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ABSTRACT: Experimental stress analysis can be conveniently investigated by classical shadow Moire

technique. Moire is a non-contact and non-destructive technique, with a fast digitisation process. The

phenomena of Moire fringes are the result of the projection of the fringes of a ruling on a certain object.

It has measurement accuracy comparable with other systems and also low cost. The present study

offers new algorithms for phase evaluation in measurements. Several phase-shifting algorithms with an

arbitrary but constant phase-shift between captured intensity signs are proposed. The algorithms are

similarly derived as the so-called ‘Carre algorithm’. The idea is to develop a generalisation of Carre

algorithm that is not restricted to four images. Errors and random noise in the images cannot be

eliminated, but the uncertainty caused by their effects can be reduced by increasing the number of

observations. An experimental analysis of the mistakes of the technique was made, as well as a detailed

analysis of mistakes of the measurement. The advantages of the proposed algorithm are its precision in

the measures taken, speed of processing and the immunity to noise in signs and images.

KEY WORDS: Carre algorithm, experimental strain analysis, experimental stress analysis, mea-

surement, phase calculation algorithms, phase-shifting technique

Introduction

Phase shifting is an important technique in experi-

mental strain analysis [1–3]. Conventional phase-

shifting algorithms require phase-shift amounts to be

known; however, errors on phase shifts are common

for the phase-shift modulators in real applications, and

such errors can further cause substantial errors in the

determination of phase distributions. There are many

potential error sources which may affect the accuracy

of the practical measurement, e.g. phase-shifting

errors, detector nonlinearities, quantisation errors,

source stability, vibrations and air turbulence [4].

Currently, the phase-shifting technique is the most

widely used technique for evaluation of interference

fields in many areas of science and engineering. Its

principle is based on the evaluation of the phase values

from several phase-modulated measurements of the

intensity of the interference field. It is necessary to

carry out at least three phase-shifted intensity mea-

surements to determine unambiguously and very

accurately, the phase at every point of the detector

plane. The phase-shifting technique offers a fully

automatic calculation of the phase difference between

two coherent wave fields that interfere in the process.

There are various phase-shifting algorithms for phase

calculation that differ on the number of phase steps,

on phase-shift values between captured intensity

frames and on their sensitivity to the influencing fac-

tors during practical measurements [4].

The general principle of most interferometric

measurements is as follows. Two light beams (refer-

ence and object) interfere after an interaction of the

object beam with the measured object, i.e. the beam

is transmitted or reflected by the object. The distri-

bution of the intensity of the interference field is

then detected, using a photographic film, charge-

coupled device (CCD) camera, etc. The phase differ-

ence between the reference and the object beam can

be determined using the above-mentioned phase

calculation techniques. The phase-shifting technique

is based on an evaluation of the phase of the inter-

ference signal using phase modulation of this inter-

ference signal [5].

Theory of the Phase-Shifting Technique

The fringe pattern is assumed to be a sinusoidal

function and is represented by the intensity distri-

bution I(x,y). This function can be written in general

form as:
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Iðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos½/ðx; yÞ þ d� (1)

where Im is the background intensity variation, Ia is

the modulation strength, /(x,y) is the phase at origin

and d is the phase shift related to the origin [6].

The general theory of synchronous detection can be

applied to discrete sampling procedure, with only a

few sample points. There must be at least four signal

measurements to determine the phase / and the term

d. Phase shifting is the preferred technique whenever

the external turbulence and mechanical conditions of

the images remain constant over the time required to

obtain the four phase-shifted frames. The technique

used in this experiment is called the ‘Carre method’

[7]. By solving the Equation (1) above, the phase / can

be determined. The intensity distribution of fringe

pattern in a pixel may be represented by grey level,

which varies from 0 to 255. With the Carre method,

the phase shift (d) amount is treated as an unknown

value. The method uses four phase-shifted images as

I1ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos /ðx; yÞ � 3d=2½ �
I2ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos /ðx; yÞ � d=2½ �
I3ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos /ðx; yÞ þ d=2½ �
I4ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos /ðx; yÞ þ 3d=2½ �

8>><
>>: (2)

Assuming that the phase shift is linear and does not

change during the measurements, the phase at each

point is determined as

/¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðI1� I4Þþ ðI2� I3Þ�½3ðI2� I3Þ� ðI1� I4Þ�

p
ðI2þ I3Þ� ðI1þ I4Þ

( )

(3)

Expanding Equation (3), we obtain the Carre

method as:

tanð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I2

1 þ2I1I2 �2I1I3 þ2I1I4

þ3I2
2 �6I2I3 �2I2I4

þ3I2
3 þ2I3I4

�I2
4

��������

��������

vuuuuut
j�I1 þ I2 þ I3 � I4j

(4)

or emphasising only the matrix of coefficients of the

numerator and the denominator:

tanð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
jDemj Num ¼

�1 2 �2 2

3 �6 �2

3 2

�1

2
6664

3
7775

Dem ¼ ½�1 1 1 �1 �

(5)

Almost all the existing phase-shifting algorithms

are based on the assumption that the phase-shift at

all pixels of the intensity frame is equal and known.

