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Abstract

A meshless approach to the Boundary Element Method in which only a scattered set of points is used to approximate the solution is

presented. Moving Least Square approximations are used to build a Partition of Unity on the boundary and then used to construct, at low cost,

trial and test functions for Galerkin approximations. A particular case in which the Partition of Unity is described by linear boundary element

meshes, as in the Generalized Finite Element Method, is then presented. This approximation technique is then applied to Galerkin boundary

element formulations. Finally, some numerical accuracy and convergence solutions for potential problems are presented for the singular,

hypersingular and symmetric approaches.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In the last decade a number of meshless procedures have

been proposed in the FEM community. These include: The

Smoothed Particle Hydrodynamics Method, The Diffuse

Element Method [1], Wavelet Galerkin Method [2], The

Element Free Galerkin Method, (EFGM), [3], Reproducing

Kernel Particle Method (RKPM) [4], The Meshless Local

Petrov–Galerkin Method [5], the Natural Element Method

[6], Partition of Unity Method [7], and the hp-Cloud Methods

e.g. [8,9]. The latter has the further appeal of naturally

introducing a procedure for performing hp-adaptivity, in a

very flexible way, avoiding the construction of functions by

sophisticated hierarchical techniques. The advantages of

these procedures are, however, balanced by increased

computational cost since a mesh is still needed for integration

purposes and, at each integration point, the Partition of Unity

must be computed since the covering of each point is

arbitrary. The cost can be reduced by using a linear
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Lagrangian Partition of Unity as in the Finite Element

Method as proposed by Oden, Duarte and Zienkiewicz [10]

and later denoted by the Generalized Finite Element Method

[11], (GFEM), which can be understood as a Generalization

of the Partition of Unity Method [7]. More recently, Sukumar

and his co-workers [12], proposed the Extended Finite

Element Method, (XFEM), which presents similar charac-

teristics as the GFEM.

The meshless procedures have also attracted the attention

of an increasing number of researchers within the Boundary

Element community. Among many contributions, we may

cite the Boundary Node Method [13–15], Local Boundary

Integral Equation [16,17], Boundary Particle Method [18],

Radial Point Interpolation Meshless Method (Radial PIM)

[19–22], and Boundary Cloud Method (BCM) [23]. Most of

the meshless methods use approximation functions along the

lines of the Moving Least Squares Method [24] and of the

EFGM.

The present work is an extension of the hp-Cloud Method

in order to apply it to the Boundary Element Method,

following the path presented in [25].

Hp-Cloud approximations have been proved to be more

efficient than those of the EFGM, [9], [26], and for this

reason they were used in [25]. Later, Oden, Duarte and
Engineering Analysis with Boundary Elements 29 (2005) 494–510
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Zienkiewicz, [10], proposed that, instead of using circles or

rectangles for defining the Clouds around each node, it

would be more convenient to use linear finite element

meshes. Here the Clouds associated to node ‘i’ would be

built by the union of the ‘elements’ connected to this node.

This concept greatly reduces the number of floating point

operations, since the Partition of Unity is known beforehand

and allows standard integration routines for integrating the

nodal matrices. This new scheme led to the Generalized

Finite Element Method, GFEM.

In this paper, some choices of Partition of Unity are

discussed and one of them is selected to be applied to the

Galerkin Boundary Element Method. This Partition of Unity

is then enriched by a set of functions like polynomials of

equal or unequal degrees in different directions, particular

solutions, or other reasonable functions to span the

approximation space. A choice of error indicators in order

to adaptively enrich the Partition of Unity is here described.

This new technique is hereafter called the Generalized

Galerkin Boundary Element Method (GGBEM). The L-

shaped domain and the Motz potential problems are solved

by the Classic (singular), Hyper and Symmetric methods

and their results for both uniform and adaptive enrichment

are compared and discussed.

The remainder of this paper is outlined as follows:

Section 2 summarizes the Galerkin boundary integral

equations for potential 2D problems; Section 3 describes

the main topics of the Moving Least Squares Method,

MLSM; Section 4 presents the hp-Cloud Partition of Unity

functions and their enrichment is described in Sections 5

and 6 discusses some of the possible MLSM weighting

functions and one in particular which leads to the

generalized formulations; Section 7 presents an error

indicator for the Galerkin boundary integral equations;

Section 8 summarizes the selected integration and regular-

ization procedures; Section 9 presents results of the

proposed formulation for the L-shaped domain and the

Motz potential problems; and the conclusions are given in

Section 10.
2. Galerkin boundary elements

Since this work is mainly focused on the numerical

characteristics of the approximation method, a simple

differential equation in two dimensions is dealt with here.

