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SUMMARY

In the last few years a number of numerical procedures called as meshless methods have been proposed.
Among them, we can mention the di�use element method, smooth particle hydrodynamics, element free
Galerkin method, reproducing kernel particle method, wavelet Galerkin methods, and the so-called hp-cloud
method. The main feature of these methods is the construction of a collection of open sets covering the
domain which are used as support of the classical Galerkin approximation functions. The hp-cloud method
is focused here because of its advantage of considering from the beginning the h and p enrichment of the
approximation space. In this work we present, to our knowledge, the �rst results concerning the behaviour
of this technique on the solution of Mindlin’s moderately thick plate model. It is demonstrated numerically
that the behaviour of the method with respect to shear locking is essentially the same as in the p-version
of the �nite element method, namely, the shear locking can be controlled by using hp cloud approximations
of su�ciently high polynomial degree. The computational implementation of the method and the issue of
numerical integration of the sti�ness matrix are also discussed. Copyright ? 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the last two decades, the basis for the next generation of numerical methods have been laid
down, where these new procedures preclude the requirements for a mesh as support of approxi-
mating functions like in the �nite element (FEM), boundary element (BEM) and �nite volumes
methods, among others. The �rst attempt was made by Gingold and Monaghan [1] through the
smooth particle hydrodynamics method for solving astrophysical problems. They used a kernel
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estimation technique and a collocation procedure. Nayroles and colleagues [2] proposed the di�use
element method (DEM) in which moving least-squares (MLS) functions [3] are used for building
test and trial functions to be used in the Galerkin method framework. The results are not always
satisfactory due to incorrect calculation of derivatives of the MLS function and inaccurate im-
position of Dirichlet boundary conditions. Next, Belytschko and colleagues [4] implemented the
element free Galerkin method (EFG) in which the derivatives of the MLS functions are computed
correctly and Lagrange multipliers are used to impose Dirichlet boundary conditions. Although
the EFG results presents high accuracy, it has the inconvenience of requiring the inversion of
a matrix at each integration point in order to obtain MLS functions that can reproduce linear-
or higher-order polynomials. A closely related approach to the EFG method is the reproducing
kernel particle method (RKPM) [5]. Belytschko et al. [6] have shown that the MLS functions are,
in most cases, identical to the underlying approximation technique used in the RKPM. A good
review on the RKPM can be found in Reference [7]. A generalization of the DEM, EFGM and
RKPM is the hp-cloud method proposed by Duarte and Oden [8; 9]. In this technique, there is no
matrix inversion during the computation of the trial=test functions because Shepard functions [10]
are used for inexpensively building a partition of unity and the associated lowest-order test=trial
functions. In order to improve the quality of the results, hp-enrichment schemes were devised,
where h now means an increase in nodal density and p the increase of nodal parameters corre-
sponding to additional approximation functions. The great advantage of this scheme is the freedom
for de�ning these additional functions. They are, for example, complete polynomials, Tre�tz func-
tions, orthotropic expansions, singular functions, and so on. In addition, this enrichment is much
easier to implement than in the conventional hp-FEM.
The DEM, EFG and hp-clouds share di�culties in applying boundary conditions since the

test=trial functions usually lack the Kronecker-delta property. Therefore, a number of procedures
have been applied like Lagrange multipliers [4] and modi�ed functionals [11], among others.
Babuska and Melenk [12; 13] proposed the partition of unity �nite element method (PUFEM)
which uses, as in the hp-cloud method, partition of unity functions to build the approximation
spaces. In their implementation, they use a standard �nite element partition of unity.
In this paper the hp-cloud meshless method is extended for solving Mindlin’s plate problem.

The main di�culty when solving this class of problems using the �nite element method is the
shear locking. The locking happens when the approximation functions are unable to meet the
requirements for allowing null transversal shear deformations as the plate becomes thin. One
e�ective approach used in the FEM to overcome this di�culty is the use of �nite elements of
degree p=3 or higher (depending on the relative thickness of the plate). The same approach,
however cannot be used in meshless methods based on moving least-square functions, such as the
DEM, EFGM and RKPM. This happens because the cost of building a MLS approximation that
can reproduce polynomials of degree greater or equal to 3 is prohibitively high. At each integration
point it would be necessary to invert a matrix of dimensions 10×10 to obtain MLS functions that
can reproduce complete cubic polynomials in a two-dimensional manifold. In addition to this, the
support of these functions, i.e. the region where they are non-zero, are considerably larger than
�nite element shape functions of the same polynomial degree. As a consequence, the bandwidth of
the sti�ness matrix is also much bigger than in the FEM for the same degree of approximation. In
contrast, the hp cloud framework allows the construction of high-order p approximations without
the inversion of any matrix. Furthermore, the dimension of the support of the hp cloud functions
does not have to increase with the degree p of these functions (as in the case of MLS functions).
These properties of the hp cloud functions make them very appealing candidates to solve Mindlin’s
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plate problem in a meshless framework. The issue of computational performance of the hp-cloud
method as compared with the EFGM and the FEM is addressed in References [9; 14].
Recently, the work of Donning and Liu on meshless methods for Reissner–Mindlin plate prob-

