Jn+1 − �n+1) d�0 − TFe(xn+1) (5)

whose stationarity conditions define the value of � and � as well as the balance equation

〈D�n+1
H, �x〉 =

E∑
e=1

∫
� 0

P̄n+1 · ∇0�x d�0 − TFe(xn+1) = 0 (6)

P̄n+1 = Fn+1

[
J

−2/3
n+1 DEV

(
2

�W

�Ĉn+1

)
+ �U

��n+1
Jn+1C−1

n+1

]
(7)
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where DEV(A) = A − 1
3 (A : C)C−1. The last expression provides stress recovery of the con-

ventional first Piola–Kirchhoff stress tensor. It is worth noting that the expression of P̄n+1 is
of the hyperelastic type in the sense that the stress is derived from a potential function. In (7)
this relationship is given incrementally. It will be seen in the next sections that incremental
dissipative models can be described using incremental potential functions �(C̄n+1). In other
words, dissipative models can be treated as ‘hyperelastic’ within each increment. In this case,
�(C̄n+1) is usually referred to as a hyperelastic ‘pseudo-potential’.

3. CONSTITUTIVE PROBLEM

3.1. Variational formulation for inelastic materials

The following lines describe a general variational formulation for inelastic materials subjected
to finite strains. Although these ideas are originally proposed in Reference [11], their main
outlines will be repeated with the aim of keeping this article self-contained. This approach
is completely imbedded within the more general framework of internal-variable continuum
thermodynamics. Thus, the first step to describe a constitutive behaviour is to define a general
set E of external and internal variables:

E= {F, Fi, Q} (8)

where a multiplicative decomposition of the gradient of deformations is assumed and Fi is
the inelastic part of the (total) deformation F = FeFi. Moreover, Q contains all the remaining
internal variables of the model. Consider the existence of a free energy potential W and a
dissipative potential �,

W(E) = �(F) + �e(FFi−1) + �i(Fi, Q), � = �(Ḟ,E) (9)

such that the Piola–Kirchhoff stress tensor and conjugate forces are defined as

P = �W

�F
(E) + ��

�Ḟ
(Ḟ;E), T = − �W

�Fi
(E), A = −�W

�Q
(E) (10)

In addition, we assume the existence of a dissipative potential � such that the relations between
the local irreversible process and the local state are implicitly given by

� = �(Ḟi, Q̇;E) (11)

T = ��

�Ḟi
(Ḟi, Q̇;E), A = ��

�Q̇i
(Ḟi, Q̇;E) (12)

The potential � was defined independently of � in order to introduce a dissipation term
depending only on the inelastic deformation rate Ḟi (note that � depends on the total rate Ḟ).
The viscoelastic formulation proposed in the next sections will use this distinction.

From (10) and (12) it is clear that, at any state E,

�W

�Fi
+ ��

�Ḟi
= 0,

�W

�Q
+ ��

�Q̇
= 0 (13)
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which are constraints that must be satisfied by the rate variables Ḟi and Q̇. The satisfaction
of (13) is equivalent to finding, for a given state E, the values Ḟi and Q̇ that solve the
minimization problem:

min
Ḟi,Q̇

{
�W(E)

�Fi
· Ḟi + �W(E)

�Q
Q̇ + �(Ḟi, Q̇;E)

}
(14)

A convenient new potential is now defined:

D(Ḟ, Ḟi, Q̇;E) = �W(E)

�F
· Ḟ + �W(E)

�Fi
· Ḟi + �W(E)

�Q
Q̇ + �(Ḟ,E) + �(Ḟi, Q̇;E)

= �W(E)

�E
Ė + �(Ḟ,E) + �(Ḟi, Q̇;E) (15)

with the following characteristics:

• Its minimization with respect to the inelastic rate variables Ḟi, Q̇ provides the values
Ḟi∗, Q̇∗ that satisfy the constraint (13) or, equivalently, (14).

• Its derivative with respect to the rate variable Ḟ provides the constitutive state equation
for P (see (10)).

The minimization on Ḟi, Q̇ defines a new functional, having Ḟ as a variable:

Deff(Ḟ;E) = �(Ḟ,E) + min
Ḟi,Q̇

{
�W(E)

�F
· Ḟ + �W(E)

�Fi
· Ḟi + �W(E)

�Q
Q̇ + �(Ḟi, Q̇;E)

}
(16)

that, as already remarked, has the following property:

�Deff(Ḟ;E)

�Ḟ
= �W(E)

�F
+ ��

�Ḟ
(Ḟ;E) = P (17)

Thus, Deff(Ḟ;E) constitutes a rate potential of Ḟ for P.
The next step is to define an incremental constitutive equation within the interval [tn, tn+1]

that provides incremental updates Fn+1, Ḟn+1, Qn+1 consistent with the rate potential (17).
The main objective is to obtain an incremental potential �(Fn+1) such that due to objectivity
constraints [15–17],

Pn+1 = ��(Fn+1)

�Fn+1
= 2Fn+1

��(Cn+1)

�Cn+1
(18)

= Fn+1

[
J

−2/3
n+1 DEV

(
2

�W

�Ĉn+1

)
+ �U

��n+1
Jn+1C−1

n+1

]
(19)

This means that the internal variables Fi
n+1 and Qn+1 can be computed by the incremental

constitutive equations once the value of Fn+1 is known. A possible general expression for the
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Figure 1. Generalized Kelvin–Maxwell model.

potential is

�(Fn+1;En) = �t�(F̊,En) + min
Fi
n+1

Qn+1

{W(En+1) − W(En) + �t�(F̊i, Q̊;En)} (20)

where F̊(Fn+1,En), F̊i(Fi
n+1,En) and Q̊(Qn+1,En) are suitable incremental approximations of

the rate variables Ḟ, Ḟi , and Q̇, respectively. It is possible to show that if �t → 0, this incre-
mental potential reduces to (16), which is the claimed consistence for the constitutive update.
A final comment is necessary to close the gap between constitutive and balance equations. If,
due to numerical implementation, the variational principle (5) is used, then (20) plays the role
of incremental potential whose derivative given by (19) provides the new value for the stress
tensor. This will be seen more clearly in the next sections.