However, it may be very difficult to achieve this in

practice. Phase-measuring algorithms are more or less

sensitive to some types of errors that can occur dur-

ing measurements with images. The phase-shift value

is assumed unknown but is constant in phase calcu-

lation algorithms, which are derived in this paper.

Consider now the constant but unknown phase-shift

value d between recorded images of the intensity of

the observed interference field.

Considering N phase-shifted intensity measure-

ments, we can write for the intensity distribution Ik at

every point of k recorded phase-shifted interference

patterns.

Ikðx;yÞ ¼ Imðx;yÞ þ Iaðx;yÞcos /ðx;yÞ þ 2k�N� 1

2

� �
d

� �
(6)

where k ¼ 1,…,N and N being the number of frames.

In Novak [4], several five-step phase-shifting

algorithms insensitive to phase-shift calibration are

described, and a complex error analysis of these phase

calculation algorithms is performed. The best five-step

algorithm, Equation (7), seems to be a very accurate

andstable phase-shifting algorithm with the unknown

phase step for a wide range of phase-step values.

ajk ¼ Ij � Ik

bjk ¼ Ij þ Ik

�
tanð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2

24 � a2
15

q
2I3 � b15

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðI2 � I4Þ2 � ðI1 � I5Þ2

q
2I3 � I1 � I5

(7)

Expanding Equation (7), we obtain the Novak

method as:

tanð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I2

1 þ2I1I5

þ4I2
2 �8I2I4

þ4I2
4

�I2
5

��������

��������

vuuuuut
�I1 þ 2I3 � I5j j (8)

or emphasising only the matrix of coefficients of the

numerator and the denominator:

tanð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
jDemj Num ¼

�1 0 0 0 2

4 0 �8 0

0 0 0

4 0

�1

2
6666664

3
7777775

Dem ¼ ½�1 0 2 0 �1 �
(9)
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Proposed Algorithms

A general algorithm for calculating the phase for any

number, N, of images tan(/) ¼ Sqrt(Abs(Num))/

Abs(Dem) is proposed here:

tanð/Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
jDemj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
r¼1

PN
s¼r nr;sIrIs

��� ���r
PN

r¼1 drIr

��� ��� (10)

where N is the number of images, nr,s are coefficients

of the numerator (Num), dr are coefficients of the

denominator (Dem), and r and s are indexes of the

sum. Or, expanding the summations and allowing an

arbitrary number of lines

Or, emphasising only the matrix of coefficients of

the numerator and the denominator:

tanð/Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
jDemj

Num¼

n1;1 n1;2 n1;3 n1;4 ��� n1;N

n2;2 n2;3 n2;4 ��� n2;N

n3;3 n3;4 ��� n3;N

n4;4 ��� n4;N

��� ���
nN;N

2
6666664

3
7777775

Dem¼½d1 d2 d3 d4 ��� dN�1 dN �

8>>>>>>>><
>>>>>>>>:

(12)

The display of the phase calculation algorithm in

this way permits the viewing of symmetries and

plans of sparse matrix. The use of the absolute value

in the numerator and the denominator restricts the

angle between 0� and 90� but avoids negative roots,

and also eliminates false angles found. Subsequent

considerations will later remove this restriction

[4–6].

In the tested practical applications, an increase in

20% in the processing time was noticed when using

16 images instead of four while processing the

standard Carre algorithm, because of many zero

coefficients. But if one changes the coefficients from

integer type to real numbers, the processing time for

the evaluation of phase practically doubles because

real numbers use more memory and more processing

time to evaluate floating point additions and multi-

plications, which are many in the algorithms with a

large quantity of images.

The shift on the problem focus of obtaining algo-

rithms for calculating the phase of an analytical

problem of a numerical vision is a great innovation.

It breaks a paradigm that was hitherto used by several

authors. After several attempts in numerical model-

ling of the problem, the following mathematical

problem was identified:

tanð/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1;1I2

1 þn1;2I1I2 þn1;3I1I3 þn1;4I1I4 � � � þn1;NI1IN

þn2;2I2
2 þn2;3I2I3 þn2;4I2I4 � � � þn2;NI2IN

þn3;3I2
3 þn3;4I3I4 � � � þn3;NI3IN

þn4;4I2
4 � � � þn4;NI4IN

� � � � � �
þnN;NI2

N

������������

������������

vuuuuuuuuut
jd1I1 þ d2I2 þ d3I3 þ d4I4 þ � � � þ dN�1IN�1 þ dNIN j

(11)

Minimal
XN
r¼1

XN
s¼r

jnr;sj þ
XN
r¼1

jdr j

subject

tanð/Þ ¼ Sqrt ðjNumjÞ=jDemj number of variables

ðiÞ tan2ð/vÞ
PN
r¼1

drI
v
r

� �2

¼
PN
r¼1

PN
s¼r

nr;sI
v
r Iv

s ; v ¼ 1; . . . ; ðNþ1ÞN
2 þN

h i

ðiiÞ
PN
s¼r
jnr;sj þ jdr j � 1; r ¼ 1; . . . ;N; enter all frames

ðiiiÞ
PN
s¼r
jns;r j þ jdr j � 1; r ¼ 1; . . . ;N; enter all frames

ðivÞ �2N � nr;s � 2N; r ¼ 1; . . . ;N; s ¼ r; . . . ;N

ðvÞ �2N � ds � 2N; r ¼ 1; . . . ;N

ðviÞ nr;s are integer, r ¼ 1; . . . ;N; s ¼ r; . . . ;N

ðviiÞ dr are integer, r ¼ 1; . . . ;N

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:
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where for each v:

The coefficients of the matrices of the numerator

(nr,s) and the denominator (dr) must be integers to

increase the performance of the computer algorithm,

as the values of the intensity of the images (Ik) are

also integers ranging from 0 to 255. Modern com-

puters perform integer computations (additions and

multiplications) much faster than floating-point

computations. It should be noted that currently the

commercial digital photographic cameras present

graphics resolution above 12 megapixels and that the

evaluation of phase (/) should be done pixel to pixel.

Another motivation is the use of memory: integer

values can be stored on a single byte while real values

use, at least, 4 bytes. The present scheme uses real

numbers only in the square root of the numerator, in

the division by denominator and in the arc-tangent

over the entire operation.

The idea of obtaining a minimum sum of the val-

ues of absolute or module of the coefficients of

matrices of the numerator (nr,s) and denominator (dr)

comes from the attempt to force these factors to zero,

for computational speed up and for reducing the

required memory, as zero terms in sparse matrices do

not need to be stored. It is also important that those

ratios are not very large so that the sum of the

numerator and the denominator do not have very

high value to fit into an integer variable. For a precise

phase evaluation, these factors will increase the val-

ues of the intensity of the image (Ik) that contains

errors because of noise in the image, in its discreti-

sation in pixels and in shades of grey.

The first restriction of the problem (13) is the

Equation (10), which is squared to form the relation

that one is seeking. Note that the results obtained by

solving the mathematical problem of the coefficients

are in the form of matrices for the numerator (nr,s)

and the denominator (dr), so the number of

unknowns is given by m. To ensure that one has a

hyper-restricted problem, the number of restrictions

must be greater than or at least equal to the number

of variables. The m restrictions of the model are

obtained through random choice of values for Im, Ia,

/ and d and by using the Equation (6) to compute Ik.

Tests showed that even for low numbers for other

values of m, the mathematical problem leads to only

one optimal solution though it becomes more time

consuming. Indeed the values of Im, Ia, / and d can be

any real number, but to maintain compatibility with

the problem images, it was decided to limit Im
between 0 to 128 and Ia between 0 and 127 so that Ik
would be between 0 and 255.

The restrictions (ii) and (iii) of the problem are

based on the idea that all image luminous intensities,

Ik, must be present in the algorithm. It increases the

amounts of samples to reduce the noise of random

images. This requires that all the sampling images

enter the algorithm for phase calculation. This is

achieved by imposing that the sum of the absolute

values of the coefficients of each row or column of

the matrix of each of the numerator (nr,s), plus the

module at the rate corresponding to that image in

the denominator (dr), is greater than or equal to 1.

Thus the coefficients on an algorithm to calculate the

phase for a given image Ik will not be all zeros,

ensuring their participation in the algorithm.

Restrictions (iv) and (v) of the problem are used to

accelerate the solution of this mathematical model.

This limitation in the value of the coefficients of

matrices of the numerator (nr,s) and denominator (dr)

presents a significant reduction in the search universe

and in the search of a solution for model optimisa-

tion. Whenever N is greater than 16, the coefficients

of matrices of the numerator (nr,s) and denominator

(dr) can be limited to the interval [)4,4]. The search is

restricted to coefficients of matrices of the numerator

(nr,s) and denominator (dr), which are integers of

small value and meeting the restrictions of the

model; it does not need to be minimised (desirable

but not necessary).

Once a solution to the problem is found, it can

become a restriction. Therefore, solving the problem

again leads to a different solution. This allows the

problem (13) to lead to many different algorithms for

a given value of N, making it very flexible and the

numerical problem, comprehensive. The following

multi-step algorithm for phase calculation uses

well-known trigonometric relations and branch-and-

bound algorithm [8] for pure integer nonlinear

programming with the mathematic problem (13).

Tables 1 to 3 show some algorithms.

Iv
k ðx; yÞ ¼ Iv

mðx; yÞ þ Iv
aðx; yÞ cos½/vðx; yÞ þ ð2k�N�1

2 Þdv�; k ¼ 1; . . . ;N

Iv
m 2 ½0; 128� random and real

Iv
a 2 ½0; 127� random and real

/v 2 ½�p; p� random and real

dv 2 ½�2p; 2p� random and real

8>>>>>>><
>>>>>>>:

(13)
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Following the model of uncertainty analysis pre-

sented in Refs [4, 9], these new algorithms have

excellent results with the application of the Monte

Carlo-based technique of uncertainty propagation.

The Monte Carlo-based technique requires assigning

probability density functions (PDFs) to each input

quantity. A computer algorithm is set up to generate

an input vector P ¼ (p1� � �pn)T; each element pj of this

vector is generated according to the specific PDF

assigned to the corresponding quantity pj. By apply-

ing the generated vector P to the model Q ¼ M(P),

the corresponding output value Q can be computed.