Let us define a domain U3R2 by a Lipschitz boundary

GZGDhGN, where the Dirichlet, GD, and Neumann, GN,

parts of the boundary have null intersection, GDhGNZ.

Equilibrium is stated by the Laplace equation with Dirichlet

and Neumann boundary conditions

KDTðxÞ Z 0 on U; TðxÞ Z f on GD;

vT

vn
Z g on GN;

(1)
where by T we denote the unknown potential field and by

vT/vn its normal derivative.

The Galerkin or Variational approach in boundary

integral equations [27] is given by

c1

ð
G

4jðdÞ4kðdÞdGðdÞTj

Z

ð
G

ð
G

Gðx;dÞ4iðxÞ4kðdÞdGðxÞdGðdÞ
vTi

vn

K

ð
G

ð
G

vGðx;dÞ

vnðxÞ
4iðxÞ4kðdÞdGðxÞdGðdÞTi (2)

and also by an analogous expression for the normal

derivative,

c2

ð
G

4jðdÞ4kðdÞdGðdÞ
vTj

vn

Z

ð
G

ð
G

vGðd; xÞ

vnðdÞ
4iðxÞ4kðdÞdGðxÞdGðdÞ

vTi

vn

K

ð
G

ð
G

v2Gðd; xÞ

vnðdÞvnðxÞ
4iðxÞ4kðdÞdGðxÞdGðdÞTi (3)

In these expressions, 4s are the test and trial

functions, c1 and c2 are constants determined from the

Jump Term, d and x are the source and field point

locations and G is a fundamental solution. The set of

algebraic equations obtained from expression (2) is the

starting point of the classical Galerkin approach. When

Eq. (3) is used, an alternative set of equations is

obtained, usually called the Hypersingular Galerkin

approach. The Symmetric Galerkin approximation results

from a choice of equations from both previous sets. In

this work these approaches are, respectively, denoted by

Classic, Hyper and Symmetric. The characteristics of the

approximation space as well as the methodology of

construction of the approximation functions is the focus

of the next section.
3. The moving least squares method applied

to the cloud method

The Moving Least Square Method (MLS) [24], is a

generalization of the conventional Least Squares Method

and has the important property of allowing us to weight, in

different forms, the information at arbitrarily placed points

in the domain. The next paragraphs present a brief

description of the method.

Let a body occupying a domain U2Rn, nZ1, 2,

or 3,with contour G, and let fa, aZ0,1,2,3,.N, be
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the known values of a function f(x) on an arbitrary set of N

points xa2U:

fa Z f ðxaÞ: (4)

The main idea is to build an approximation function uy(x)

of f(x) at a point y in such a way that uy(x) essentially

depends on the neighboring values fa. To this end we define

a functional Ey(uy) weighted by the functions WaðyÞ in the

following form

EyðuyÞ Z
1

2

XN

aZ0

WaðyÞ½uyðxaÞK fa�
2; (5)

where WaðyÞ : R
n /R are non negative functions with

monotonic decreasing values with respect to the

radius kyK\xak. These functions belong to the space W

defined by

W Z fWaðyÞ2Cs
0ðuaÞ; sR0

: WaðyÞR0; cy2R
ng: (6)

The supports ua of the weighting functions WaðyÞ are

open balls with radius ha and center in xa, i.e.

ua Z fx2r
n : jjx Kxajjrn %hag: (7)

The approximation uy(x) is constructed, from many

alternatives, as a linear combination of polynomials:

uyðxÞ Z
Xm

jZ0

ajPjðxÞ: (8)

The Pj(x) functions are components of a complete base

P of polynomials of order m%N,

P Z fP0ðxÞ;P1ðxÞ;.;PjðxÞ;.;PmðxÞg (9)

having the following properties:

P Z fPi : r
n/r; Pi 2ClðUÞlR0;

i Z 0; 1;.;mg:
(10)

The minimization of the functional given by the Eq. (5)

with respect to the generalized coordinates results in a

system of mC1 equations, allowing the determination of

the parameters ai such that:

uyðxÞ Z
Xm

jZ0

ajðyÞPjðxÞ: (11)

