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The present work offers new algorithms for phase evaluation in optics measurements. Several phase-shifting algorithms
with an arbitrary but constant phase-shift between captured intensity frames are proposed. The algorithms are derived
similarly to the so called Carre algorithm. The idea is to develop a generalization of Carre that is not restricted to four
images. Errors and random noise in the images cannot be eliminated, but the uncertainty due to its effects can be
reduced by increasing the number of observations. The advantages of the proposed algorithm are its precision in the
measures taken and immunity to noise in images. # 2009 The Optical Society of Japan
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1. Introduction

Phase shifting is an important technique in engineer-
ing.1–3) Conventional phase shifting algorithms require phase
shift amounts to be known; however, errors on phase shifts
are common for the phase shift modulators in real
applications, and such errors can further cause substantial
errors on the determinations of phase distributions. There are
many potential error sources, which may affect the accuracy
of the practical measurement, e.g., the phase shifting errors,
detector nonlinearities, quantization errors, source stability,
vibrations and air turbulence, and so on.4)

Currently, the phase shifting technique is the most widely
used technique for evaluation of interference fields in many
areas of science and engineering. The principle of the
method is based on the evaluation of the phase values from
several phase modulated measurements of the intensity of
the interference field. It is necessary to carry out at least
three phase shifted intensity measurements in order to
determine unambiguously and very accurately the phase at
every point of the detector plane. The phase shifting
technique offers fully automatic calculation of the phase
difference between two coherent wave fields that interfere
in the process. There are various phase shifting algorithms
for phase calculation that differ on the number of phase
steps, on phase shift values between captured intensity
frames, and on their sensitivity to the influencing factors
during practical measurements.5)

2. Theory of Phase Shifting Technique

The fringe pattern is assumed to be a sinusoidal function
and it is represented by intensity distribution Iðx; yÞ. This
function can be written in general form as

Iðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos½�ðx; yÞ þ ��; ð1Þ

where Im is the background intensity variation, Ia is the

modulation strength, �ðx; yÞ is the phase at origin and � is the
phase shift related to the origin.6)

The general theory of synchronous detection can be
applied to discrete sampling procedure, with only a few
sample points. At least four signal measurements are needed
to determine the phase � and the term �. Phase Shifting is the
preferred technique whenever the external turbulence and
mechanical conditions of the images remain constant over
the time required to obtain the four phase-shifted frames.
Typically, the technique used in this experiment is called the
Carre method.7) By solving eq. (1) above, the phase � can be
determined. The intensity distribution of fringe pattern in a
pixel may be represented by the gray level, which varies
from 0 to 255. With the Carre method, the phase shift (�)
amount is treated as an unknown value. The method uses
four phase-shifted images as

I1ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos½�ðx; yÞ � 3�=2�
I2ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos½�ðx; yÞ � �=2�
I3ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos½�ðx; yÞ þ �=2�
I4ðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos½�ðx; yÞ þ 3�=2�

8>>><
>>>:

: ð2Þ

Assuming the phase shift is linear and does not change
during the measurements, the phase at each point is
determined as

� ¼ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðI1 � I4Þ þ ðI2 � I3Þ�½3ðI2 � I3Þ � ðI1 � I4Þ�

p

ðI2 þ I3Þ � ðI1 þ I4Þ

� �
:

ð3Þ
Expanding eq. (3), we obtain the Carre method as

tanð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I21 þ2I1I2 �2I1I3 þ2I1I4

þ3I22 �6I2I3 �2I2I4

þ3I23 þ2I3I4

�I24

����������

����������

vuuuuuuut
j�I1 þ I2 þ I3 � I4j

: ð4Þ

or in a matrix form:�E-mail address: paamj@oi.com.br
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tanð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�����
X4
r¼1