If the simulating process is repeated n times (n >> 1),

the outcome is a series of indications (q1,…,qn), the

frequency distribution of which allows us to identify

the PDF of Q. Then, irrespective of the form of this

PDF, the estimate qe and its associated standard

uncertainty u(qe) can be calculated by

qe ¼
1

n

Xn

l¼1

ql; (14)

and

uðqeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðn� 1Þ
Xn

l¼1

ðql � qeÞ2
vuut : (15)

The influence of the error sources affecting the

phase values is considered in these models through

the values of the intensity Ik. This is done by modi-

fying Equation (6):

Ikðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos

� /ðx; yÞ þ 2k�N � 1

2

� �
ðdþ hÞ þ ek

� �
þ nk:

(16)

Comparing Equations (6) and (16), it can be

observed that three input quantities (h, ek, nk) were

included. h allows us to consider, in the uncertainty

propagation, that the systematic error used to induce

the phase shift is not adequately calibrated. The error

bound allowed us to assign to h a rectangular PDF

over the interval ()p/10 rad, +p/10 rad). ek allowed us

to account for the influence of environmental per-

turbations. The error bound allowed us to assign to ek

a rectangular PDF over the interval ()p/20 rad, +p/20

rad). nk allows us to account for the nearly random

effect of the optical noise. The rectangular PDFs

assigned to nk should be in the interval ()10,+10).

The values of / were considered given in the range

(0, p/2). A computer algorithm was set up to generate

single values of (h, ek, nk) according to the corres-

ponding PDFs. With the generated values of the

input quantities, we evaluated the phase /¢ by using

the new algorithms. As this simulating process and

the corresponding phase evaluation were repeated

n ¼ 104 ¼ 10 000 times, we were able to form the

series (/01� � �/010000Þ with the outcomes.

The algorithms with letters (a) are better, more

accurate, more robust and more stable for the

random noise. The tests show that the optimum

phase-shift interval with which the algorithm gives

minimum uncertainty for the noise is in the vicinity

of p/2 radians (Figure 1).

Figure 2 shows the average of the standard uncer-

tainty u(/¢) generated with values / in the range (0, p/

2) by using new algorithms. It can be observed that

the uncertainty by new algorithms diminishes as the

number of images increases.

Symmetry and Sparse in Matrix
of Coefficient

Solving the problem of increasing the processing time

to obtain new formulas for phase calculation with the

increased number of variables for high values of N uses

up important data; most of the formulas showed sym-

metries in the matrix of coefficients of the numerator

and the denominator. Let h ¼ (N div 2) + (N mod 2)

where the value of x div y is the value of x/y rounded in

the direction of zero to the nearest integer (integer

division) and the mod operator returns the remainder

obtained by dividing its operands [in other words,

x mod y ¼ x ) (x div y) * y]. The symmetries are:

Table 1: Matrix of coefficient for N ¼ 4 and N ¼ 5, with type

tan (/) ¼ Sqrt(|Num|)/|Dem|

dr ¼ dNþ1�r ; r ¼ 1; . . . ;h and r 6¼ N þ 1� r
nr;Nþ1�r ¼ �2nr;r ; r ¼ 1; . . . ;h and r 6¼ N þ 1� r
nNþ1�s;Nþ1�r ¼ nr;s; r ¼ 1; . . . ;h; s ¼ r; . . . ;h and r 6¼ N þ 1� s and s 6¼ N þ 1� r
nr;Nþ1�s ¼ �nr;s; r ¼ 1; . . . ;h; s ¼ r; . . . ;h and s > r and s 6¼ N þ 1� s
ns;Nþ1�r ¼ �nr;s; r ¼ 1; . . . ;h; s ¼ r; . . . ;h and s > r and s 6¼ N þ 1� r

8>>>><
>>>>:

(17)
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Table 2: Matrix of coefficient for N ¼ 6,…,12, with type tan(/) ¼ Sqrt(|Num|)/|Dem|
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Table 3: Matrix of coefficient for N ¼ 13,…,16, with type tan(/) ¼ Sqrt(|Num|)/|Dem|:

Figure 1: Standard uncertainty of the phase values u(/¢) using new algorithms with variation of phase shift (d). Note that the

uncertainty is smaller near d ¼ p/2 and decreases with increasing number of images
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So as the matrix for N also was:

In addition, the matrix for odd N was:

Therefore, using symmetry to the numerator coef-

ficients can be represented with only its first quarter

and the denominator coefficients can be represented

only with the first half, as shown below:

In previous formulas, most of the coefficients of

the numerator and the denominator are zero. Even

more for the first quarter of the coefficients of the

Num ¼

n1;1 n1;2 n1;3 � � � n1;h�1 n1;h �n1;h �n1;h�1 � � � �n1;3 �n1;2 �2n1;1

n2;2 n2;3 � � � n2;h�1 n2;h �n2;h �n2;h�1 � � � �n2;3 �2n2;2 �n1;2

n3;3 � � � n3;h�1 n3;h �n3;h �n3;h�1 � � � �2n3;3 �n2;3 �n1;3

� � � � � � � � � � � � � � � � � � � � � � � � � � �
nh�1;h�1 nh�1;h �nh�1;h �2nh�1;h�1 � � � �n3;h�1 �n2;h�1 �n1;h�1

nh;h �2nh;h �nh�1;h � � � �n3;h �n2;h �n1;h

nh;h nh�1;h � � � n3;h n2;h n1;h

nh�1;h�1 � � � n3;h�1 n2;h�1 n1;h�1

� � � � � � � � � � � �
n3;3 n2;3 n1;3

n2;2 n1;2

n1;1

2
6666666666666666666666664

3
7777777777777777777777775

Dem ¼ d1 d2 d3 d4 � � � dh�1 dh dh dh�1 � � � d4 d3 d2 d1½ �

(18)

Num ¼

n1;1 n1;2 n1;3 � � � n1;h�1 n1;h �n1;h�1 � � � �n1;3 �n1;2 �2n1;1

n2;2 n2;3 � � � n2;h�1 n2;h �n2;h�1 � � � �n2;3 �2n2;2 �n1;2

n3;3 � � � n3;h�1 n3;h �n3;h�1 � � � �2n3;3 �n2;3 �n1;3

� � � � � � � � � � � � � � � � � � � � � � � �
nh�1;h�1 nh�1;h �2nh�1;h�1 � � � �n3;h�1 �n2;h�1 �n1;h�1

nh;h nh�1;h � � � n3;h n2;h n1;h

nh�1;h�1 � � � n3;h�1 n2;h�1 n1;h�1

� � � � � � � � � � � �
n3;3 n2;3 n1;3

n2;2 n1;2

n1;1

2
6666666666666666666664

3
7777777777777777777775

Dem ¼ d1 d2 d3 d4 � � � dh�1 dh dh�1 � � � d4 d3 d2 d1½ �

(19)

Num1=4 ¼

n1;1 n1;2 n1;3 � � � n1;h�1 n1;h

n2;2 n2;3 � � � n2;h�1 n2;h

n3;3 � � � n3;h�1 n3;h

� � � � � � � � �
nh�1;h�1 nh�1;h

nh;h

2
6666664

3
7777775

Dem1=2 ¼ ½ d1 d2 d3 � � � dh�1 dh � (20)

Sparse
d

1=2
r ¼ 0; r ¼ 5; . . . ;h� 1

n
1=4
r;s ¼ 0; r ¼ 1; . . . ;h� 5; s ¼ r þ 4; . . . ;h; and s > r þ 3

(
(21)

numerator, the terms are different from zero in the

main diagonal and closer to the three diagonal, so

only the first four coefficients of each line are differ-

ent from zero. In the first half of the coefficients of

the denominator, only the first four and the last term

are different from zero. A matrix where most of the

terms are zeros is usually called sparse matrix.
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In order, the matrix is:

An important fact is that the resolution of the

mathematical model generates new and efficient

formulas for calculating the phase. As most of the

coefficients of both the numerator and the denomi-

nator are zero, the implementation of these new

algorithms is very fast and the volume of mathe-

matical operations is reduced, because the terms are

zero as there is no need for multiplier to the values of

luminous intensity Ik for these factors, as any number

multiplied by zero will be zero.

Formulas for Phase Calculation of Many
Images

Analysing the formulas deducted, we attempted to

get a rule for training for them or an algorithm to

provide valid values of coefficients of the numerator

and the denominator of the formulas for phase cal-

culation of large quantities of images (N > 15). The

concept of symmetry and sparse matrix of the pre-

vious section was used to look for a rule of training

for the first four terms of each line of the fourth of

the coefficients of the numerator, and for the four

words which may be different from zero to half the

denominator. The first thing that was done was to

reset all the coefficients of the numerator and the

denominator.

The rule that established training is divided into

eight cases depending on the value of the number of

images (N). For each case there was training with a

rule shown below.

For case 1, when N is even, N is divisible by 4 and N

is also divisible by 8:

Num1=4 ¼

n1;1 n1;2 n1;3 n1;4 0 0 0 0 0 0 . . . 0

n2;2 n2;3 n2;4 n2;5 0 0 0 0 0 � � � 0

n3;3 n3;4 n3;5 n3;6 0 0 0 0 � � � 0

n4;4 n4;5 n4;6 n4;7 0 0 0 � � � 0

� � � � � � � � � � � � 0 0 � � � 0

nh�6;h�6 nh�6;h�5 nh�6;h�4 nh�6;h�3 0 � � � 0

nh�5;h�5 nh�5;h�4 nh�5;h�3 nh�5;h�2 0 0

nh�4;h�4 nh�4;h�3 nh�4;h�2 nh�4;h�1 0

nh�3;h�3 nh�3;h�2 nh�3;h�1 nh�3;h

nh�2;h�2 nh�2;h�1 nh�2;h

nh�1;h�1 nh�1;h

nh;h

2
6666666666666666666666664

3
7777777777777777777777775

Dem1=2 ¼ ½ d1 d2 d3 d4 0 0 � � � 0 0 dh �
(22)
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For case 2, when N is even, N is divisible by 4 but N

is not divisible by 8:

For case 3, when N is even, N + 2 is divisible by 4

and N + 2 is divisible by 8:

Figure 2: Average of the standard uncertainty u(/¢) by using new algorithms. Note that the uncertainty decreases with increasing

number of images
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For case 4, when N is even, N + 2 is divisible by 4

but N + 2 is not divisible by 8:

For case 5, when N is odd, N ) 1 is divisible by 4

and N ) 1 is divisible by 8:

For case 6, when N is odd, N ) 1 is divisible by 4 but

N ) 1 is not divisible by 8:

(26)
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For case 7, when N is odd, N + 1 is divisible by 4

and N + 1 is divisible by 8:

For case 8, when N is odd, N + 1 is divisible by 4 but

N + 1 is not divisible by 8:

(28)
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As the new formulas were developed from the

algorithms, numerical calculation, instead of analyt-

ical demonstrations of trigonometric relations, is

necessary to check them. It is believed that a large

number of numerical tests can validate or verify these

new formulas, or at least reduce the chance of these

formulas being wrong or false, to a minimum. The

goal here is to verify that the new formulas really

calculate the tangent of the phase [tan(/)]. For that,

real figures are attributed to random Im that ranges

from 0 to 128 that are assigned at random to real

values, Ia that ranges from 0 to 127, and the cosine of

)1 varies by 1 to the values of luminous intensity Ik
will be between 0 and 255 that is the range of values

of pixels obtained in monochrome digital photo-

graphs. It is interesting to note that the digital images

and values are intact here to further enlarge the test

in which they are made real. They are also assigned

values to real random /¢ that varies from )p to p,

tracking common algorithms used on the main un-

wrapped. Real values are assigned and the random d

that ranges from )10p to 10p, a very wide range of

possible values of step phase. The values of Ik (lumi-

nous intensity of the image) are calculated, with k

ranging from 1 to N. The new formulas with the

values of Ik are applied, giving a tan(/) that must be

compared with the value of phase randomly assigned

(/¢¢). This comparison is the accuracy through a very

small n because the number of rounding errors that

can occur in the calculations, say, precision |/¢ ) /| £
10)6. This was done thousands of times (at least

10 000 times) for each formula for phase calculation.

It generated and made up of at least 99.9% of the

time with an accuracy of 10)6. Thus, it was believed

that the chances for the formulas to be wrong or false

have become minimal or remote.

Before Unwrapping, Change / 2 [0,p/2] to
/* 2 [)p,p]

Because of the character of the evaluation algo-

rithms, only phase values / 2 [0,p/2] were calculated.

For unequivocal determination of the wrapped phase

values / it was necessary to test four values /, )/, /

)p and )/ + p using values of Ik and small systems.

With this, the value /� 2 [)p,p] was obtained [3–6].

In case N ¼ 5, with I1, I2, I3, I4 and I5, d was found in

the first equation and the values /, )/, / ) p and )/

+ p were attributed to /� to test the other equation

and Ia was found using a second equation. As an

example, for each (x, y) it was tested for the four

values /, )/, / ) p and )/ + p in (addition and

subtraction of first, last and middle frames, the Ik):

(30)
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even N ¼ 4

cosðd=2Þ ¼ 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi

I1�I4
4ðI2�I3Þ

q
I1 � I4 ¼ 2Ia sinð/�Þ sinð3d=2Þ
I2 � I3 ¼ 2Ia sinð/�Þ sinðd=2Þ
ðI1 þ I4Þ � ðI2 þ I3Þ ¼ 2Ia cosð/�Þ½cosð3d=2Þ � cosðd=2Þ�
I1 � I3 ¼ Ia½cosð/� � 3d=2Þ � cosð/� þ d=2Þ�

8>>>>><
>>>>>:

(31)
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odd N ¼ 5

cosðdÞ ¼ I1�I5
2ðI2�I4Þ

I1 � I5 ¼ 2Ia sinð/�Þ sinð2:dÞ
I2 � I4 ¼ 2Ia sinð/�Þ sinðdÞ
I1 þ I5 � 2:I3 ¼ 2Ia cosð/�Þ½cosð2:dÞ � 1�
I2 þ I4 � 2:I3 ¼ 2Ia cosð/�Þ½cosðdÞ � 1�:

8>>>><
>>>>:

(32)

In a different approach, for unambiguous deter-

mination of the wrapped phase values, it is necessary

to test four values /, )/, / ) p and )/ + p using

values of Ik and to solve small nonlinear systems

(Newton–Raphson methods). For each angle /, )/, /

) p and )/ + p, solve the nonlinear system by New-

ton–Raphson in Equation (25), getting the values of

Im, Ia and d.

I1 � Im þ Ia cos / � þ 2:1�N�1
2

	 

d

� �	 

¼ 0

I2 � Im þ Ia cos / � þ 2:2�N�1
2

	 

d

� �	 

¼ 0

I3 � Im þ Ia cos / � þ 2:3�N�1
2

	 

d

� �	 

¼ 0

8<
: (33)

With the values of Im, Ia and d, test the Equation

(36) and find the correct angle /� 2 [)p,p].