This procedure can be understood as a local approxi-

mation uy(x) of function f at the point y. In the traditional

Least Squares Method, the weight WaðyÞ is constant,

while in the MLS the coordinates aj depend on the local

point y.
In order to clarify the MLS procedure, it is convenient to

define the following arrays:

V Z

P0ðx0Þ P1ðx0Þ / Pmðx0Þ

P0ðx1Þ P1ðx1Þ / Pmðx1Þ

« « / «

P0ðxNÞ P1ðxNÞ / PmðxNÞ

2
66664

3
77775; (12)

~WðyÞ Z

W0ðyÞ 0 / 0

0 W1ðyÞ / 0

« « / «

0 0 / WNðyÞ

2
66664

3
77775; (13)

aðyÞ Z

a0ðyÞ

a1ðyÞ

«

amðyÞ

2
66664

3
77775 and f Z

f0

f1

«

fN

2
66664

3
77775: (14)

With this notation, the local approximation uy(x) and the

functional Ey(uy) can be rewritten as

uyðxÞ Z VaðyÞ; (15)

EyðuyÞ Z
1

2
~WðyÞðVaðyÞK fÞ$ðVaðyÞK fÞ: (16)

The minimum value of this functional must be achieved

by a function satisfying the following first order condition:

DEyðuyÞ½û� Z ~WðyÞðVaðyÞK fÞ$Vâ Z 0; c â2r
n: (17)

In [24] ûZVâ is an arbitrary variation function. Thus, as

â is an arbitrary vector, the following system of equations is

satisfied:

VT ~WðyÞVaðyÞ Z VT ~WðyÞf: (18)

The solution of this system supplies the vector of

parameters a. In a more compact form, this can be written as

AðyÞaðyÞ Z FðyÞ; where AðyÞ Z VT ~WðyÞV and

FðyÞ Z VT ~WðyÞf:
(19)

The matrix A(y) must satisfy a set of minimum properties

to guarantee the existence of its inverse. This subject is

addressed in Section 4.2.
4. The partition of unity for boundaries
4.1. Preliminary definitions

In the Boundary Element Method the definition of an

approximation space is restricted to the boundary of the

domain. Thus, in this case, an adaptation of the MLS,
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as well as the concepts presented by Duarte and Oden [9], is

necessary.

Let =N be a set of NC1 balls ua centered in points

xa2G. These points are called nodes and belong to the set

QN Z fx0; x1;.xNgZ fxag
N
aZ0. The set =N is also associated

to these nodes, as is shown in Fig. 1. It is said that =N is a

covering of G if

GI g
N

aZ0
ua;ua 2=N : (20)

Definition: A cloud Na, shown in Fig. 1, is the

intersection of the body contour with the ball ua, i.e.

Na :Z Ghua: (21)

The set of functions f4ag
N
aZ0 is called a Partition of Unity

subordinated to the covering =N , if they have the following

properties [9]:

4a 2CN
0 ðuaÞ 0%a%N; (22)

XN

aZ0

4aðxÞ Z 1 cx2G: (23)

A relaxation of the regularity of the functions from

CN
0 ðuaÞ to CN

0 ðuaÞ, sR0, is convenient for the application

of these functions in numerical methods because this

allows an increase in the candidates for weighting

functions WaðyÞ.
4.2. Construction of the partition of unity

The determination of the parameters a(y) depends on the

solution of the system (19) and is only possible if the matrix

A is invertible It is possible to show that the satisfaction of

this condition depends on the order of the polynomial of

base P and the covering number of clouds Na at each point

y2G. A necessary condition for the existence of AK1, is
that indexes a1,a2,.,ak, k>m, exist, such that

y3h
k

jZ1
suppðWaj

Þ; (24)

recalling that m is the maximum order of the polynomials in

P. A detailed description of this condition is discussed in

Ref. [9].