X4
s¼r

nr;sIrIs

�����
vuut

�����
X4
r¼1

drIr

�����

Num ¼

n1;1 n1;2 n1;3 n1;4

n2;2 n2;3 n2;4

n3;3 n3;4

n4;4

2
6664

3
7775; Dem ¼ ½d1 d2 d3 d4�

Num ¼

�1 2 �2 2

3 �6 �2

3 2

�1

2
6664

3
7775; Dem ¼ ½�1 1 1 �1�

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

: ð5Þ

Almost all the existing phase-shifting algorithms are
based on the assumption that the phase-shift at all pixels of
the intensity frame is equal and known. However, it may be
very difficult to achieve this in practice. Phase measuring
algorithms are more or less sensitive to some types of errors
that can occur during measurements with images. The phase-
shift value is assumed to be unknown but constant in phase
calculation algorithms, which are derived in this article.
Consider now the constant but unknown phase shift value �
between recorded images of the intensity of the observed
interference field.

Considering N phase shifted intensity measurements, we
can write for the intensity distribution Ik at every point of k
recorded phase shifted interference patterns

Ikðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ cos �ðx; yÞ þ
2k � N � 1

2

� �
�

� �
;

ð6Þ
where k ¼ 1; . . . ;N and N being the number of frames.
In Novak,4) several five-step phase-shifting algorithms

insensitive to phase shift calibration are described, and a

complex error analysis of these phase calculation algorithms
is performed. The best five-step algorithm, eq. (7), seems to
be a very accurate and stable phase shifting algorithm with
the unknown phase step for a wide range of phase step
values

ajk ¼ Ij � Ik

bjk ¼ Ij þ Ik

�
;

tanð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a224 � a215

p
2I3 � b15

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ðI2 � I4Þ2 � ðI1 � I5Þ2

p
2I3 � I1 � I5

: ð7Þ

Expanding eq. (7), we obtain the Novak method as

tanð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�I21 þ2I1I5

þ4I22 �8I2I4

þ4I24

�I25

�������������

�������������

vuuuuuuuuuut
j�I1 þ 2I3 � I5j

; ð8Þ

or in matrix of coefficient:

tanð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�����
X5
r¼1

X5
s¼r

nr;sIrIs

�����
vuut

�����
X5
r¼1

drIr

�����

Num ¼

n1;1 n1;2 n1;3 n1;4 n1;5

n2;2 n2;3 n2;4 n2;5

n3;3 n3;4 n3;5

n4;4 n4;5

n5;5

2
6666664

3
7777775
; Dem ¼ ½d1 d2 d3 d4 d5�

Num ¼

�1 0 0 0 2

4 0 �8 0

0 0 0

4 0

�1

2
6666664

3
7777775
; Dem ¼ ½�1 0 2 0 �1�

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

: ð9Þ

3. Proposed Algorithms

Presently proposed is a general equation for calculating
the phase for any number, N, of images tanð�Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
=jDemj where

tanð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p

jDemj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�����
XN
r¼1

XN
s¼r

nrsIrIs

�����
vuut

�����
XN
r¼1

drIr

�����
; ð10Þ

or expanding the summations and allowing an arbitrary
number of lines

OPTICAL REVIEW Vol. 16, No. 4 (2009) P. A. A. MAGALHAES, Jr. et al. 433



tanð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1;1I

2
1 þn1;2I1I2 þn1;3I1I3 þn1;4I1I4 � � � þn1;NI1IN

þn2;2I
2
2 þn2;3I2I3 þn2;4I2I4 � � � þn2;NI2IN

þn3;3I
2
3 þn3;4I3I4 � � � þn3;NI3IN

þn4;4I
2
4 � � � þn4;NI4IN

� � � � � �
þnN;NI

2
N

���������������

���������������

vuuuuuuuuuuuut
jd1I1 þ d2I2 þ d3I3 þ d4I4 þ � � � þ dN�1IN�1 þ dNIN j

; ð11Þ

or emphasizing only the matrix of coefficients of the
numerator and the denominator

tanð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p

jDemj
;