3.2. A group of visco-hyperelastic models

A quite general group of viscoelastic materials can be modelled within the present variational
framework. Owing to the possibility of obtaining analytical or semi-analytical expressions for
the constitutive updates, only isotropic models will be considered now. However, no theoretical
limitations to include more general non-isotropic behaviours are found.

The rheological mechanism shown in Figure 1 is taken as a basis to include different potential
expressions in (16) or (20). The model is based on the following assumptions:

• The elastic part of the Kelvin branch accounts for a separation of the elastic energy into
isochoric and volumetric parts. The isochoric part is an isotropic function of Ĉ = F̂TF̂:

�(Ĉ) = �(c1, c2, c3) (21)

where cj and Ej are the eigenvalues and eigenvectors of Ĉ The volumetric part may be
defined using the usual expression

U(�) = K

2
[ln �]2 (22)

where K is the bulk modulus of the material.
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• Analogously, the viscous part of the Kelvin branch is also an isotropic function of the
symmetric part of the rate of deformation:

D = dev[Sym(ḞF−1)] (23)

�(D) = �(d1, d2, d3) (24)

where dj and Mj are, respectively, the eigenvalues and eigenvectors of D.
• The Maxwell branch, connected in parallel, takes into account the multiplicative separation

of elastic and inelastic (viscous) strains. The viscous part is assumed to be isochoric:

F̂ = F̂eFv �⇒ F̂e = F̂Fv−1, det Fv = 1 (25)

A viscous rate of deformation (or viscous stretching) Dv is defined as

Dv = Sym(Lv) = Lv = ḞvFv−1 (26)

which, by construction, is deviatoric. The symmetry of Lv comes from the null viscous spin
assumption (skew(Lv) = Wv = 0). Rearranging (26) a flow rule for the internal variable
Fv is obtained as

Ḟv = DvFv (27)

• Additional constraints on Dv define specific characteristics of the flow rule. In plastic or
viscoplastic von Mises models, the normality rule constrains Dv to be of type

Dv = dvMv (28)

dv ∈ R+ (29)

Mv ∈ KM = {N ∈ Sym : N · N = 3
2 , N · I = 0} (30)

where I is the second-order identity matrix, Sym represents the set of symmetric second-
order tensors and N a traceless symmetric tensor. The scalar dv accounts for the amplitude
of Dv while Mv provides normality and tracelessness properties. A different and convenient
decomposition is proposed here:

Dv =
3∑

i=1
dv
j Mv

j (31)

dv ∈ KQ = {pj ∈ R : p1 + p2 + p3 = 0} (32)

Mv
j ∈ KM = {Nj ∈ Sym : Nj · Nj = 1, Ni · Nj = 0, i 	= j} (33)

where dv
j and Mv

j , j = 1, 2, 3, are eigenvalues and eigenprojections of Dv. The trace-
lessness condition is enforced by the set KQ while KM constrains eigenprojections to
be symmetric orthonormal second-order tensors. Scalars dv

j account for the amplitude of
viscous (inelastic) stretching and, consequently, they are chosen to be the internal vari-
ables contained in the set Q̇ = {d1, d2, d3}. In this case, it is important to note that (27)
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is a non-holonomic constraint relating the internal variables Fv and Q. The elastic and
viscous potentials associated with this branch are assumed to be isotropic functions of the
elastic deformation and viscous stretching, and thus they depend on their corresponding
eigenvalues:

�e(Ĉe) = �e(ce
1, c

e
2, c

e
3) (34)

�(Dv) = �(dv
1 , dv

2 , dv
3 ) (35)

where ce
j and Ee

j are the eigenvalues and eigenvectors of Ĉe:

Ĉe = F̂eTF̂e =
3∑

j=1
ce
j Ee

j (36)

• Viscous deformations are incrementally updated based on exponential mappings:

�F̂ = F̂n+1F̂−1
n = �R(exp[�tD]) (37)

�tD = �t (dj Mj ) =
3∑

j=1
�qj Mj (38)

�Ĉ = (�F̂)T�F̂ = F̂−T
n Ĉn+1F̂−1

n = exp[�tD]2 (39)

⇒ D =
3∑

j=1

�qj

�t
Mj = 1

2�t
ln(�Ĉ) (40)

where �R comes from the polar decomposition of �F̂ (note that it is later cancelled in
the calculation of �Ĉ). In analogous form,

�Fv = Fv
n+1Fv−1

n = exp[�tDv] (41)

�tDv = �t (dv
j Mv

j ) =
3∑

j=1
�qv

j Mv
j (42)

�Cv = (�Fv)T�Fv = Fv−T
n Cv

n+1Fv−1
n = exp[�tDv]2 (43)

⇒ Dv =
3∑

j=1

�qv
j

�t
Mv

j = 1

2�t
ln(�Cv) (44)

Expressions (40) and (44) show that D and Dv are approximated by incremental ex-
pressions of �Ĉ and �Cv, respectively. The exponential mapping has the particularly
convenient property of providing an isochoric tensor for any traceless argument [18, 19].
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Figure 2. Multiplicative strain decomposition.

Quantities �Fv and �F̂ are represented in Figure 2 that shows the strain decomposition
considered in the present approach.

Owing to the inclusion of constraints (40) and (44) in (20), the minimizing variables Qn+1, Fv
n+1

are substituted by the new incremental variables �qv
j , Mv

j . The minimization problem is thus
re-written as

�(Fn+1;En) = �(Cn+1;En) = ��(Ĉn+1) + �t�

(
�qv

j

�t

)
+ �U(�n+1)

+ min
Mv

j ,�qv
j

{
��e(Ĉe

n+1) + �t�

(
�qv

j

�t

)}
(45)

��(Ĉn+1) = �(Ĉn+1) − �(Ĉn) (46)

��e(Ĉe
n+1) = �(Ĉe

n+1) − �(Ĉe
n) (47)

�U(�n+1) = U(�n+1) − U(�n) (48)

such that

�qv
j ∈ KQ = {pj ∈ R1 : p1 + p2 + p3 = 0} (49)

Mv
j ∈ KM = {Nj ∈ Sym : Nj · Nj = 1, Ni · Nj = 0, i 	= j} (50)