Considering Eq. (19), one can write that

aiðyÞ Z
Xm

jZ0

XN

aZ0

AK1
ij ðyÞPjðxaÞWaðyÞfa: (25)

The substitution of Eq. (25) into (11) results in

uyðxÞZ
Xm

iZ0

Xm

jZ0

XN

aZ0

PiðxÞA
K1
ij ðyÞPjðxaÞWaðyÞfaZ

XN

aZ0

4aðxÞfa;

(26)

where

4aðxÞZ
Xm

iZ0

Xm

jZ0

PiðxÞA
K1
ij ðyÞPjðxaÞWaðyÞ: (27)

It is observed that function uy(x) only depends para-

metrically on the local point of approximation y. Finally, if

the point of approximation y moves together which the

variable x, that is, yZx, we have

uðxÞZuyðxÞZ
XN

aZ0

4aðxÞfa; (28)

4aðxÞZ
Xm

iZ0

Xm

jZ0

PiðxÞA
K1
ij ðxÞPjðxaÞWaðxÞ: (29)

The set of NC1 functions fa(x) described by Eq. (29)

forms a Partition of Unity f4ag
N
aZ0. The properties of these

functions, as well as the influence that the degree of the

polynomials Pi exerts on the quality of approximation, are

discussed below.Lemma. If Pi2Cn and Wa2CsðGÞ, where

iZ0,1,2,.,m, aZ0,1,2,.,N, nR0, sR0, the set Partition

of Unity, Eq. (29), has the property f4ag
N
aZ02Cminðn;sÞðGÞ.

Theorem. If 12P, i.e. PZ{1,P1(x),.,Pm(x)}, then the

functions f4ag
N
aZ0 satisfy the conditions defined by Eqs. (22)

and (23). Additionally, this base is P-reducible for set QN in

an explicit form:

PjðxÞ Z
XN

aZ0

PjðxaÞ4aðxÞ; cx2G; j Z 0; 1; 2;.;m:

(30)

The Lemma defines the regularity of the approximation

functions according to the regularity of the weighting

functions, Wa, as well as the degree of the approximation

polynomial set P. The Theorem ensures that the proposed

approximation is a Partition of Unity and it is able to exactly

represent any polynomial function in the subspace



L.C. Nicolazzi et al. / Engineering Analysis with Boundary Elements 29 (2005) 494–510498
generated by the set P. The proofs of the Lemma and the

Theorem are found in [9].

Although the latter property is very attractive, it is possible

to show that the use of polynomial functions as a basis for P

with a higher order than zero, demands the inversion of the

matrix A, at each integration point, which greatly increases

computational costs. Duarte and Oden [9] proved that the rate

of convergence of the solution does not depend on the order of

the polynomials of the set P. This result leads to the selection

of the simplest polynomial basis, that is

P Z fP0g Z f1g: (31)

With this simplification, the dependence of the variable y

in Eq. (13) disappears and the procedure for generating the

Partition of Unity becomes easier. Moreover, the matrix V of

Eq. (12) is reduced only to the first column with all its

components equal to one. Hence, the matrix A and its inverse

can be written as

AðxÞ Z VT ~WðxÞV Z
XN

kZ0

WkðxÞ; (32)

AK1ðxÞ Z
1PN

kZ0 WkðxÞ
: (33)

Finally, the functions of the Partition of Unity are given by

4aðxÞ Z AK1ðxÞWaðxÞ Z
WaðxÞPN

kZ0 WkðxÞ
: (34)

This Partition of Unity is known as the Shepard’s scheme

[24], and is used in this work.
5. Enrichment of the approximation functions

The aim of adaptive procedures is to improve the quality

of the numerical results by means of adequate enrichment of

the basis of approximation subspace. An efficient alternative

for enriching the Partition of Unity consists of multiplying

these functions by other ones such as polynomials, harmonic

functions or even functions that are part of the solution of

the boundary value problem.

This procedure generates the F
k;p
N family of functions

schematically shown in the following expression:

F
k;p
N Z

4k
0Ls0 4k

1Ls0 / 4k
NLs0

4k
0Ls1 4k

1Ls1 / 4k
NLs0

« « / «

4k
0LsM 4k

1LsM / 4k
NLsM

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

(35)

In this expression, N is the cloud number, index k

specifies the degree of the highest polynomial order of

the base PZ{P0,P1,.,Pm} and p is the dimension of the

highest complete polynomial space spanned by F
k;p
N . For

example, let LST, TZ0,1,2,.,M, be the family generated
for the combination of all the terms of the tensor product in

R
3 of the Legendre polynomials:

LsT Z Liðx1ÞLjðx2ÞLlðx3Þ; 0% i; j; l%p; (36)

where Lm is a polynomial of degree m in R

and T ZpZ iC jC l. For the unidimensional case,

the enrichment LsT, is here given by the set of Legendre

polynomials:

Ls Z fL0;L1;.; Lpg (37)

and the set F
k;p
N is a space formally defined as

F
k;p
N Z ff4k

aðxÞgg f4k
aðxÞLiðxÞg

: 0%a%N; 0% i%p; pRkg: (38)

If the elements of the Partition of Unity and the

enrichment family are linearly independent, so are the

elements of the set F
k;p
N . This property is demonstrated in

Ref. [9].