lems has been brought to our attention [15]. They use spline functions and an unmodi�ed
displacement-based Galerkin method. A uniform nodal arrangement is used to build the spline
functions. In the case of two-dimensional domains, nodal points outside of the domain are used
in order to maintain all the required properties of the spline-shape functions in the interior of the
domain. They demonstrate that the proposed approximation spaces do not exhibit looking and that
the resulting stress �elds are continuous.
The paper is organized as follows. In Section 2, the Mindlin’s plate model is presented in its vari-

ational form. The de�nition of the hp cloud approximation functions is described in Section 3. In
Section 4, object oriented implementation and code ACCLOUDS++ are described. Several numer-
ical results concerning convergence and locking are presented in Section 5. Finally, in Section 6,
the conclusions and suggestions are outlined.

2. MINDLIN’S PLATE MODEL

A Plate is usually considered as the description of a plane structural component having a small
dimension, the thickness, compared to its other two dimensions. In order to take advantage of this,
particular kinematic assumptions are introduced in order to simplify the elastic �elds description.
Consider a plate of uniform thickness, t, homogeneous, referred to a three-dimensional Cartesian
co-ordinate system with the x-y reference plane lying on the middle surface of the plate. Its
domain, 
, is de�ned as


=
{
(x; y; z)∈R3 | z ∈

[−t
2

;
t
2

]
; (x; y)∈�; �∈R2

}

The basic Mindlin’s plate model assumptions are:

(i) The thickness meets: t.L=10 where L is a characteristic plate dimension like, e.g. the
smallest plate width or length.

(ii) �zz ' 0.
(iii) The normal segments remain straight and unstretched after deformation.

2.1. Kinematic assumptions and plate stresses

Here, the membrane deformations are not accounted for since they are uncoupled from the bending
and shear deformations. Hence, the displacement �eld is described by

u(x; y; z)=




u1(x; y; z)

u2(x; y; z)

u3(x; y; z)


 =




−z�x(x; y)

−z�y(x; y)

w(x; y)


 (1)

where w(x; y) is the transversal displacement of a point initially lying on the reference plane, �,
and �x and �y are the normal segments rotations around their midpoints with respect to the −y
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and x directions, respectively. The associated linear strain deformation tensor is

U(u)= 1
2 (∇u +∇Tu)=


−z�x; x − z

2 (�x;y + �y; x) 1
2 (w;x − �x)

−z�y;y
1
2 (w;y − �y)

symm 0


 (2)

The strain deformation components can be rearranged in a vector form according to their nature–
bending or shear deformation. This is accomplished by de�ning

Ub(u) =




−�x; x

−�y;y

−(�x;y + �y; x)


 (3)

Us(u) =
[
w;x − �x

w;y − �y

]
(4)

Since t.L, it is assumed that �zz ' 0. Therefore, for a linear elastic isotropic material, the
Hooke’s Law implies that

bb(u) =




�xx

�yy

�xy


 = z

E
(1− �2)



1 � 0
� 1 0

0 0
(1− �)
2






�xx
�yy

xy


 = zC1Ub(u) (5)

bs(u) =
{

�xz
�yz

}
=

E
(1− �2)



(1− �)
2

0

0
(1− �)
2


{


xz

yz

}
=Cc

2Us(u) (6)

where bb(u) and bs(u) are the bending and transverse shear stresses at an arbitrary point, respec-
tively. The plate stress resultants can be written as

M(u) =


 Mxx

Myy

Mxy


 = ∫ t=2

−t=2
z bb(u) dz=

∫ t=2

−t=2
z2 C1Ub(u) dz

=
t3

12
C1Ub(u)=CbUb(u) (7)

Q(u) =
[
Qx

Qy

]
=
∫ t=2

−t=2
bs(u) dz=

∫ t=2

−t=2
kc C2Us(u) dz

= kct C2Us(u)=CsUs(u) (8)

where Cb = (t3=12)C1; Cs = kctC2 and kc= 5
6 is the shear factor, [16]. The implied convention of

these stress resultants are shown in Figure 1.