The set KQ enforces the traceless form of Dv, while the set KM accounts for usual properties
of eigenprojections. Moreover, it is easy to verify that both sets are convex on their respective
variables.
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Assuming convenient convexity properties for the terms within braces in (45), first-order
optimality conditions are sufficient to obtain the minimizing arguments, i.e. to find �qv

j ∈ KQ

and Mv
j ∈ KM such that

��(�qv
j , Mv

j )

�Mv
j

[�M] = 0 ∀�M ∈ KM (51)

��(�qv
j , Mv

j )

��qv
j

[�q] = 0 ∀�q ∈ KQ (52)

Taking into account the isotropy property of the energy functions, the minimization in (45)
can be performed analytically. To this aim, an important relation between elastic and inelastic
(viscous) deformations must be shown:

F̂e
n+1 = F̂n+1F̂v−1

n+1 = F̂pr(exp[�tDv])−1, F̂pr = F̂n+1Fv−1
n (53)

Ĉe
n+1 = F̂eT

n+1F̂e
n+1 = Ĉpr(exp[�tDv])−2, Ĉpr = Fv−T

n Ĉn+1Fv−1
n (54)

�e
n+1 = 1

2 ln Ĉe
n+1 = �pr − �tDv, �pr = 1

2 ln Ĉpr (55)

In Equation (54), the assumption of co-linearity between Ĉpr and Dv was taken into account
to allow permutation between both tensors. This means that Ĉe

n+1, Ĉpr and Dv share the same
eigenvectors Ee

j = Epr
j = Mv

j (we must remember that co-linearity does not mean proportionality).
Substituting generic expressions (34), (35) and result (55) in condition (51), the co-linearity
condition is entirely verified (see Appendix for related details). Finally, the satisfaction of (52)
provides a set of non-linear equations for �qv

1 , �qv
2 , �qv

3 :

��e

��e
j

− ��

�dv
j

+ � = 0, j = 1, 2, 3 (56)

�qv
1 + �qv

2 + �qv
3 = 0 (57)

where � is a Lagrangian multiplier and �e
j = ln(ce

j )/2 are the eigenvalues of �e
n+1.

Equivalently, due to the linear relation �e
j = �pr

j − �qv
j , optimality conditions (56), (57) can

be re-written as a non-linear function of �e
1, �

e
2, �

e
3 (this will later prove to be advantageous to

obtain second derivatives of �e, see Appendix):

��e

��e
j

− ��

�dv
j

+ � = 0, j = 1, 2, 3 (58)

�e
1 + �e

2 + �e
3 = 0 (59)

The existence of a solution for this system is guaranteed if convexity properties are assumed
for both �e and �.
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Once the minimization is performed, the derivative of � with respect to Ĉn+1 and �n+1
should be calculated in order to obtain the Piola–Kirchhoff stress tensor. The deviatoric part is
given by (see Appendix for operational details)

��

�Ĉn+1
=

3∑
j=1

��

�cj

�cj

�Ĉn+1
=

3∑
j=1

��

�cj
Ej (60)

��

�Ĉn+1
=
(

3∑
j=1

��

�dj

�dj

��cj

��cj

��Ĉ

)
��Ĉ

�Ĉn+1
= F̂−1

n

(
3∑

j=1

��

�dj

1

2�t�cj
Mj

)
F̂−T

n (61)

��e

�Ĉn+1
=
(

3∑
j=1

��e

�ce
j

�ce
j

�Ĉe
n+1

)
�Ĉe

n+1

�Ĉn+1
= Fv−1

n+1

(
3∑

j=1

��e

��e
j

1

2ce
j

Ee
j

)
Fv−T

n+1 (62)

=
(

3∑
j=1

��e

�c
pr
j

�c
pr
j

�Ĉpr

)
�Ĉpr

�Ĉn+1
= Fv−1

n

(
3∑

j=1

��e

��e
j

1

2c
pr
j

Epr
j

)
Fv−T

n (63)

The choice between expressions (62) or (63) is just a matter of implementation convenience.
Nevertheless, in this work (63) will be preferred to compute second derivatives due to the fact
that Fv

n does not depend on Ĉn+1.

Three additional remarks are useful to enhance the characteristics of the present framework:

i. Potentials � and � from the Kelvin branch are uncoupled and out of the minimization
operations. Thus, their choice does not affect the elastic/viscous decomposition on the
Maxwell branch.

ii. The four non-linear scalar equations (56), (57) are simple enough to allow any choice of
potentials �e and �. Thus, no restriction is made on the size of perturbations away from
the thermodynamic equilibrium up to this point [10]. Moreover, convenient expressions
of �e and � may simplify system (56), (57) even more, as is shown in the next section.

iii. A simple extension to this model can be obtained by considering a set of P Maxwell
branches, as seen in Figure 1. In this case, the incremental potential (45) is

�(Cn+1;En) = ��(Ĉn+1) + �t�

(
�qj

�t

)
+ �U(�n+1)

+
P∑

k=1
min

Mv
jk,�qv

jk

{
��e

k(Ĉ
e
k n+1) + �t�k

(
�qv

jk

�t

)}
(64)

which means that the minimization should be performed for each k-module, thus obtaining
the corresponding pair �qv

jk , Mjk .

A final aspect concerns the computation of the incremental dissipation, which is a fundamental
point for further extensions to thermomechanical models. Dissipated energy in the present model
is associated with the Kelvin and Maxwell contributions from the corresponding dissipation
potentials � and �. The increment of dissipated energy �D at each time step is computed as
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the time integration of the product of conjugated forces times the corresponding stretchings.
Taking advantage of the isotropic properties of the potentials,

�D = �DK + �DM,

�DK =
∫ tn+1

tn

3∑
j=1

��

�dj
dj dt �

3∑
j=1

��

�dj

∣∣∣∣
t̄

dj �t =
3∑

j=1

��

�dj

∣∣∣∣
t̄

�qj

�DM =
∫ tn+1

tn

3∑
j=1

��

�dv
j

dv
j dt �

3∑
j=1

��

�dv
j

∣∣∣∣∣
t̄

dv
j �t =

3∑
j=1

��

�dv
j

∣∣∣∣∣
t̄

�qv
j

where tn � t̄ � tn+1 and �DK, �DM are the respective contributions of the Kelvin and Maxwell
branches. Due to the assumed properties of � and �, dissipation is clearly non-negative.