If the Shepard’s functions are used, the set F
k;p
N leads to

F
kZ0;pZ0
N Z f4ag

N
aZ0 (39)

which, when enriched for the full set PpðR
nÞ of poly-

nomials, is hereafter denoted by

F
p
N Z f4ag

N
aZ0: (40)

It is important to point out that other sets of functions,

different from Legendre polynomials, such as arbitrary

polynomials, generalized harmonic functions, anisotropic

functions as well as singular solutions of the specific problem

to be analyzed, can be used for enrichment purposes.
6. Weighting functions
6.1. The choice of the weighting functions

In this subsection, the weighting function Wa is selected

in order to satisfy some conditions One of them is ease of

analytical integration, since semi-analytical procedures are

used in this work for integrating singular terms. Another

condition is the ability to represent the solution to the

differential equation. The Partition of Unity should at least

be able to describe a constant function. The characteristics

of the weighting functions Wa have a great influence on the

approximation process. Therefore, some conditions should

be satisfied. Firstly, they should allow analytical integration,

since this procedure is used here for dealing with singular

terms. Secondly, they must be able to represent at least the

constant function accurately.

Lancaster and Šalkauskas [24], consider some functions

like the following generalized expressions:

WaðxÞ Z
s

jjx Kxajj
qeKrjjxKxajj

b
(41)



Fig. 2. The adopted partition of unity: linear tent function.
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and

WaðxÞZ
s

jjxKxajj
q

1K
jjxKxajj

ha

� �b

if jjxKxajj!ha

0 if jjxKxajjRha

:

8<
:

(42)

where s and K are real positive constants, q and b are integer

numbers equal to or greater than zero and ha is the radius of

the a-th ball.

Duarte and Oden [9], implemented the following

weighting functions

WaðxÞ Z

ffiffiffiffiffiffiffiffi
4=p

p
1 K jjxKxajj

2

h2
a

n o4

Z k 1 K jjxKxajj
2

h2
a

n o4

if jjx Kxajj!ha

0 if jjx KxajjRha

8>>><
>>>:

(43)

and

WðzaÞ Z

C

hn
a

1 K
3

2
z2

a C
3

4
z3

a

� �
if 0%za %1

Ca

4hn
a

½2 Kza�
3 if 1%za %2

0 if 2%za;

za Z
2

ha

jjx KxajjRn

;

8>>>>>>><
>>>>>>>:

(44)

where n is the dimension of the problem and C is a constant

that depends on n. Babuška and Melenk [29] used the

function of linear finite elements

WðzaÞ Z
jx Kxaj if x2ua

0 if x;ua

:

(
(45)

The singular weighting functions given by the Eqs. (41)

and (42) are not considered in this work because they

increase the degree of singularity of the strong and the

hypersingular kernels.

Although weighting function (43) presents good

regularity properties, it is not selected because of

difficulties in analytical integration of irrational terms. In

Ref. [25], Nicolazzi et al. consider a variation of Eq. (43).

This latter equation, as well as Eq. (41), also presents

difficulties in performing analytical integration of

irrational terms.

An investigation into the influence of the weighting

function properties on the Timoshenko Beam Problem is

shown in [28]. The main conclusions are the following:
†
 the rate of convergence in p-enrichment increases with

the reduction in the order of the weighting function;
†
 the over-covering does not improve the convergence

rate;
†

Fig. 3. The symmetric tent enriched by Legendre’s polinomials up degree 3.
the over-covering increases the cost of the calculation of

the partition of unity;
†
 the condition number increases more slowly for the

weighting functions of lower orders in p-enrichment.

Taking these conclusions into consideration and due to

the ease of integration, the linear tent function (45), shown

in Fig. 2, was adopted. Therefore, the suggested enrichment

scheme parallels the Generalized Finite Element Method.

This scheme was independently proposed by Babuška and

Melenk [29] and by Oden, Duarte and Zienkiewicz [10]. In

the latter work an arbitrary domain mesh is used to define a

cloud as unions of elements connected to a node, i.e. the

mesh composed of linear finite elements is used to define the

Partition of Unity and the cloud contours.