Num ¼

n1;1 n1;2 n1;3 n1;4 � � � n1;N

n2;2 n2;3 n2;4 � � � n2;N

n3;3 n3;4 � � � n3;N

n4;4 � � � n4;N

� � � � � �
nN;N

2
666666664

3
777777775

Dem ¼ ½d1 d2 d3 d4 � � � dN�1 dN�

8>>>>>>>>>><
>>>>>>>>>>:

: ð12Þ

To display the phase calculation equation in this way
permits the viewing of symmetries and plans of a sparse
matrix. The use of the absolute value in the numerator and in
the denominator restricts the angle between 0 and 90� but
avoids negative roots, and, in addition, eliminates the finding

of false angles. Subsequent considerations will later remove
this restriction.4–6)

In the tested practical applications, an increase of 20%
was noticed in the processing time when 16 images were
used instead of 4 when processing the standard Carre
algorithm, due to many zero coefficients. But if one changes
the coefficients from integer type to real, the processing time
for the evaluation of phase practically duplicates because
real numbers use more memory and more processing time to
evaluate floating point additions and multiplications, which
are numerous in the equations with a large quantity of
images.

The shift on the problem focus of obtaining algorithms for
calculating the phase of an analytical problem of a numerical
vision is a great innovation and breaks a paradigm that was
hitherto used by several authors. After several attempts in
numerical modeling the problem, the following mathemat-
ical problem was identified

Minimal
XN
r¼1

XN
s¼r

jnr;sj þ
XN
r¼1

jdrj;

subject

tanð�Þ ¼ SqrtðjNumjÞ=jDemj number of variables

i) tan2ð�vÞ
XN
r¼1

drI
v
r

 !2

¼
XN
r¼1

XN
s¼r

nr;sI
v
r I

v
s ; v ¼ 1; . . . ;

ðN þ 1ÞN
2

þ N

� �

ii)
XN
s¼r

jns;rj þ jdrj � 1; r ¼ 1; . . . ;N, enter all frames

iii)
XN
s¼r

jnr;sj þ jdrj � 1; r ¼ 1; . . . ;N, enter all frames

iv) �2N � nr;s � 2N; r ¼ 1; . . . ;N; s ¼ r; . . . ;N

v) �2N � dr � 2N; r ¼ 1; . . . ;N

vi) nr;s are integer; r ¼ 1; . . . ;N; s ¼ r; . . . ;N

vii) dr are integer; r ¼ 1; . . . ;N

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

;

where for each v:

Ivk ðx; yÞ ¼ Ivmðx; yÞ þ Iva ðx; yÞ cos �
vðx; yÞ þ

2k � N � 1

2

� �
�v

� �
; k ¼ 1; . . . ;N

Ivm 2 ½0; 128� random and real

Iva 2 ½0; 127� random and real

�v 2 ½��;�� random and real

�v 2 ½�2�; 2�� random and real

8>>>>>>>><
>>>>>>>>:

: ð13Þ

434 OPTICAL REVIEW Vol. 16, No. 4 (2009) P. A. A. MAGALHAES, Jr. et al.



The coefficients of matrices of the numerator (nrs) and
denominator (dr) must be an integer in order to increase the
performance of the computer algorithm, as the values of the
intensity of the images (Ik) are also integers ranging from 0
to 255. Modern computers perform integer computations
(additions and multiplications) much faster than floating
point ones. It should be noted that the commercial digital
photographic cameras already present graphics resolution
above 12 mega pixels and that the evaluation of phase (�)
should be done pixel to pixel. Another motivation is the use
of memory: integer values can be stored on a single byte
while real values use at least 4 bytes. The present scheme
only uses real numbers in the square root of the numerator,
the division by denominator, and the arc-tangent over the
entire operation.