3.3. Material tensors

An important aspect from the numerical implementation point of view is the determination of the
tangent matrix, consistent with the constitutive incremental update algorithm. The contribution
to the tangent matrix from geometric terms is common to any hyperelastic model based on
the variational balance equations (5)–(7). Thus, we focus here on the expression of the second
derivative of the present incremental material update. We will use here the notation d(·)/dĈn+1

as the total derivative of the argument with respect to Ĉn+1. We define thus the tensor C:

C= d

dĈn+1

(
��

�Ĉn+1

)
= d2�

(dĈn+1)2
+ d2�

(dĈn+1)2
+ d

dĈn+1

(
��e

�Ĉn+1

)

=C� + C� + C�e
(65)

The first two members are quite easy to compute. Indeed, since � is an isotropic function
of Ĉn+1, its second derivative is easily computed in the spectral co-ordinate system (see,
for example, Reference [17]). The second term needs a preliminary pull-back operation by
tensor F̂−1

n . In order to facilitate notation, we call fn = F̂−1
n and the index n + 1 is dropped.

Using the relation �Ĉ = F̂−T
n Ĉn+1F̂−1

n = fnTĈfn, we obtain the following symmetric fourth-
order tensor (see Appendix):

C
�
ijkl = �

�Ĉkl

(
��

�Ĉij

)
=

3∑
m,t,p,q=1

fn
imfn

jt

��

��Ĉmt��Ĉpq

fn
kpfn

lq =C
�
klij =C

�
jikl (66)

Since � is an isotropic function of �Ĉ, its second derivative is easily obtained using spectral
co-ordinates in a way analogous to the one for �.
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The third term is treated in an equivalent fashion. Considering Ĉpr = F̂v−T
n Ĉn+1F̂v−1

n , calling
fvn = F̂v−1

n and dropping index n + 1, we have

C
�e

ijkl =
d

dĈkl

(
��e

�Ĉij

)
=

3∑
m,t,p,q=1

fvn
imfvn

jt

d

dĈ
pr
pq

(
��e

�Ĉ
pr
mt

)
fvn
kp fvn

lq =C
�e

klij =C
�e

jikl (67)

The critical point is the obtainment of the derivatives of �e with respect to Ĉ
pr = c

pr
j Epr

j . In
spectral co-ordinates this requires the computation of the following functions (see Appendix
for details):

yi = ��e

�c
pr
i

= ��e

��e
i

1

2c
pr
i

(68)

yi,j = d

dc
pr
j

(
��e

��e
i

1

2c
pr
i

)
= �2�e

��e
i ��e

i

d�e
i

d�pr
j

1

4c
pr
i c

pr
j

− ��e

��e
i

1

2(c
pr
i )2

(69)

The terms ��e/��e
k and �2�e/��e

k��e
l are straightforward. On the other hand, the relation

�e
k(�

pr
1 , �pr

2 , �pr
3 ) is defined by the derivation of the non-linear system (58), (59) (see Appendix):

�ri

��pr
j

= Kii

d�e
i

d�pr
j

−
(

�,ii

�ij

�t
− d�

d�pr
j

)
= 0, i = 1, 2, 3 (70)

�r4

��pr
j

= d�e
1

d�pr
j

+ d�e
2

d�pr
j

+ d�e
3

d�pr
j

= 0 (71)

where we use the notation

�,i = ��

�dv
i

, �,i = ��

��e
i

, Kii = �, ii + 1

�t
�, ii (72)

Isolating d�e
i /d�pr

j from (70), substituting in (71), and returning back to (70) we obtain the
explicit expression

d�e
i

d�pr
j

= �,ii

�tKii

�ij − �, jj

�tKjjKii

(
3∑

s=1

1

Kss

)−1

(73)

3.4. Hencky-based model

In this section we analyse the case when potentials are based on quadratic forms of logarithmic
strain tensors (Hencky-type potentials [16, 17])

� = 	
3∑

j=1

(
�j
)2

, � = 

3∑

j=1
(dj )

2 (74)

�e = 	e
3∑

j=1
(�e

j )2, � = 
v
3∑

j=1
(dv

j )2 (75)
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From (55) we have that �e
j = �pr

j − �tdv
j = �pr

j − �qv
j . Using (75), the optimality conditions

(56), (57) take the particular form

−2	e(�pr
j − �qv

j ) + 2
v
�qv

j

�t
+ � = 0, j = 1, 2, 3 (76)

�qv
j + �qv

j + �qv
j = 0 (77)

It is easy to see that, summing up all three linear equations (76), the constraint (77) and the
fact that �pr

1 + �pr
2 + �pr

3 = 0, provides � = 0. This fact decouples the system and we finally have

�qv
j = 	e


v

�t
+ 	e

�pr
j (78)

for each principal direction j , which is the classical expression of the corresponding infinitesimal
linear viscoelastic model. The particular derivatives ��/��j , ��/�dj , ��e/��e

j , ��/�dv
j and higher

orders needed to substitute into (60), (63) and (73) are easily obtained from the potentials
definition.

3.5. Ogden-based model

In the previous case, the quadratic function of the logarithmic strains is particularly convenient
to obtain the simple uncoupled linear expression (78) for the minimizing argument �qv

j . In
spite of this advantage, it is well known that this type of hyperelastic potentials do not fit very
well the behaviour of rubber-like materials, which are the ones that most commonly exhibit
viscoelastic properties. For that, a more adequate choice may be the Ogden model [16, 17] which
also has the property of generalizing other models like neo-Hookean and Mooney–Rivlin.

Different combinations are possible. A first attempt may be to associate the main spring
of the Kelvin branch with an Ogden model, leaving the Maxwell branch with a Hencky-type
definition, as was done in the previous section. This option seems to provide small viscous
stress contributions for large strain ranges, when compared with the stress obtained by the
Ogden model in the main spring. This fact will be more easily understood with a corresponding
numerical example in the next section. Another possibility is defining both springs of the Ogden
type. Consider then the following potentials (the same symbol �p was used in all expressions
for the purpose of simplicity, but it can be different for each function):

� =
3∑

j=1

N∑
p=1

	p

�p

([exp(�j )]�p − 1) (79)

� =
3∑

j=1

N∑
p=1


p

�p

([exp(dj )]�p − 1) (80)
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Figure 3. Cyclic shear test.