In cases where clouds Na are constructed to keep a fixed

covering at each point x2G, the resulting connectivity is

the same as that in the classic boundary element method.

Moreover, the tent function applied in the Shepard’s scheme

(34) results in a partition of unity, also shown in Fig. 2 and

the classical linear elements of the Boundary Element

Method are reached.

The main difference between the present method and the

conventional BEM is the possibility to adaptively perform

h-enrichment by simple addition of nodes xa and its

associate clouds, as well as to adaptively enhance the

solution with p-enrichment with the construction of the F
p
N

family.

Figs. 3 and 4 show the family F3
N constructed from two

different Partitions of Unity fa, in which the vertexes of the

tent are located in xZ0 and xZ0.8.

In this case, Li is the enrichment polynomial function

with order 0%i%3 and faLi is the product of this function

with the Partition of Unity. It is worth to note that, in this

example, the Legendre enrichment functions were scaled in



Fig. 4. The non-symmetric tent enriched by Legendre’s polinomials up

degree 3.
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order to fit the tent support. However, other procedures may

be used.

It is convenient to point out that the enriched approxi-

mation functions also belong to the set C0
0ðuaÞ as can be

noted in Figs. 3 and 4.
7. Error indicators

Several procedures are available to determine the

sensitivity of the approximation error when a new

degree of freedom is included in a p-adaptive method-

ology. This work follows the procedures stated in Oden

[30–32], Duarte [33] and Jorge [34], where the residue is

projected in the subspace generated by the enrichment

functions.

Different expressions of residue are obtained according

to the selected approach: Classic, Hyper or Symmetric. In

the case of the Classic approach, the residual on the ith

cloud has the following form:

Ri
GD

Z 4jðdÞTj K

ð
G

Gðd; xÞ4kðxÞdGðxÞ
vTk

vn

C

ð
G

vGðd; xÞ

vnðxÞ
4kðxÞdGðxÞTk (46)

The residual for the Hyper approach is:

Ri
GN Z 4jðdÞ

vTj

vn
K

ð
G

vGðd; xÞ

vnðdÞ
4kðxÞdGðxÞ

vTk

vn

C

ð
G

v2Gðd; xÞ

vnðdÞvnðxÞ
4kðxÞdGðxÞTk: (47)

The residual for the Symmetric approach is a combi-

nation of Ri
GD

and Ri
GN

, depending on the boundary

conditions. If the cloud is submitted to a Dirichlet boundary
condition, then Ri
GD

is used. Conversely, if a Neumann

boundary condition is applied, then Ri
GN

is chosen.

Two new functions, j1 and j2, instead of only one were

used, so that the variation in the residual takes into account

the enrichment of both, odd and even functions.

Let the ith cloud be enriched by two functions jm 2F
p
N ,

mZ1,2. Then the residuals given by Eqs. (46) and (47)

change to:

~R
i
GD

Z 4jðdÞTj CjmðdÞam

K

ð
G

Gðd; xÞ 4kðxÞ
vTk

vn
CjmðxÞbm

� �
dGðxÞ

C

ð
G

vGðd; xÞ

vnðxÞ
½4kðxÞTk CjmðxÞam�dGðxÞ (48)

and

~R
i
GN

Z 4jðdÞ
vTj

vn
CjmðdÞbm

K

ð
G

vGðd; xÞ

vnðdÞ
4kðxÞ

vTk

vn
CjmðdÞbm

� �
dGðxÞ

C

ð
G

v2Gðd; xÞ

vnðdÞvnðxÞ
½4kðxÞTkd CjmðdÞam�GðxÞ; (49)

The coefficients am and bm depend on the boundary

condition used for the cloud. The residual is required to

be orthogonal to the subspace generated by fj1;j2g3F
p
N ,

i.e.

h ~R
i
Gc
;jmðdÞiH Z

ð
G

~R
i
Gc

jmðdÞdGðdÞ

Z 0 cjmðdÞ2fj1;j2g; (50)

where mZ1,2. Sub-index cZD or N depending, once

again, on the boundary conditions.

This orthogonalization procedure leads to

A Bi

ðBiÞT Di

" #
x̂

ĉ

 !
Z

f̂

ĝi

 !
(51)

where the matrices A, Bi and Di and the vectors x̂, ĉ and ĝi

have dimensions n!n, n!2, 2!2, n, 2 and 2, respectively,

and n is the number of degrees of freedom of the system

before the inclusion of j1 and j2.