The idea of obtaining a minimum sum of the values of an
absolute or a module of the coefficients of matrices of the
numerator (nrs) and denominator (dr) comes from the
attempt to force these factors to zero, for computational
speed up and for reducing the required memory, since zero
terms in sparse matrices do not need to be stored. It is also
important that those ratios are not very large so that the
values of the sum of the numerator and of the denominator
do not have very high value in order fit into an integer
variable. For a precise phase evaluation, these factors will
increase the values of the intensity of the images (Ik) that
contains errors due to noise in the image, in its discretization
in pixels and in shades of gray.

The first restriction of the problem (13) is eq. (10) which
is squared to the form of the relation that one is seeking.
Note that the results of solving the mathematical problem of
the coefficients are matrices on the numerator (nrs) and
denominator (dr), so the number of unknowns is given by �.
To ensure that one has a hyper-restricted problem, the
number of restrictions must be greater or at least equal to the
number of variables. The � restrictions of the model are
obtained through random choice of values for Im, Ia, �, and �
and using eq. (6) to compute Ik. Tests showed that for even
low numbers for other values of �, the mathematical problem
leads only to one optimal solution, while it becomes more
time consuming. Indeed, the values of Im, Ia, �, and � can be
any real number, but to maintain compatibility with the
problem images, it was decided to limit Im from 0 to 128 and
Ia between 0 and 127 so that Ik is between 0 and 255.

The restrictions ii and iii of the problem are based on the
idea that all image luminous intensities, Ik, must be present
in the equation. This increases the amounts of samples to
reduce the noise of random images and requires that all the
sampling images enter the algorithm for phase calculation.
This is achieved by prescribing that the sum of absolute
values of the coefficients of each row or column of the
matrix of both the numerator (nrs), plus the module at the
rate corresponding to that image in the denominator (dr) be
greater than or equal to 1. Thus the coefficients on the
algorithm to calculate the phase for a given image Ik will not
be all zeros, ensuring their participation in the equation.

Restrictions iv and v of the problem are used to accelerate
the solution of this mathematical model. This limitation in

the value of the coefficients of matrices of the numerator
(nrs) and denominator (dr) presents a significant reduction in
the universe of search and in the search for a solution of the
model optimization. Whenever N is greater than 16, the
coefficients of matrices of the numerator (nrs) and denom-
inator (dr) can be limited to the interval ½�4; 4�. The search
is restricted to coefficients of matrices of the numerator (nrs)
and denominator (dr) which are integers of small value, and
since it meets the restrictions of the model, it does not need
to be minimized (desirable but not necessary).

Once a solution to the problem is found, it can become a
restriction. Therefore, solving the problem again leads to a
new and different solution. This allows the problem (13) to
lead to many different algorithms for a given value of N,
making it very flexible and the numerical problem compre-
hensive. The following multi-step algorithms for phase
calculation use well known trigonometric relations and the
branch-and-bound algorithm8) for pure integer nonlinear
programming with the mathematic problem (13). The
following, tables show some algorithms (Tables 1, 2, and 3).

Following the model presented of uncertainty analysis in
½4; 14�, these new equations have excellent results with the
application of Monte Carlo-based technique of uncertainty
propagation. The Monte Carlo-based technique requires first
assigning probability density functions (PDFs) to each input
quantity. A computer algorithm is set up to generate an input
vector P ¼ ðp1; . . . ; pnÞT; each element pj of this vector is
generated according to the specific PDF assigned to the
corresponding quantity pj. By applying the generated vector
P to the model Q ¼ MðPÞ, the corresponding output value
Q can be computed. If the simulating process is repeated
n times (n � 1), the outcome is a series of indications
(q1; . . . ; qn) whose frequency distribution allows us to
identify the PDF of Q. Then, irrespective of the form of
this PDF, the estimate qe and its associated standard
uncertainty uðqeÞ can be calculated by

qe ¼
1

n

Xn
l¼1

ql ð14Þ

and

uðqeÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðn� 1Þ

Xn
l¼1

ðql � qeÞ2
s

: ð15Þ

The influence of the error sources affecting the phase
values is considered in these models through the values of
the intensity Ik. This is done by modifying eq. (6):