�e =
3∑

j=1

N∑
p=1

	e
p

�p

([exp(�e
j )]�p − 1) (81)

� =
3∑

j=1

N∑
p=1


v
p

�p

([exp(dv
j )]�p − 1) (82)

Substituting (81) and (82) in (56), (57) we obtain the non-linear set

N∑
p=1


e
p exp(�pdv

j ) −
N∑

p=1
	e

p exp(�p�e
j ) + � = 0, j = 1, 2, 3 (83)

dv
1 + dv

2 + dv
3 = 0 (84)

Variables dv
j , � can be solved by, for example, the Newton procedure (see Appendix). Again,

particular derivatives ��/��j , ��/�dj , ��e/��e
j , ��/�dv

j and higher orders needed to substitute
in (60), (63) and (73) are easily obtained from the potentials definition.

4. NUMERICAL EXAMPLES

This section shows some numerical examples with the aim of discussing performance and
particular characteristics of the chosen models (potentials) within the present formulation. Finite
element calculations were performed using the C + + version of the finite element program
METAFOR [20].

4.1. Cyclic shear test

Consider a pure shear test of a single 3D element (Figure 3). This example was extracted
from Reference [10] and its goal is to illustrate some characteristics of the present approach.
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Table I. Material parameters for cyclic shear test.

Potential Ogden Hencky

�(	i ) 20 −7 1.5 	= 30.25 =∑i
1
2	i�i

�e(	e
i
) 51.4 −18 3.86 	e = 77.77 =∑i

1
2	e

i
�i

�(
i ) 899.5 −315 67.55 
v = 1361 =∑i
1
2
v

i
�i

Table II. Material model combinations.

Case � �e �

1 Hencky Hencky Hencky
2 Ogden Hencky Hencky
3 Ogden Ogden Hencky
4 Ogden Ogden Ogden

Moreover, if appropriate potentials are chosen, we show that results equivalent to those of
Reference [10] are obtained. The rheological model chosen for this example corresponds to the
one of Figure 3 (potentials � = 0).

This example consists of a pure shear test of a single 3D element (Figure 3). Material
parameters and load characteristics were taken from the same example in Reference [10], in
order to perform numerical comparisons of results when possible. The rheological model chosen
for this example corresponds to the one of Figure 3 (potentials � = 0).

The lateral displacement follows a sinusoidal law ux = Ux sin wt , where w = 0.3 s−1. The
quotient ux/h is numerically equal to the shear component Cxy (or Bxy) in the Cartesian co-
ordinate system. The material was assumed to be almost incompressible through a convenient
penalization value of K .

In addition, Ogden and Hencky models were used for �, �e and �. For Ogden models
we used N = 3, i.e. p = 1, 2, 3. Also, to reduce the number of free parameters, we assume
	e

p = 2.57	p and viscous coefficients 
v
p such that � = 
v

p/	
e
p = 17.5. Moreover, the same Ogden

exponents �p were used for all potentials: �1 = 1.8; �2 = − 2; �3 = 7 (see Table I).
For the Hencky cases, the value 	 =∑p

1
2	p�p was used, which is the consistent equivalent

parameter for small strains. The four combinations shown in Table II were tested.
The following graphics show the behaviour of Cauchy stresses 
xy as a function of shear

strain Cxy in time, for different shear amplitudes: 0.01, 1, 2 and 5. The total time is such that
3(three) load cycles are completed. In the case of small strains shown in Figure 4, all models
give identical results, as expected. For larger amplitudes, quite different results are found. The
results of cases 2–4 shown in Figures 5–10, present a close correlation of maximum values
of stress with the corresponding results found in Reference [10]. However, hysteresis loops
of case 2, are clearly ‘thinner’ as the deformation grows along the cycle. This behaviour is
in agreement with the fact that the Hencky model used in the Maxwell branch provides a
contribution in stress much lower than a corresponding Ogden model for large strains. Cases 3
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Figure 4. Cyclic shear test. Shear amplitude: 0.01.
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Figure 5. Cyclic shear test. Shear amplitude: 1.

and 4 graphically fit the non-linear case of Reference [10]. Moreover, they provide almost the
same results in this example, where a proportionality � among elastic and viscous parameters
was used.
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Figure 6. Cyclic shear test. Shear amplitude: 1.
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Figure 7. Cyclic shear test. Shear amplitude: 2.

The viscous potential modifies the minimization condition (56), (57) and, thus, the amount of
viscous deformation. In order to put in evidence its influence we ran two more cases in which
the main spring is eliminated and the Maxwell spring keeps its previous values. The potential �
changes from the Hencky model (with the same viscosity 
v already used) to the Ogden model,
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Figure 8. Cyclic shear test. Shear amplitude: 2.
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Figure 9. Cyclic shear test. Shear amplitude: 5.

using parameters with the same equivalent viscosity 
v =∑p
1
2
v

p�p (see Table III). Again, in
the small strain case, all models provide the same behaviour (Figure 11). On the other side,
finite deformations clearly exhibit differences on the hysteresis loop, as shown in Figures 12
and 13.
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Figure 10. Cyclic shear test. Shear amplitude: 5.

Table III. Material parameters for potential �.

Ogden (a) Ogden (b) Hencky


v
1 = 272.2 
v

1 = 136.1 
v = 1361 = 1
2
v

1�1
�1 = 10 �1 = 20

4.2. Pinched cylinder

The goal of the next examples is to show the applicability of the present model to typical
large-scale FEM computations. Figure 14(a) shows a thick viscoelastic cylinder and a rigid
hemispherical tool following the path shown in Figure 14(b): first, it pinches the cylinder down
to a cursor-end position where it remains during a relaxing period. Finally, it is removed at
high velocity, which produces different final piece shapes and different times of separation,
depending on the initial tool velocity defined by the time t (see Figure 14(b)). Five cases are
tested with t = 0.25, 0.5, 1, 2 and 3 s. This example is inspired from a similar one found in
Reference [3].