Since an error estimator must be computationally

inexpensive, a simplification is added. We consider that

the new functions j1 and j2 modify the solution only in the

neighborhood of the enriched cloud. Thus

Diĉyĝi K ðBiÞT x; (52)
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where x is the solution of the problem before the

enrichment.

Eq. (52) may now be used as an error indicator. We

define the number:

li Z Di
jkcjck: (53)

If li is greater than a specified value, it indicates that the

ith cloud should be enriched.

A simplified and additional criterion for the error

indicator is given by

li
1 Z Di

11ðc
i
1Þ

2; (54)

and

li
2 Z Di

22ðc
i
1Þ

2: (55)

When these equations are considered with the first

criterion, Eq. (53), they allow us to determine the relative

importance of each polynomial enrichment in the approxi-

mate solution. These error indicators represent a local

measure of the solution variation due to the enrichment of

the local base by the function jm:

l Z jjuDujj2HZL2

Z h ~R
i
Gc
ðj1 Cj2Þ;j1 Cj2iHZL2

; fj1;j2g3F
p
N 3L2:

These error indicators are, in essence, the same as those

presented by Postell and Stephan [35] for Galerkin

boundary elements. In Section 9 the performance of the

proposed error estimator is evaluated.
8. Integration and regularization

The equilibrium equations in the Galerkin method are

obtained by double integration along field and source

coordinates In two-dimensional domains this implies a

generic expression of the type

I Z

ð
Gh

ð
Gx

Fðx;hÞfðxÞjðhÞdGðxÞdGðhÞ; (56)

where x and h are the coordinates along the boundary G,

F(x,h) is the kernel and f(x), j(h) are shape functions in x

and h, respectively. The kernel may be weakly singular,

strongly singular or hypersingular. The integral (56) can be

performed by splitting it in two parts:

I Z

ð
Gh

QðhÞjðhÞdGðhÞ; (57)

QðhÞ Z

ð
Gx

Fðx;hÞfðxÞdGðxÞ: (58)

The inner integral (58) captures all eventual singularities

and produces a regular kernel Q(h) in Eq. (57). This last
expression is integrated using standard Gauss quadrature,

which is the adopted procedure for all regular kernels. If

necessary, several regularization procedures to integrate

(58) are available in the literature (Jorge et al. [36], Kane

[27], Sladek Sladek et al. [37] and [38], Ghosh et al. [39],

Telles [40] and Frangi et al. [41]). For singular and

hypersingular kernels, analytical integration and numerical

integration combined with the method presented by Ghosh

[39] was used. Let us discriminate each case:

Weakly Singular Integrals: When logarithmic kernels are

present (58), a possible integration procedure is the use of

special Gauss points and weights. However, this choice is

quite expensive if a great number of integration points are

needed. Analytical integration is quite simple in the case of

straight boundaries, which is the approach used here.

Strongly Singular Integrals: For the particular case of

straight boundaries the integration of the strong singular

kernels may be simplified. The vector normal to the

boundary and the gradient vector of the fundamental

solution are orthogonal and then,

vGðd; xÞ

vnðxÞ
Z VGðd; xÞ$nðxÞ Z 0; (59)

vGðd; xÞ

vnðdÞ
Z VGðd; xÞ$nðdÞ Z 0: (60)

This simplifies integration of the strongly singular terms

of (2) and (3) and they can be reduced to the following

general form:ð
G

4jðdÞ4kðdÞdGðdÞ: (61)

Difficulties arise when two consecutive boundaries are

connected at one point. In this case, conventional analytical

integration of (58) followed by the standard Gauss rule for

(57) may be used without any transformation or regulariz-

ation of the kernels.