2.2. Equilibrium equations

Consider a plate under the domain distributed moments m, transversal loads q, Neumann boundary
conditions �m and �q on @�N and Dirichlet boundary conditions X= �X, w= �w on @�D. For each
dual pair ( �m; �X) and ( �q; �w), the boundary is accordingly divided into @�D and @�N such that
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Figure 1. Plane stress resultants.

@�= @�D∪@�N and @�D∩@�N = ∅. The classical equilibrium equations and boundary conditions
are:

divM −Q=m (9)

divQ+ q= 0; ∀x∈�
Mn=− �m (10)

Qn= �q ∀x∈ @�N
X= �X (11)

w= �w ∀x∈ @�D

2.3. Variational principles

The principle of minimum potential energy implies that the weak formulation for equilibrium can
be stated as �nding u(X; w); (X; w)∈Kin, such that, Washizu [17]:∫

�
[M(u)·Ub(u∗) +Q(u)·Us(u∗)] d�=

∫
�
qw∗ d� +

∫
�
m·X∗ d� +

∫
@�N

�qw∗ d@�

+
∫
@�N

�m·X∗ d@� ∀w∗; X∗ ∈Var (12)

where Kin and Var are de�ned as follows:

Kin= {X; w: X; w∈H 1(�); X= �X; w=w ∀ x∈ @�D} (13)

Var = {X∗; w∗: X∗; w∗ ∈H 1(�)X∗= 0; w=0 ∀ x∈ @�D}: (14)

Now, we have to note that the Dirichlet boundary conditions are strongly imposed in this
variational statement through the Kin and Var de�nitions. Alternatively, we can impose such
boundary conditions through Lagrange multipliers by modifying the variational statement. Here,
these Lagrange multipliers are identi�ed with the boundary reactions. Taking this into account,
we can modify the variational statement by explicitly considering such reactions in terms of the
displacement �eld. An advantage of this procedure is to avoid an increase of the size of the
algebraic equation to be solved and the presence of a null diagonal submatrix, but, on the other
hand, the convergence rate will be that of the resultant stresses, which is lower than that for the
displacement ones. This approach was also used by Lu et al. [11] for the EFGM scheme and, in
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the present study, it consists in determining the displacement �eld u(X; w); (X; w)∈H 1(�) such
that ∫

�
[M(u)·Ub(u∗) +Q(u)·Us(u∗)] d�−

∫
�
qw∗ d�−

∫
�
m·X∗ d�

−
∫
@�N

�qw∗ d@�N −
∫
@�N

�m·X∗ d@�N

+
∫
@�D
Mn(u)·X∗ d@�D −

∫
@�D

Qn(u)w∗ d@�D +
∫
@�D
Mn(u∗)·(X− �X) d@�D

−
∫
@�D

Qn(u∗)(w − �w) d@�D =0 ∀w∗; X∗ ∈H 1(�) (15)

where the boundary bending moments Mn and shear forces Qn are given by

Mn(u)= nbM(u)=
[
nx 0 ny

0 nx ny

]


Mxx

Myy

Myx


 =

{
Mxxnx +Myxny

Myxnx +Myyny

}
(16)

Qn(u)= nsQ(u)=
[
nx ny

]{ Qx

Qy

}
=Qxnx + Qyny (17)

Therefore, we are considering the cases of hard simply supported and clamped boundary condi-
tions, since we are restricting the normal segments rotations around the normals to the boundary @�.

2.4. Discretized equations

Using the standard �nite element procedure on the variational form (15), one writes the following
expansions in terms of the approximation functions, ’i, and its derivatives (which can be, e.g. a
�nite-element-shape function or a cloud-shape function as de�ned in Section 3):

X∗ ∼= N�U Ub(u) ∼= BbU M(u) ∼= CbBbU
w ∼= NwU Us(u) ∼= BsU Q(u) ∼= CsBsU

(18)

where, N is the dimension of the approximation space,

N� =
[
0 ’1 0 · · · · · · 0 ’N 0
0 0 ’1 · · · · · · 0 0 ’N

]

Nw =
[
’1 0 0 · · · · · · ’N 0 0

]
UT =

[
w1 �1x �1y · · · · · · wn �N

x �N
y

]
(19)

Bb =



0 −’1; x 0 · · · · · · 0 −’N

;x 0

0 0 −’1;y · · · · · · 0 0 −’N
;y

0 −’1; x −’1;y · · · · · · 0 −’N
;x −’N

;y




Bs =

[
’1; x −’1 0 · · · · · · ’N

;x −’N 0

’1;y 0 −’1 · · · · · · ’N
;y 0 −’N

]
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Using relations (18) and (19), the discretized stress resultants Mn and Qn can be written in
terms of the displacement parameters, U, as