Table 1. Matrix of coefficient for N ¼ 4 and 5, with type
tanð�Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
=jDemj.
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Table 2. Matrix of coefficient for N ¼ 6; . . . ; 12, with type tanð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
=jDemj.
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Ikðx; yÞ ¼ Imðx; yÞ þ Iaðx; yÞ

	 cos �ðx; yÞ þ
2k � N � 1

2

� �
ð�þ �Þ þ "k

� �
þ �k:

ð16Þ
Comparing eqs. (6) and (16), it can be observed that three

input quantities, (�; "k; �k), were included. � allows us to
consider that in the uncertainty propagation the systematic
error used to induce the phase shift is not adequately
calibrated. The error bound allowed us to assign to � a
rectangular PDF over the interval (��=10 rad, þ�=10 rad).
"k allows us to account for the influence of environmental
perturbations. The error bound allowed us to assign to "k a
rectangular PDF over the interval (��=20 rad, þ�=20 rad).
�k allows us to account for the nearly random effect of the
optical noise. The rectangular PDFs assigned to �k should be
in the interval (�10;þ10).

The values of � were considered to be given in the range
(0; �=2). A computer algorithm was set up to generate single
values of (�; "k; �k) according to the corresponding PDFs.
With the generated values of the input quantities, we
evaluated the phase �0 by using the new algorithms. Since

this simulating process and the corresponding phase evalua-
tion were repeated n ¼ 104 ¼ 10;000 times, we were able to
form the series (�01; . . . ; �

0
10000) with the outcomes.

Table 3. Matrix of coefficient for N ¼ 13; . . . ; 16, with type tanð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
jNumj

p
=jDemj.

000

020

040

060

080

100

120

000 031 062 093 124 155 186 217 248 279 310

Algorithm  4a

Algorithm  5a

Algorithm  6a

Algorithm  7a

Algorithm  8a

Algorithm 10a

Algorithm 12a

Algorithm 15a

Algorithm 16a

Phase shift(δ) x10–2 rad
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Fig. 1. Mean phase error of uð�0Þ for each algorithm with
variation of phase shift (�). Note that the error is smaller near
� ¼ �=2 and decreases with increase in the number of images.
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The algorithms with letters (a) are better, more accurate,
more robust and more stable for the random noise. The tests
show that the optimum phase-shift interval with which the
algorithm gives minimum errors for the noise is near �=2
radians (Fig. 1).

4. Change � 2 ½0; �=2� to �� 2 ½��; ��

Because of the character of the evaluation algorithms,
only phase values � 2 ½0; �=2� were calculated. For un-
equivocal determination of the wrapped phase values � it

was necessary to test four values, �, ��, �� �, and ��þ �,
using values of Ik and small systems. With this, the value
�� 2 ½��; �� was obtained.3–6) In case N ¼ 5, with I1, I2, I3,
I4, and I5, � was found in the first equation and the values, �,
��, �� �, and ��þ � were attributed to �� in order to test
the other equation; Ia was found using a second equation. As
an example, for each ðx; yÞ the four values, �, ��, �� � and
��þ � were tested in (addition and subtraction of first,
last and middle frames, the Ik)

even N ¼ 4

cosð�=2Þ ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I1 � I4

4ðI2 � I3Þ

s

I1 � I4 ¼ 2Ia sinð��Þ sinð3�=2Þ
I2 � I3 ¼ 2Ia sinð��Þ sinð�=2Þ
ðI1 þ I4Þ � ðI2 þ I3Þ ¼ 2Ia cosð��Þ½cosð3�=2Þ � cosð�=2Þ�
I1 � I3 ¼ Ia½cosð�� � 3�=2Þ � cosð�� þ �=2Þ�

8>>>>>>>>><
>>>>>>>>>:

; ð17Þ

odd N ¼ 5

cosð�Þ ¼
I1 � I5

2ðI2 � I4Þ
I1 � I5 ¼ 2Ia sinð��Þ sinð2�Þ
I2 � I4 ¼ 2Ia sinð��Þ sinð�Þ
I1 þ I5 � 2I3 ¼ 2Ia cosð��Þ½cosð2�Þ � 1�
I2 þ I4 � 2I3 ¼ 2Ia cosð��Þ½cosð�Þ � 1�

8>>>>>>>><
>>>>>>>>:

: ð18Þ

In a different approach, for unambiguous determination of
the wrapped phase values, it is necessary to test four values,
�, ��, �� �, and ��þ �, using values of Ik and to solve
small nonlinear systems (Newton–Raphson method). For
each angle, �, ��, �� �, and ��þ �, the nonlinear system
by Newton–Raphson in eq. (19) can be solved, getting the
values of Im, Ia, and �.

I1 � Im þ Ia cos �
� þ

2:1� N � 1

2

� �
�

� �� �
¼ 0

I2 � Im þ Ia cos �
� þ

2:2� N � 1

2

� �
�

� �� �
¼ 0

I3 � Im þ Ia cos �
� þ

2:3� N � 1

2

� �
�

� �� �
¼ 0

8>>>>>>><
>>>>>>>:

ð19Þ

Test the values of Im, Ia and �, in eq. (20) and find the correct
angle �� 2 ½��; ��.

I4 � Im þ Ia cos �
� þ

2:4� N � 1

2

� �
�

� �� �
¼ 0

� � �

IN � Im þ Ia cos �
� þ

2N � N � 1

2

� �
�

� �� �
¼ 0

8>>>><
>>>>:

ð20Þ

5. Testing and Analysis of Error

The phase �� obtained from the Phase Shifting Algorithm
above is a wrapped phase, which varies from ��=2 to �=2.
The relationship between the wrapped phase and the
unwrapped phase may thus be stated as

�ðx; yÞ ¼ ��ðx; yÞ þ 2� jðx; yÞ; ð21Þ

where j is an integer number, �� is a wrapped phase and  is
an unwrapped phase.

The next step is to unwrap the wrapped phase map.13)

When unwrapping, several of the phase values should be
shifted by an integer multiple of 2�. Unwrapping is thus
adding or subtracting 2� offsets at each discontinuity
encountered in phase data. The unwrapping procedure
consists of finding the correct field number for each phase
measurement.9–11)

The modulation phase  obtained by unwrapping physi-
cally represents the fractional fringe order numbers in the
Moire images. The shape can be determined by applying
the out-of-plane deformation equation for Shadow Moire:

Zðx; yÞ ¼
pð�ðx; yÞ=2�Þ
tan�þ tan �

; ð22Þ

where Zðx; yÞ = elevation difference between two points
located at the body surface to be analyzed; p = frame
period; � = light angle; � = observation angle.

The experiments were carried out using a square wave
grating with 1mm frame grid period, light source was
common white of 300W with no use of plane waves, light
angle (�) and observation angle (�) were 45�, the object
surface was white and smooth and the resolution of photo
was one mega pixel. The phase stepping was made by
displacing the grid in the horizontal direction in fractions
of millimetres (Fig. 2).

To test the new equations for phase calculation, they were
used with the technique of Shadow Moire12) for an object
with known dimensions and the average error evaluated by
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eq. (23). This process was started with 4 images, again with
5, then 6 and so on. The idea was to show that with the
increasing number of images the average error tends to
decrease. Figure 3 shows this procedure.

Error median (E) ¼
1

M

XM
i¼1

jZe
i � Zij; ð23Þ

where M is number of pixels of the image, Ze
i is the exact

value of the size of the object being measured and Zi is value
measured by the new equation.