Cylinder dimensions are Ri = 12 mm, Re = 16 mm and L = 20 mm. The tool has a radius of
2.5 mm and its displacement is equal to Ri. An Ogden model with the same parameters as in
the previous example was used for both spring potentials � and �e : 	1 = 2.758; 	2 = −1.725;
	3 = 0.704 (MPa) and �1 = 1.33; �2 = − 3.05; �3 = 3.89. The viscous potential � is of the
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Figure 11. Cyclic shear test. Influence of viscous potential. Shear amplitude: 0.01.
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Figure 12. Cyclic shear test. Influence of viscous potential. Shear amplitude: 2.

Hencky type, with 
v = 1.1394 (� = 2 s). Potential � is null. Lateral faces of the cylinder are
free and symmetry of the model was taken into account for the analysis.

Figure 15(a) shows the deformed configuration for the maximum tool displacement,
while 15(b) illustrates the final configuration after tool removal. The history of the Cauchy
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Figure 13. Cyclic shear test. Influence of viscous potential. Shear amplitude: 2.

Figure 14. (a) Pinched cylinder; and (b) tool path.

stress 
x and displacement of the point located on the cylinder interior surface just below
the punch tip is plotted in Figure 16. The history of the former point displacement is shown
in Figure 17. As expected, the faster the punch is applied, the higher the stresses that are
developed and the higher the dissipated energy at the tool removal time t = 3 s. Consequently,
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Figure 15. Pinched cylinder: (a) intermediate; and (b) final configurations.
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Figure 16. Cauchy stress 
x versus time.

owing to a higher relaxation in the system, we see a faster separation from the tool during its
backward motion.

4.3. Viscoelastic support

This example simulates a viscoelastic cylindrical support clamped on its exterior surface and
with a rigid edge connected to a vibrating device (see Figure 18).

The harmonic vibration u = U sin wt , with w = 10 s−1 occurs along different directions. The
first one is a lateral translation along x direction with maximum displacement Ux = 3

8 (Re −Ri).
The second one is composed by an axial translation (Uy = Ri) and rotation (�y = 45◦). The
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Figure 17. Displacement uz of interior point below punch tip.

Figure 18. Support. Undeformed configuration.

dimensions of the viscoelastic support are Ri = 15 mm, Re = 30 mm and L = 50 mm. Figure 19
shows the maximum amplitude of deformations for a lateral motion while Figure 20 illustrates
the case of axial (rotation plus translation) motion. The isochoric nature of the material shows
up in Figure 19 where the compressed and tractioned sides of the cylinder deform accordingly
to preserve this constraint. Two material models were run, both sharing the same constitutive
characteristics in the small strain regime.

Case 1: Ogden model for both spring potentials � and �e (	e
i = 4	i ): 	1 = 3.5; 	2 = 0.011;

	3 = 0.0015 and �1 = 0.1; �2 = 2.0; �3 = 9 (	eq =∑i
1
2 	i�i = 0.19275 MPa). The viscous

potential � is of the Hencky type with 
v = 7.69 (� = 0.4 s). Potential � is null.
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Figure 19. Support. Case 1: deformed configuration for lateral edge motion.

Figure 20. Support. Case 2: deformed configuration for axial edge motion.

Case 2: All potentials of the Hencky type: 	 = 0.19275 MPa, 	e = 4	, 
v = �	e, � = 0.4 s.
Potential � is null.

Figures 21–22 show the hysteretical loops in force/displacement for the lateral and axial
motions, respectively. These graphics clearly show the differences induced by the model, which
are accentuated in large strain regimes.

5. CONCLUDING REMARKS

This paper presents a general set of viscoelastic constitutive models based on a variational
framework that provides an appropriate mathematical structure for further applications like, for
example, error estimation (see a detailed study on this issue in Reference [12]). Among others,

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2006; 65:1831–1864



1856 E. FANCELLO, J.-P. PONTHOT AND L. STAINIER

-5 -4 -3 -2 -1 0 1 2 3 4 5
-8000

-6000

-4000

-2000

0

2000

4000

6000

Displacement

F
or

ce

Hencky/Hencky/Hencky
Ogden/Ogden/Hencky

Figure 21. Support. Case 1: lateral force Fx versus displacement ux .
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Figure 22. Support. Case 2: axial force Fy versus displacement uy .
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the following characteristics of this approach should be noted:

• It is capable of reproducing other models in literature according to the specific viscoelastic
law chosen;

• No theoretical restrictions are put on the size of perturbations away from the equilib-
rium positions and they can be properly treated with appropriate choices of dissipative
functionals;

• The theoretical and operational (implementation) background is stated for general isotropic
constitutive functions depending on eigenvalues of strains and strain rates. As a conse-
quence, most of the implementation effort, including stress updates and tangent
matrix is carried out at a generic level with no relation to a specific isotropic law
(potential). This last definition can be performed practically at user level by the choice
of the corresponding potential and derivatives expressions (see, for example, (74), (75)
or (79)–(82)).

• Stress and strain updates require (in the general case) the solution of a three-equation
non-linear system to determine the eigenvalues of viscoelastic increments (eigenprojections
are defined by the predictor state). This non-linear system is analytically invertible and,
thus, computationally inexpensive. Moreover, the material tensor is calculated by means of
a simple closed form expression. From this remark and from the behaviour shown by the
numerical experiments, we observed that the performance of the constitutive update based
on the present expressions is, in general, comparable to that of a classic radial-return
plastic von Mises-based problem (with non-linear hardening).

• More than a single Maxwell branch are frequently employed to describe real experimental
viscoelastic curves. The proposed model is, as already shown, able to include those
branches with the corresponding cost of new parameters to be identified. We also note that
the present formulation allows the use of different non-linear models for each component
of the Maxwell branch, starting from classical two-parameter models to more sophisticated
ones. A question that deserves further studies is related to the number of Maxwell branches
needed to describe real viscoelastic curves depending on the features of the models defined
in each of them.

• Extension to non-isotropic materials presents, a priori, no mathematical difficulties and is
the subject of future developments.