Mn
∼= nb(CbBbU)

Qn
∼= ns(CsBsU) (20)

In order to explicitly state the prescribed boundary displacement degrees of freedom, the
approximation functions matrix is modi�ed by including Sdof (dof = w; �x or �y). Therefore,
N� and Nw are replaced by Ñ� and Ñw which are de�ned as

Ñ� =

[
0 S�x ’i 0

0 0 S�y ’i

]

Ñw = [ Sw ’i 0 0 ]; i=1; : : : ; n

where

Sdof =
{
1 if dof is prescribed in @�D
0 if dof is not prescribed in @�D

Therefore, the modi�ed variational principle implies that{∫
�
(BTbCbBb + B

T
sCsBs)U d�

+
∫

@�D
(BTbCbn

T
b Ñ� + Ñ

T
�nbCbBb)U d@�

−
∫

@�D
(BTsCsn

T
s Ñw + Ñ

T
wnsCsBs)U d@�

−
∫
�
NTw q d�−

∫
�
NT�m d�−

∫
@�N
NTw �q d@�−

∫
@�N
NT� �m d@�

+
∫

@�D
(−BTbCbnTb Ñ� + BTsCsn

T
s Ñw) �U d@�

}
·U∗=0 ∀U∗ ∈Rn (21)

The arbitrariness of the vector U∗, leads to the following sti�ness matrix and force vector,
respectively:

K =
∫
�
(BTbCb Bb + B

T
sCs Bs) d�

+
∫

@�D
(BTbCb n

T
b Ñ� + Ñ

T
� nbCb Bb) d@�

−
∫

@�D
(BTs Csn

T
s Ñw + Ñ

T
w nsCsBs) d@� (22)

F=
∫
�
NTwq d� +

∫
�
NT�m d� +

∫
@�N

NTw �q d@�

+
∫

@�N
NT� �m d@�+

∫
@�D
(BTbCbn

T
b Ñ� − BTsCs nTs Ñw) �U d@� (23)
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and to the algebraic system of linear equations

KU=F (24)

3. hp-CLOUD APPROXIMATION FUNCTIONS

The essential feature of the hp-Cloud method lies in the way the approximation functions are built
in order to trivially implement the p-enrichment. In order to accomplish this task, one has to
de�ne an open covering of the domain � and an associated partition of unity. In this section we
review the main concepts which are detailed in, e.g. References [9; 18].
Let � be an open bounded domain in Rn; n=1; 2; 3 and let QN be an arbitrary set of N points

(nodes) x� ∈ ��, that is

QN = {x1; x2; : : : ;xN}; x� ∈ ��

We then associate with each node x� an open set !�, called a cloud. Clouds !�; �=1; : : : ; N ,
are chosen such that they form a �nite open covering, =N = {!�}N�=1 of �, i.e.

��⊂
N⋃

�=1
�w� (25)

The basic building block of an hp cloud approximation is a partition of unity subordinated
to the open covering =N . A set of functions LN = { �}N�=1 is called partition of unity (POU)
subordinated to the open covering =N if the following holds:

N∑
�=1

 �(x)= 1 ∀x∈�
 � ∈Cs

0(!�); s¿0; �=1; : : : ; N (26)

The last property implies that the functions  �; �=1; : : : ; N are non-zero only over the open sets
!� (the clouds). Examples of partitions of unity are Lagrangian �nite-element-shape functions,
Shepard functions [10] and MLS functions [3]. In the case of �nite element partition of unity,
a node x� is a nodal point of the �nite element mesh and a cloud !� is the union of all �nite
elements connected to the node x� [19]. In this study, we use Shepard POU because they can be
built without partitioning the domain, i.e. they constitute a meshless partition of unity. In addition,
they can be build quite inexpensively as compared, for example, with MLS functions—another
example of a meshless POU. The Shepard functions can also be build with any degree of regularity.
Although for the case of Mindlin’s equations the Galerkin method requires only C0 functions, in
the case of, e.g. the biharmonic equation, C1 continuity is required. The construction of Shepard
functions is summarized in Section 3.2.

3.1. The family of hp cloud functions Fp
N

Let {Li}i∈I denote a set of functions which can approximate well, in an appropriate norm, the
solution u of a boundary value problem, i.e. there exists ui; i∈I such that

‖uhp − u‖¡�

where uhp=
∑

i∈I uiLi and I denotes an index set.
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Now consider the following set of cloud-shape functions, de�ned as

��
i :=  �Li; �=1; : : : ; N; i∈I

where  � is a partition of unity function. Then it is not di�cult to show that linear combinations
of these cloud-shape functions can also approximate well the function u∑

�

∑
i
ui��

i =
∑
�

∑
i
ui �Li=

∑
�
 �
∑
i
uiLi

=
∑
�
 �uhp= uhp

∑
�
 �= uhp (27)

Note that:

(i) The cloud-shape functions ��
i ; �=1; : : : ; N; i∈I, are non-zero only over the cloud !�.