I4 � Im þ Ia cos / � þ 2:4�N�1
2

	 

d

� �	 

¼ 0

. . .
IN � Im þ Ia cos / � þ 2N�N�1

2

	 

d

� �	 

¼ 0

8<
: (34)

Testing and Analysis of Error

The phase /* obtained from the phase-shifting algo-

rithm above is a wrapped phase, which varies from

)p/2 to p/2. The relationship between the wrapped

phase and the unwrapped phase may thus be stated

as:

Wðx; yÞ ¼ /�ðx; yÞ þ 2pjðx; yÞ (35)

where j is an integer number, /* is a wrapped phase

and w is an unwrapped phase.

The next step is to unwrap the wrapped phase

map [10]. When unwrapping, several of the phase

values should be shifted by an integer multiple of

2p. Unwrapping is thus adding or subtracting 2p

offsets at each discontinuity encountered in phase

data. The unwrapping procedure consists of finding

the correct field number for each phase measure-

ment [11–13].

The modulation phase w obtained by unwrapping

physically represents the fractional fringe order

numbers in the Moire images. The shape can be

determined by applying the out-of-plane deforma-

tion equation for shadow Moire:

Zðx; yÞ ¼ p Wðx; yÞ=2p½ �
ðtan aþ tan bÞ (36)

where Z(x,y) ¼ elevation difference between two

points located at body surface to be analysed; p ¼
frame period; a ¼ light angle; b ¼ observation angle.

The experiments were carried out using square

wave grating with 1-mm frame grid period; the light

source is the common white of 300 W without using

plane waves; light angle (a) and observation angle (b)

are 45�; the object surface is white and smooth and

the resolution of photograph is 1 megapixel. Phase

stepping is made by displacing the grid in the hori-

zontal direction in fractions of millimetres (Figure 3).

To test the new algorithms for phase calculation,

they were used with the technique of shadow

Moire [14] for an object with known dimensions

and to evaluate the average error by Equation (37).

This process was started with four images, repeated

with five, then six and so on. The idea was to show

that with increasing number of images the average

error tends to decrease. Figure 4 shows this

procedure.

Error MedianðEÞ ¼ 1

M

XM
i¼1

jZe
i � Zij (37)

where M is the number of pixels of the image, Ze
i is the

exact value of the size of the object being measured

and Zi is value measured by the new algorithm.

To compare the new algorithms for calculating the

phase, 21 sets of 16 photographs each were selected.

Each set was computed using the average error of 4 to

16 images and using algorithms to evaluate the

number of images. An average of errors was esti-

mated, then 21 sets were evaluated using 4 to 16

images in each set (l4,l5,l6,…,l16). The hypothesis of

testing on the difference in the means lA ) lB of two

normal populations is being considered at the

moment. A more powerful experimental procedure is

to collect the data in pairs – that is, to make two

hardness readings on each specimen, one with each

tip. The test procedure would then consist of analy-

Figure 3: Layout of experiment
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Figure 4: One set of photographs of 1 megabyte. Original shadow Moire images; 16-frame phase-shifting algorithm [A-P]. Wrapped

phase [Q]. Result in 3D [R] (Semi-cylinder of a motor with diameter 6 cm, length 12 cm and with frame period of grid 1 mm.)

Table 4: Error median error in lm versus number of frames (N) for semi-cylinder with diameter of 6 cm and length of 12 cm (frame

period of grid with 1 mm). It used 21 different sets of 16 images of shadow Moire (Figure 4)

Error median (lm) Sets of images

No. images Equation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

4 a 126 127 126 126 127 129 129 127 129 127 129 127 127 128 127 126 128 126 126 125 127

5 a 124 122 123 122 124 123 124 121 124 121 124 122 125 125 122 123 124 122 124 122 122

6 a 120 117 119 119 119 118 118 119 117 117 119 121 119 120 120 117 120 120 118 120 119

b 118 119 117 119 120 117 119 117 118 117 119 118 119 120 119 118 117 119 118 119 120

c 119 120 119 119 120 118 117 118 118 117 117 119 120 120 119 120 121 118 118 118 117

d 118 119 120 118 118 120 118 121 118 120 117 120 120 120 118 117 118 120 117 118 118

e 120 118 117 117 119 119 118 117 118 117 117 120 119 121 120 117 117 118 121 117 120

7 a 115 115 114 113 116 115 114 115 115 116 113 116 113 113 116 113 116 114 114 115 115

b 116 114 115 114 116 114 113 115 116 116 113 115 116 117 116 116 116 113 116 115 115

c 113 114 114 114 115 113 116 113 116 113 116 113 116 114 116 116 115 116 114 116 113

d 115 115 116 116 114 113 115 113 117 113 114 117 114 115 114 113 114 114 113 115 114

8 a 109 110 110 109 110 112 112 111 110 110 109 112 110 112 110 111 109 109 112 108 108

b 110 112 111 112 111 112 112 109 110 110 110 109 111 110 110 108 112 110 110 109 109

c 112 110 111 112 111 112 110 108 110 111 109 110 110 111 111 111 112 112 109 110 109

d 111 109 111 109 110 111 111 109 110 110 109 110 112 110 112 109 109 110 110 109 112