APPENDIX A

Minimization of � with respect to Mv
a

The argument of the minimum of potential �(�qv
j , Mv

j ) must satisfy the usual constraints for
eigenprojections and the traceless property provided by the eigenvalues:

�qv
j ∈ KQ = {pj ∈ R1 : p1 + p2 + p3 = 0}

Mv
j ∈ KM = {Nj ∈ Sym : Nj · Nj = 1, Ni · Nj = 0, i 	= j}

In order to enforce them, the optimality condition (51) is computed with the aid of a Lagrangian
function that adds to the original potential all the considered equality constraints multiplied by
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corresponding Lagrangian multipliers:

L(�e
j , dv

j , �) = ��e(�e
j ) + �t�(de

j )

+�1(Mv
a · Mv

a − 1) + �2(Mv
a · Mv

b) + �3(Mv
a · Mv

c)

+�4(Mv
b · Mv

b − 1) + �5(Mv
b · Mv

c) + �6(Mv
c · Mv

c − 1)

+�(dv
a + dv

b + dv
c ) (A1)

We also recall the relations

Dv =
3∑

j=1
dv
j Mv

j , dj = �qv
j

�t
,

�dv
a

�Dv
= Mv

a

�e =
3∑

j=1
�e
j Ee

j = �pr − �tDv,
��e

a

��e
= Ee

a

The optimality condition with respect to direction Ma is

�L
�Mv

a

[�M] =
(

���e

�Mv
a

+ �t
���

�Mv
a

)
[�M] + 2�1(Mv

a · �M) + �2(Mv
b · �M) + �3(Mv

c · �M)

+�

(
�dv

a

�Dv

�Dv

�Mv
a

)
[�M] = 0 ∀�M ∈ Sym (A2)

where

���e

�Mv
a

=
3∑

j=1

���e

��e
j

��e
j

��e

��e

�Mv
a

= −
(

3∑
j=1

���e

��e
j

Ee
j

)
�qv

a

���

�Mv
a

=
3∑

j=1

���

�dv
j

�dv
j

�Dv

�Dv

�Mv
a

=
(

3∑
j=1

���

�dv
j

Mv
j

)
�qv

a

�t

�dv
a

�Dv

�Dv

�Mv
a

= dv
a Mv

a (no sum on index a)

(
���e

�Mv
a

+ �t
���

�Mv
a

)
= �qv

a

[(
3∑

j=1

���

�dv
j

Mv
j

)
−
(

3∑
j=1

���e

��e
j

Ee
j

)]
︸ ︷︷ ︸

A

= �qv
aA
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Substituting these results in (A2), and taking �M equal to Mv
a , Mv

b, Mv
c respectively, we obtain

the conditions

2�1 + �dv
a = −�qv

a A · Mv
a

�2 = −�qv
aA · Mv

b

�3 = −�qv
a A · Mv

c

Substituting them in (A2),

�qv
a [A · �M − (A · Mv

a)(M
v
a · �M) − (A · Mv

b)(M
v
b · �M) − (A · Mv

c)(M
v
c · �M)] = 0 ∀�M∈Sym

or, equivalently,

B︷ ︸︸ ︷
[I − (Mv

a ⊗ Mv
a) − (Mv

b ⊗ Mv
b) − (Mv

c ⊗ Mv
c)] A = 0

Substituting the tensor A in this last equation it is simple to verify that

B

(
3∑

j=1

���

�dv
j

Mv
j

)
= 0

B

(
3∑

j=1

���e

��e
j

Ee
j

)
=

3∑
j=1

���e

��e
j

Ee
j −

3∑
j=1

���e

��e
j

(Ee
j · Mv

a)M
v
a

−
3∑

j=1

���e

��e
j

(Ee
j · Mv

b)M
v
b −

3∑
j=1

���e

��e
j

(Ee
j · Mv

c)M
v
c

The last equation is zero if we take Ee
j = Mv

j .

Minimization of � with respect to �qv
a

Once the directions Mv
i are computed, the minimization with respect to �qv

i or equivalently to
dv
i = �qv

i /�t should be performed. Considering that �e
i = �pr

i −�qv
i , and the fact that constraints

�e
1 + �e

2 + �e
3 = dv

1 + dv
2 + dv

3 = 0, we have the following optimality conditions:

ri = − �L
��qv

i

= �L
��e

i

= ��e

��e
i

+ �t
��

�dv
i

�dv
i

��e
i

+ �

= ��e

��e
i

− ��

�dv
i

+ � = 0, i = 1, 2, 3

r4 = �e
1 + �e

2 + �e
3 = 0 (A3)

Using the Newton method to find the roots x = {�e
1, �

e
2, �

e
3, �}, we have the recursive formula

xk+1 = xk − Kk−1rk
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or
Kk�x = − rk, xk+1 = xk + �x

Further simplifications can be made if we assume that

�e(�e
i ) =

3∑
i=1

we(�e
i ), �(dv

i ) =
3∑

i=1
wv(dv

i )

as is the case of the Hencky or Ogden model proposed. Thus, we have

K =

⎡
⎢⎢⎢⎢⎣

K11 0 0 1

0 K22 0 1

0 0 K33 1

1 1 1 0

⎤
⎥⎥⎥⎥⎦

Kii = �2�e

��e
i ��e

i

+ 1

�t

��

�dv
i �dv

i

, i = 1, 2, 3. (no index sum)

In this case, after some algebra, we have the following explicit expression for the Newton
update:

��e
i = −(ri + ��)/Kii

�� =
(

r4 −
3∑

j=1

rj

Kjj

)(
3∑

s=1

1

Kss

)−1

Derivatives of �, � and �e with respect to Ĉn+1

The derivative of � is straightforward:

Ĉn+1 =
3∑

j=1
cj Ej

��

�Ĉn+1
=

3∑
j=1

��

�cj

�cj

�Ĉn+1
=

3∑
j=1

��

�cj
Ej

Considering that

�Ĉ = (�F̂)T �F̂ = F̂−T
n Ĉn+1F̂−1

n

D =
3∑

j=1
dj Mj = 1

2�t
ln (�Ĉ) = 1

2�t

3∑
j=1

ln(�cj )Mj

dj = 1

2�t
ln(�cj ),

�dj

�cj
= 1

2�t�cj
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the derivative of � is

��

�Ĉn+1
[�C] = ��

��Ĉ
· ��Ĉ

�Ĉn+1
[�C]

= ��

��Ĉ
· F̂−T

n

(
�Ĉn+1

�Ĉn+1
[�C]