(ii) The functions Li; i∈I, can be chosen with great freedom. The most straighforward choice,
and the one we use in this work, is polynomial functions since they can approximate smooth
functions well. However, for many classes of problems, including the case of Mindlin’s
plate problem, there are better choices. Examples are harmonic polynomials for the solution
of Poisson’s equation [20], Muskhelishvili functions [21] for the solution of plane elasticity
problems, etc.

(iii) The h re�nement of an hp cloud discretization consists of adding more clouds of smaller
size to the covering of the domain while keeping the degree of the cloud-shape functions
�xed. In the case of p enrichment, the number of clouds is kept �xed while the polynomial
degree of the functions Li used in the construction of the cloud-shape functions is increased.

(iv) The cloud-shape functions do not have the Kronecker-delta property

��
i (x�)= ��

�

Hence, the Dirichlet boundary conditions cannot be imposed by directly specifying the cloud
parameters as it is generally done in the FEM. One of the alternatives is to apply the Dirichlet
boundary conditions in a weak form through Lagrange multipliers. In this case, these multipliers
can be identi�ed with the reactions and therefore can be expressed in terms of the displacements,
resulting in the modi�cation of the variational form (17). Although these variational forms are
similar, the latter leads to a lower convergence rate because of the lower rate of convergence of
the stresses as compared to the displacements.
In this work we choose the minimal set of complete polynomials of degree less or equal to p

in a two-dimensional manifold for the functions Li, i.e.

Li= xlym; 06l; m6p; l+ m6p (28)

We then de�ne the family F
p
N of cloud-shape functions of degree p by

F
p
N = {��

i =  �Li; �=1; : : : ; N; i∈I} (29)

where the functions  �; �=1; : : : ; N , form a partition of unity. Note that so far we have not chosen
a particular partition of unity. Any set of functions ful�lling properties (26) is valid. Also, note
that in the above de�nition we use the same set of functions {Li}i∈I for all nodes �=1; : : : ; N.
This constrain is not necessary, since each node can have a di�erent polynomial order, regardless
of the polynomial order of neighbouring nodes.
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From (28) and the de�nition of Fp
N we have that (the proof follows as in (27))

Pp ⊂ span{Fp
N }

where Pp denotes the set of complete polynomials of degree less or equal to p.

3.2. Construction of Shepard partitions of unity

In this section we describe the construction of the partition of unity we use in our computations,
i.e. Shepard functions.
Let W� : Rn →R denote a weighting function with compact support !� that belongs to the

space Cs
0(!�), s¿0 and suppose that

W�(x)¿0 ∀x∈


We use clouds !�; �=1; : : : ; N de�ned by

!�= {y∈Rn | ‖x� − y‖Rn¡h�}

which are circles with radius h� in two dimensions. In this case, the weighting functions W�

can be implemented with any degree of regularity using ‘ridge’ functions. More speci�cally, the
weighting functions W� can be implemented through the composition

W�(x) := g(r�)

where g is, e.g. a B-spline with compact support [−1; 1] and r� is the functional

r� :=
‖x− x�‖Rn

h�

In the computations presented in Section 5, g is the quartic C3([−1; 1]) B-spline shown in
Figure 2. Details on the construction of the B-splines can be found in, e.g. [22].
The partition of unity functions  � can then be de�ned by

 �(x)=
W�(x)∑
� W�(x)

�∈{
:W
(x) 6= 0} (30)

which are known as Shepard functions [10]. The main advantages of this particular partition of
unity are

(i) low computational cost and simplicity of computation,
(ii) it is meshless—there is no need to partition the domain to build this partition of unity,
(iii) it can easily be implemented in any dimension,
(iv) it can be constructed with any degree of regularity
(v) it allows easy implementation of h adaptivity.

Figure 3 shows the Shepard function  � associated with a cloud !� centred at the origin of the
domain (−1; 1)× (−1; 1). It is a C3(!�) function built using the B-spline depicted in Figure 2.
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Figure 2. B-spline used in the construction of weighting functions.

Figure 3. Shepard partition of unity function.