To compare the new equations for calculating the phase,
21 sets of 16 photos each were selected. Each set was com-
puted using the average error of 4 to 16 images and using

equations to evaluate what the number of images was. The
average errors were estimated and was 21 sets using 4 to 16
images in each set (	4; 	5; 	6; . . . ; 	16). The hypothesis of
testing the difference in the means 	A � 	B of two normal
populations is being considered at the moment. A more pow-
erful experimental procedure is to collect the data in pairs—
that is, to make two hardness readings on each specimen, one
with each tip. The test procedure would then consist of
analyzing the differences between hardness readings on each
specimen. If there is no difference between tips, the mean of
the differences should be zero. This test procedure is called
the paired t-test.13) Specifically, testing H0: 	A � 	B ¼ 0

against H1: 	A � 	B 6¼ 0. Test statistics is t0 ¼ D=ðSD=
ffiffiffiffiffi
21

p
Þ

where D is the sample average of the differences and SD
is the sample standard deviation of these differences. The
rejection region is t0 > t�=2;20 or t0 < �t�=2;20.

After doing the statistical test (H0: 	A � 	B ¼ 0 against
H1: 	A � 	B 6¼ 0) it was noticed that one cannot reject the
zero hypothesis when using different equations, which have
the same number of images. Also, the null hypothesis can
be rejected when using different equations with different
numbers of images with level of significance (� ¼ 0:05). It
was concluded that the equations for phase calculation with
a greater number of images are more accurate than those
that have a smaller number of images (Table. 4).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q)
(r)

Fig. 3. One set of photos of 1 megabyte. Original shadow moire images. 16-frame phase-shifting algorithm. (a–p).
Wrapped phase (q). Result in 3D (r). Semi-cylinder of a motor with diameter of 6 cm, length of 12 cm and frame period of
grid with 1mm.

Fig. 2. Layout of experiment.
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6. Conclusion

This paper deals with the algorithms for phase calculation
in measurement with image methods using the phase
shifting technique. It describes several multistep phase
shifting algorithms with the constant but unknown phase
step between the captured intensity frames. The new
equations are shown to be capable of processing the optical
signal of Moire images. These techniques are very precise,
easy to use, and have low cost. The results show that new
equations were precise and accurate. On the basis of the
performed error analysis it can be concluded that the new
equations are very good phase calculation algorithms.
These equations also seem to be very accurate and stable
phase shifting algorithms with the unknown phase step for
a wide range of phase step values. The metric analysis of
the considered system demonstrated that its uncertainties
of measurement depend on the frame period of the grid,
of the resolution in pixel of photos and on the number of
frames. However, the uncertainties of measurement of the
geometric parameters and the phase still require attention.

In theory, if we have many frames, the measurement errors
become very small. The measurement results obtained by
the optical system demonstrate its industrial and engineering
applications.
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5302.
6) P. S. Huang and H. Guo: Proc. SPIE 7066 (2008) 70660B.
7) Optical Shop Testing, ed. D. Malacara (Wiley, New York,

1992).
8) F. S. Hillier and G. J. Lieberman: Introduction to Operations

Research (McGraw-Hill, New York, 2005) 8th ed.
9) D. C. Ghiglia and M. D. Pritt: Two-Dimensional Phase

Unwrapping: Theory, Algorithms and Software (Wiley, New
York, 1998).

10) J. M. Huntley: Appl. Opt. 28 (1989) 3268.
11) E. Zappa and G. Busca: Opt. Lasers Eng. 46 (2008) 106.
12) C. Han and B. Han: Appl. Opt. 45 (2006) 1124.
13) M. F. Triola: Elementary Statistics (Addison-Wesley, Read-

ing, MA, 2007) 10th ed.
14) R. R. Cordero, J. Molimard, A. Martinez, and F. Labbe: Opt.

Commun. 275 (2007) 144.

OPTICAL REVIEW Vol. 16, No. 4 (2009) P. A. A. MAGALHAES, Jr. et al. 441