9 a 106 107 105 105 105 106 105 108 108 105 105 108 107 106 105 105 104 105 106 108 108

b 108 108 106 108 106 107 105 106 107 108 107 107 105 105 104 105 107 105 105 105 106

c 105 108 108 104 105 104 106 105 105 106 107 106 106 105 105 108 108 105 108 106 106

10 a 100 101 100 101 103 101 104 101 103 103 104 102 102 102 101 101 103 101 100 103 103

b 103 102 103 101 100 103 102 102 103 101 102 101 102 103 100 103 100 102 104 102 103

c 104 102 102 103 100 104 102 102 101 104 103 100 102 102 100 104 100 103 100 101 102

11 a 97 99 99 99 97 97 96 99 97 96 99 98 98 98 98 100 97 98 98 98 96

b 97 99 97 97 98 98 100 99 100 97 96 98 97 97 97 97 97 98 97 98 98

c 97 99 98 98 97 96 97 97 96 97 97 99 98 97 96 97 99 99 97 99 100

12 a 95 93 96 94 94 94 92 93 95 93 94 94 96 93 94 95 96 94 93 92 92

b 93 92 92 94 96 92 95 93 94 93 95 92 96 93 96 92 93 93 95 94 95
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Table 4: (Continued)

Error median (lm) Sets of images

No. images Equation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

13 a 92 92 91 88 90 89 88 91 90 88 89 89 88 90 90 88 88 90 90 88 91

b 88 91 91 88 90 88 88 91 89 90 89 88 91 88 89 90 91 92 91 90 91

14 a 85 87 83 85 87 84 86 86 84 86 84 84 84 86 85 86 84 84 86 84 87

b 87 85 87 86 87 87 85 85 87 86 86 85 86 83 84 85 87 85 84 87 86

15 a 83 82 82 82 84 83 85 85 83 85 82 82 82 82 83 85 85 83 81 84 84

16 a 80 78 78 80 79 80 79 80 81 79 80 78 77 78 79 80 79 79 79 78 81

Table 5: Testing hypotheses about the difference between two means with paired t-test, H0:lA ) lB ¼ 0 against H1:lA ) lB „ 0.

The P-value is the smallest level of significance that would lead to rejection of the null hypothesis H0 with the given data

P-

va-

lue No. images and formula

No.

ima-

ges

and

equ-

a-

tion 4 5 6 7 8 9 10 11 12 13 14 15

a a a b c d e a b c d a b c d a b c a b c a b c a b a b a b a

4 a

5 a 0%

6 a 0% 0%

b 0% 0% 17%

c 0% 0% 49% 55%

d 0% 0% 52% 57% 98%

e 0% 0% 20% 85% 49% 53%

7 a 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 10%

c 0% 0% 0% 0% 0% 0% 0% 95% 17%

d 0% 0% 0% 0% 0% 0% 0% 85% 13% 79%

8 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 81%

c 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 45% 51%

d 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 98% 78% 34%

9 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 81%

c 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 100% 82%

10 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 77%

c 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 75% 97%

11 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 77%

c 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 55% 83%

12 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 46%

13 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 61%

14 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

b 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 15%

15 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

16 a 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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sing the differences between the hardness readings

on each specimen. If there is no difference between

tips, the mean of the differences should be zero.

This test procedure is called the paired t-test [10].

Specifically, testing H0: lA ) lB ¼ 0 against H1:

lA ) lB „ 0. Test statistics is t0 ¼ D/(SD/�21) where

D is the sample average of the differences and SD is

the sample standard deviation of these differences.

The rejection region is t0 > ta/2,20 or t0 < ) ta/2,20. The

data are shown in Table 4.

On performing the statistical test (H0:lA ) lB ¼ 0

against H1:lA ) lB „ 0) it was noticed that one

cannot reject the zero hypothesis when using differ-

ent algorithms with the same number of images.

Furthermore, the null hypothesis can be rejected

when using different algorithms with different

number of images with level of significance (a ¼
0.05). It was concluded that the algorithms for phase

calculation with a greater number of images are more

accurate than those with smaller number of images.

The tests are shown in Table 5.

Conclusions

This paper deals with the algorithms for phase

calculation in measurement with images method

using the phase shifting technique. It describes

several multistep phase-shifting algorithms with the

constant, but unknown phase step between the

captured intensity frames. The new algorithms are

shown to be capable of processing the optical signal

of Moire images. These techniques are very precise,

easy to use, and have a small cost. The results show

that new algorithms were precise and accurate. On

the basis of the performed error analysis it can be

concluded that the new algorithms are very good

phase calculation algorithms. These algorithms also

seem to be a very accurate and stable phase shifting

algorithms with the unknown phase step for a wide

range of phase-step values. The metric analysis of

the considered system demonstrated that its

uncertainties of measurement depend on the frame

period of the grid, of the resolution of photographs

in pixel and of the number of frames. However, the

uncertainties of measurement of the geometric

parameters and the phase still require attention. In

theory, if we have many frames, the measurement

errors become very small. The measurement results

obtained by the optical system demonstrate its

industrial and engineering applications in experi-

mental strain analysis.
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