4. OBJECT-ORIENTED IMPLEMENTATION

4.1. Object-oriented programming

The purpose of implementing a code following an object-oriented programming has the objective
of reaching the theoretical advantages that this paradigm provides

(i) modularized code,
(ii) possibility of organizing the data in analogous structures as the ones reached by mathe-

matical reasoning,

Copyright ? 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng. 2000; 47:1381–1400



1392 O. GARCIA ET AL.

(iii) data protection,
(iv) portability and code sharing with other programmers.

The edge is that OOP forces the programmer to organize his code in such a way the former
principles must be met. In other words, a good OOP needs a reasonable time dedicated to the design
of the code before its implementation. This is a healthy attitude, mainly when the intention is to
construct a software structure dynamic enough to support future development and improvements.
This paradigm (OOP) is based on the de�nition of work cells, called Classes, linking data

and functions completely. These functions are operators that can work with inner variables of the
classes and=or external ones coming by parameters when the function is called.
Many applications have been developed following these guidelines, based on a group of class

libraries called ACDPOOP [23; 24] (Computational Environment for Code Development based on
OOP). A description of the code ACCLOUDS++ is shown next, focusing on the main aspects of
the data structure.

4.2. Code ACCLOUDS++

As pointed, the OOP paradigm is based on the de�nition of classes. The code under development
is oriented towards the simulation of modi�ed variational principles for plane elasticity and plates
by making use of the new approximation functions shown in the previous section. However,
much care is taken in order for not restricting the development only to these type of problems.
Co-ordinates, materials, geometrical properties, degrees of freedom, main procedures of integration
and 
ux control are coded as generally as possible in order to gain 
exibility for updating and
implementing new procedures.
The main classes are named as follows:
Classes for geometric de�nition and discretization information:

(i) acKeyPoint,
(ii) acBoundaryGrp,
(iii) acBoundary,
(iv) acClouds.

Classes dealing with constitutive relations and geometric constants:

(i) acMaterial,
(ii) acGeomProperties.

Classes dealing with degrees of freedom de�nitions and boundary conditions:

(i) acBoundCondGrp.

Classes dealing with domain properties:

(i) acDomain.

Classes dealing with integration point by speci�c problems:

(i) acIP,
(ii) acIPPlate, acIPPlStrs, acIPPlStrn, etc.

The class acKeyPoint (derived of a class named acCoord2D) deals with reading, writing and
storing information of nodes used to de�ne the domain geometry. The class acBoundaryGrp keeps
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the information related to boundary de�nitions and discretization as well as the evaluation of the
boundary condition quantities. It has, as a main variable, a vector of objects of class acBoundary,
where each of its components is related to a speci�c contour with its particular properties: acLine,
acArch, acBSpline, and so on. All of them are inherited from the generic class acBoundary.
Using the so-called virtual functions, it is possible to build the main procedures of the soft-

ware with almost total independence from the particular geometric characteristics of the boundary.
Procedures for reading, discretization, etc., are determined by main code using the same function
name. In replying to this order, each contour will take a di�erent attitude depending on the speci�c
computations it needs to perform in order to meet the request.
The class acClouds has functions which de�ne domain covering, as well as the search procedures

for identifying which clouds cover an arbitrary point. In order to perform this search, a quad-tree
management system, Fancello [23], is introduced for allowing a fast identi�cation of which clouds
cover each integration point. In addition, acClouds also computes all the associated approximation
functions and its derivatives.
The class acBoundCondGrp takes care of the boundary conditions where the essential boundary

conditions and their values are prescribed.
The class acIP is a generic class of integration points from which the classes acIPPlate, acIP-

PlsStrs, and others are inherited. These classes are responsible for the evaluation of the sti�ness
matrix and loads terms associated with an integration point of a determined mathematical model
like: plate, elastic plane strain, and so on.
The class acDomain contains the functions which deal with the domain information, superposi-

tions on the global sti�ness matrix and on the domain load vector.

5. NUMERICAL RESULTS

Next, we discuss the �rst numerical results regarding the following aspects:

(i) locking;
(ii) convergence analysis in L2 norm;
(iii) maximum displacement convergence.

5.1. Locking behaviour

The locking occurs when the approximation functions are unable to meet the requirement for
allowing null transversal shear deformations as the plate becomes thin. Then, the shear deformation
energy is overestimated and so is the sti�ness matrix. For this investigation, we look at two
problems where the square plates are uniformly loaded on its domain. The �rst one consists of a
simply supported plate and the second of a clamped one under a uniform distributed load. In both
examples, just one-fourth of the plate is modelled by using symmetry conditions and is covered
by 25 clouds as shown in Figure 4, and complete polynomials of degrees 3 and 4 are used for
p-enrichment.