)
F̂−1

n = ��

��Ĉ
· F̂−T

n

1

2
(�C + �CT )F̂−1

n

= F̂−1
n

��

��Ĉ
F̂−T

n · �C

��

��Ĉ
=

3∑
j=1

��

�dj

�dj

��cj

��cj

��Ĉ
=

3∑
j=1

��

�dj

1

2�t�cj
Mj

(A4)

In order to compute the derivative �e we use the relations

Ĉe
n+1 = F̂eT

n+1F̂e
n+1 = Fv−T

n+1 Ĉn+1Fv−1
n+1

Ĉpr = F̂prTF̂pr = Fv−T
n Ĉn+1Fv−1

n

and by operating in an analogous form as in (A4) we obtain

��e

�Ĉn+1
= Fv−1

n+1
��e

�Ĉe
n+1

Fv−T
n+1 (A5)

= Fv−1
n

��e

�Ĉpr
Fv−T

n (A6)

where,

��e

�Ĉe
n+1

=
3∑

j=1

��e

�ce
j

�ce
j

�Ĉe
n+1

=
3∑

j=1

��e

�ce
j

Ee
j (A7)

��e

�Ĉpr
=

3∑
j=1

��e

�c
pr
j

�c
pr
j

�Ĉe
n+1

=
3∑

j=1

��e

�c
pr
j

Epr
j (A8)

Hencky model: derivatives of �, � and �e

From the definition of the potentials,

��

��j
= 2	�j ,

��

�dj
= 2
dj ,

��e

��e
j

= 2	e�e
j ,

��

�dv
j

= 2	vdv
j

�2�

(��j )2
= 2	,

�2�

(�dj )2
= 2
,

�2�e

(��e
j )2

= 2	e,
�2�

(�dv
j )2

= 2	v
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Ogden model: derivatives of �, � and �e

Recalling that cj = exp(2�j ), ce
j = exp(2�e

j ), exp(dj ) = (�cj )
1/2�t , we have for the Ogden model

� =
3∑

j=1

N∑
p=1

	p

�p

([exp(�j )]�p − 1) =
3∑

j=1

N∑
p=1

	p

�p

((cj )
�p/2 − 1)

�e =
3∑

j=1

N∑
p=1

	e
p

�p

([exp(�e
j )]�p − 1) =

3∑
j=1

N∑
p=1

	e
p

�p

((ce
j )�p/2 − 1)

� =
3∑

j=1

N∑
p=1


p

�p

([exp(dj )]�p − 1) =
3∑

j=1

N∑
p=1


p

�p

((�cj )
�p/2�t − 1)

Deriving, we have

��

��j
=

N∑
p=1

	p[exp(�j )]�p ,
��

�dj
=

N∑
p=1


p[exp(dj )]�p

��e

��e
j

=
N∑

p=1
	e

p[exp(�e
j )]�p ,

��

�dv
j

=
N∑

p=1

v
p[exp(dv

j )]�p

�2�

(��j )2
=

N∑
p=1

	p�p[exp(�j )]�p ,
�2�

(�dj )2
=

N∑
p=1


p�p[exp(dj )]�p

�2�e

(��e
j )2

=
N∑

p=1
	e

p�p[exp(�e
j )]�p ,

�2�

(�dv
j )2

=
N∑

p=1

v
p�p[exp(dv

j )]�p

Material tensors

Using the relation �Ĉ = F̂−T
n Ĉn+1F̂−1

n = fnTĈfn, we have that (in this particular expression we
use Einstein’s notation for summation on indices p, q, m, t , u, v, r , s):

�

�Ĉkl

(
��

�Ĉij

)
= �

��Ĉpq

��

��Ĉmt

��Ĉmt

�Ĉij

��Ĉpq

�Ĉkl

= �

��Ĉpq

��

��Ĉmt

�(fnT
pu Ĉuvfn

vq)
�Ĉkl

�(fnT
mr Ĉrsfn

st )

�Ĉij

= �

��Ĉpq

��

��Ĉmt

fnT
pu�uvklfn

vq fnT
mr�rsij fn

st

= fn
rmfn

st

��

��Ĉmt��Ĉpq

fn
upfn

vq�uvkl�rsij
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= fn
imfn

jt

��

��Ĉmt��Ĉpq

fn
kpfn

lq =C
�
ijkl

C
�
ijkl =C

�
klij , C

�
ijkl =C

�
jikl, �ijkl = 1

2

(
�ik�j l + �il�jk

)
The total derivative of �e with respect to �pr

j comes from the derivative of the non-linear
optimality conditions:

�ri

��pr
j

= �2�e

��e
i ��e

i

d�e
i

d�pr
j

− �2�

�dv
i �dv

i

d(dv
i )

d�pr
j

+ d�

d�pr
j

= 0, i, j = 1, 2, 3 (no index sum)

= �e
,ii

d�e
i

d�pr
j

− �,ii

(
�ij

�t
− 1

�t

d�e
i

d�pr
j

)
+ d�

d�pr
j

= 0

=
(

�e
,ii + �,ii

�t

)
d�e

i

d�pr
j

−
(

�,ii

�ij

�t
− d�

d�pr
j

)
= 0

= Kii

d�e
i

d�pr
j

−
(

�,ii

�ij

�t
− d�

d�pr
j

)
= 0 (A9)

�r4

��pr
j

= d�e
1

d�pr
j

+ d�e
2

d�pr
j

+ d�e
3

d�pr
j

= 0 (A10)

Isolating d�e
i /d�pr

j from (A9) and substituting in (A10),

��e
i

��pr
j

=
(

�,ii

�ij

�t
− d�

d�pr
j

)
1

Kii

(A11)

3∑
i=1

�,ii�ij

�tKii

−
3∑

i=1

d�

d�pr
j

1

Kii

= 0

�,jj

�tKjj

= d�

d�pr
j

3∑
i=1

1

Kii

= 0

d�

d�pr
j

= �,jj

�tKjj

(
3∑

s=1

1

Kss

)−1
(A12)

Then, substituting (A12) in (A11),

d�e
i

d�pr
j

= �,ii

�tKii

�ij − �,jj

�tKjjKii

(
3∑

s=1

1

Kss

)−1
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