5.1.1. Simply supported square plate. The transversal displacement at the centre of the plate is
normalized with respect to the Kirchho�–Love thin plate solution, which in this case is given by

wcentral = 0:004062
qL4

D
(31)
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Figure 4. Plate model and covering with 25 clouds.

where D is the bending sti�ness

D=
Et3

12(1− �2)
(32)

The results show that for a relation L=t¿102 the solution converges to the thin plate one and the
locking is present for cubic polynomial enrichment and for L=t ¿ 104. When the approximation
functions are further enriched the locking is unnoticeable as veri�ed in Figure 5(a).

5.1.2. Clamped square plate. Again, the results for cubic and quartic polynomial enrichment are
displayed against the thin plate model solution which now reads

wcentral = 0:00126
qL4

D
(33)

One may verify from Figure 5(b) that the results for L=t¿102 approach the thin plate solution
and that the locking appears when L=t ¿103 and a cubic enrichment is used. If the enrichment is
of fourth order the locking is not signi�cant. The oscillations, which occur for very thin plates,
are due to poor sti�ness matrices conditioning.
In all the above computations, the same cloud-shape functions are used to approximate the

transversal displacement w and rotations �x and �y. The shape functions are built from the product
of a Shepard partition of unity and monomials Li of degree three or four as de�ned in (29).
The above experiments show that this choice of cloud functions behaves like �nite-element-shape
functions of degree p=3 or 4 with respect to shear locking. Namely, the locking can be overcome
by using su�ciently high p approximations. Other choices for the functions Li could also be used.
Donning and Liu [15] have recently shown that cardinal splines are very e�ective to solve Mindlin’s
plate problem.
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Figure 5. Normalized central displacement: (a) simply supported plate; and (b) clamped plate.

5.2. Convergence results

5.2.1. Relative transversal displacement error in L2 norm. In the following, we present results
for the relative error measured in the L2 norm when compared to analytic Mindlin plate model
solutions. The uniform transversal load is q0 = 0:1N=mm2, the plate has all its edges simply
supported, and it is t=0:1mm thick and 16mm wide. All these solutions were obtained for
homogeneous p-enrichment and the coverings were as follows:

(i) 5 clouds and 06p64;
(ii) 25 clouds and 06p64;
(iii) 87 clouds and 06p62:

The analytic solution is obtained by using series expansions according to Marguerre and Woernie
[16]:

w(x; y)=
10∑
n=1

�w(x) sin(y) (34)

where

�w(x) =
qn

D

(
b
n�

){
1 + ĥ

2 − 1
cosh â+ 1

[
(1 + ĥ

2
)(cosh x̂ + cosh (â− x̂))

+1
2 ( x̂ sinh (â− x̂) + (â− x̂) sinh ( x̂))

]}

for n = 1; : : : ; 10 (35)

In the above expression, a and b are the plate dimensions along the x and y directions, respec-
tively, and the following notations are adopted for brevity:

â=
n�
2

a; x̂=
n�
b

x; ĥ
2
=

(n�
2

)2
h2

h=

√
D
Gts

; G=
E

2(1 + �)
; ts=

t
1:2

; qn=
4q0
n�
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Figure 6. Relative displacement in the L2 norm.

The relative error, E, measured in the L2 norm is de�ned as

E=
‖w − wh‖L2

‖w‖L2
=

√∑Nip
n=1

∫
�
(wn − wh

n ) (wn − wh
n ) d�√∑Nip

n=1

∫
�
(wn) (wn) d�

(36)

In this expression, wn and wh
n stand for the analytical and numerical solutions for the transversal

displacement at each one of the Nip integration points.
The results depicted in Figure 6 show that the errors decay faster with p-enrichment than with

the increase in the number of clouds. This is expected since the solution is smooth and the Shepard
functions always lead to higher solution errors. On the other hand, one can notice the fast error
decay when the p-enrichment is applied. Note in the second example that the relative error decays
from 0.019075 to 0.000067 when the polynomial order is increased from 2 to 3.

5.2.2. Transversal displacement convergence at the plate centre. For this convergence analysis
we consider the plate sketched in Figure 4 under a uniformly distributed load q0 = 0:1N=mm2 and
it is also 0:1mm thick. The centre point transversal displacement is normalized with respect to
the Mindlin’s plate solution and the results against the number of degrees of freedom are shown
in Figure 7.
Once again, one can note that the p-enrichment convergence rate is much higher than that

for h-re�nement. In addition, good results can be obtained by using few clouds as in the �rst
example and excellent accuracy can be reached as in the second example. The oscillation veri�ed
in Figure 7(b) is believed to be due to the use of the modi�ed variational principle in which the
Dirichlet boundary conditions are not strongly imposed and, therefore, one loses the monotonic
convergence.
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Figure 7. Normalized central displacement for a simply supported plate.

5.2.3. Bending moment relative error in L2 norm. For looking at the bending moment relative
error we consider the same plate and loading as before and with the same discretization. Again,
the reference is the Mindlin’s plate analytical solution found by series expansion Marguerre and
Woernie [16].
The moments are denoted by Mxx;Myy and Mxy and related to the displacement �eld according to

Mxx =−D{w′′ + �w:: − h2[�′′ + ��::]} (37)

Myy =−D{w:: + �w′′ − h2[�:: + ��′′]} (38)

Mxy =−D(1− �)(w′: − h2�′:) (39)

(40)

where: (·)′′= @2(·)=@x2; (·)::= @2(·)=@y2; (·)′:= @2(·)=@xy and

�(x; y)=
4q0b2

D�3
10∑

n= 1;3;5 : : :

1
n3

[(
cosh â− 1
sinh â

)
sinh ( x̂)− cosh ( x̂)

]
sin

(n�y
b

)
(41)

The relative moment error measured in L2 norm is de�ned as

Em=
‖m −mh‖L2

‖m‖L2
=

√∑Nip
n=1

∫
�
(mn −mh

n)(mn −mh
n) d�√∑Nip

n=1

∫
�
(mn)(mn) d�

(42)

The symbols mn and mh
n denote the moments obtained through the analytical solution and by

the hp-clouds, respectively, and they are evaluated at each integration point on the domain. In
Figure 8(a) Em is shown in terms of the number of degrees of freedom.
One may notice, in Figure 8(a), the in
uence of the h-re�nement on the pre-asymptotic conver-

gence rates of the relative moment error throughout the plate. Moreover, one may also visualize the
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Figure 8. Convergence of moment measured in the L2 norm and of normalized bending moment at centre of
the plate: (a) relative moment error—Em; and (b) normalized bending moment at the centre point.

h-convergence for the same p-enrichment. This rate of convergence increases with the polynomial
order as expected, but when using Shepard functions the results seems to diverge. In Figure 8(b)
one may verify the rapid convergence of the bending moment at the plate centre. In addition, since
the solution at the centre point associated cloud is an even function there is no improvement when
odd functions are used in the enrichment and it even slightly deteriorates due to the increase in
the condition number.

5.3. Integration

Although it has been claimed that the meshless methods, as the hp-cloud, can lead to higher
convergence rates than the usual FEM (when, e.g. customized approximations are used), several
aspects are still unclear. One of them is the best choice of integration scheme. To this end, one must
once more consider the plate sketched in Figure 4 under the same loading as before and covered
by 25 clouds. Since both the solution and the approximation functions are regular, this study tries
to correlate the polynomial order with the number of integration points in order to obtain better
convergence, or avoid under-integration. An underlying triangular mesh was used and, for each
triangle, sets of 12; 16; 25; 79 integration points were implemented. For integrating the boundary
terms, each edge was subdivided in 20; 40; 60 segments and three integration points are placed
over each segment. The results for homogeneous polynomial enrichments of orders 3 and 4 are
shown in Figure 9 which shows the relation of the number of integration points with respect to the
normalized plate centre transversal displacement. From the results for the plate centre transversal
displacement we can verify that the 12-point rule leads to poor results due to under-integration.
Better results are obtained with 16 and 25 integration points, but to obtain the full quality the
79-point scheme is needed with this underlying mesh together with 180 points on the boundary.
Therefore, in order to increase the e�ciency we still need to look for more e�cient integration
schemes, probably some adaptive ones. Another, simpler alternative would be to use the partition
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Figure 9. Convergence of the central displacement with the number of integration points.

of unity furnished by the conventional FEM and to p-enrich along the hp-cloud guidelines [19].
This would simplify the integration and eliminate the quad-tree procedure for identifying each
integration point coverage.

6. CONCLUSIONS

An extension of the hp-cloud method for solving Mindlin’s plate model problems is presented
together with a brief review of this procedure. The implementation of the code ACCLOUDS++
based on the whole concepts of the hp-cloud method has been sketched, although most of the
technical details which deserve attention have been omitted for brevity, but this has allowed an
ordered and progressive code implementation. The �rst results illustrate the high convergence rates
as usual in the hp-cloud method. The easy implementation of approximation functions with higher
continuity together with a simple p-enrichment makes this method a candidate for investigating
higher-order plate models, boundary layers and hierarchic plate models. However, the increase in
the condition number with p-re�nement is still of concern and adequate pre-conditioners ought to
be devised.
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