Hypersingular integral: Following Ghosh’s proposition,

the hypersingular term of the integral (3),

ð
Gd

ð
Gx

v2Gðd; xÞ

vnðdÞvnðxÞ
4iðxÞ4kðdÞdGðxÞdGðdÞ (62)

is modified by choosing

Hðd; xÞ ZKGðd; xÞ Z
1

2p
lnjjrjj (63)

satisfying the condition

v2Gðd; xÞ

vnðdÞvnðxÞ
Z

v2Hðd; xÞ

vGðdÞvGðxÞ
: (64)



Fig. 5. The boundary and the integration path.
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Hence, Eq. (62) is rewritten asð
Gd

ð
Gx

v2Gðd; xÞ

vnðdÞvnðxÞ
4iðxÞ4kðdÞdGðxÞdGðdÞ

Z

ð
Gd

4kðdÞ

ð
Gx

v2Hðd; xÞ

vGðdÞvGðxÞ
4iðxÞdGðxÞ

8><
>:

9>=
>;dGðdÞ; (65)

where (v($)/vG) is the tangential derivative of G, Gd is the

integration region the source function and Gx is the

integration region of the field function. Finally, an

integration by parts is performed in order to reduce the

remaining singularity. A brief additional description will aid

an understanding of the method proposed by Ghosh.

Let U be the domain shown in Fig. 5 closed with a

boundary G. The integration of Eq. (65) leads to:

IðdÞ Z

ð
Gx

v2Hðd; xÞ

vGðdÞvGðxÞ
4iðxÞdGðxÞ

Z
vHðd; xÞ

vGðdÞ
4iðxÞ

xf
xi K

ð
Gx

vHðd; xÞ

vGðdÞ

v4iðxÞ

vGðxÞ
dGðxÞ;

������� (66)

where xi and xf are the initial and the final points of the

closed boundary Gx. It is important to note that the kernel

(vH(d,x)/vG(d)) has a singularity of lower order than the

term (v2H(d,x)/vG(d)vG(x)). Substituting the integration

limits, (66) is rewritten as

IðdÞ Z
vHðd; xaÞ

vGðdÞ
4iðxaÞK

vHðd; xpÞ

vGðdÞ
4iðxpÞ

K

ð
Gx

vHðd; xÞ

vGðdÞ

v4iðxÞ

vGðxÞ
dGðxÞ: (67)

Finally, substituting (67) in (65) and performing

successive integrations, the following expression is
obtained:ð
Gd

ð
Gx

v2Gðd; xÞ

vnðdÞvnðxÞ
4iðxÞ4kðdÞdGðxÞdGðdÞ

Z 4iðxaÞ4kðdaÞHðda; xaÞK4iðxaÞ4kðdpÞHðdp; xaÞ

K4iðxaÞ

ð
Gd

v4kðdÞ

vGðdÞ
ðdÞHðd; xaÞdGðdÞ

K4iðxpÞ4kðdaÞHðda; xpÞ

C4iðxpÞ4kðdpÞHðdp; xpÞ (68)

C4iðxpÞ

ð
Gd

v4kðdÞ

vGðdÞ
ðdÞHðd; xpÞdGðdÞK4kðdaÞ

!

ð
Gd

v4iðxÞ

vGðxÞ
Hðda; xÞdGðxÞC4kðdpÞ

!

ð
Gd

v4iðxÞ

vGðxÞ
Hðdp; xÞdGðxÞK

ð
Gd

ð
Gx

v4kðdÞ

vGðdÞ
Hðd; xÞ

!
v4iðdÞ

vGðdÞ
dGðxÞdGðdÞ

where da, xa, dp and xp are the coordinates of the point

where 4k(d)Z4i(x)Z1. It must be noted that, when the

clouds are not centered at the boundary vertexes, Eq. (68)

is reduced to the last term only. Expression (68) contains

only weakly singular kernels, which are much simpler

than those of the original form (62). However, care is

required for some constants of this equation as the radius

rZdKx, represented by (d,x) is null when dahxa,

dphxa, dahxp or dphxp. To remove this singularity

the technique shown in [27] is followed. It is also

important to remark that in the present regularization

procedure no approximation is involved.
9. Numerical results
9.1. Motz problem

In order to test the efficiency of the proposed numerical

approach, a heat conduction problem with a severe

discontinuity of the heat flux is analyzed The Motz problem,

[42,43], consists of a rectangular domain subjected to the

boundary conditions shown in Fig. 6.

The analytic solution of this problem is given by a series

of harmonic functions [43]:

Tðr; qÞ Z
XM
lZ0

blr
lCð1=2Þcos l C

1

2

� �
q; (69)



Fig. 6. The Motz problem.

Fig. 7. Convergence for uniform mesh and uniform p refinement. Mesh with

15 clouds.
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where (r,q) are the polar coordinates, bl, lZ0,1,2,3,.,M are

the Fourier coefficients of the series. One may note that

there is a singularity in the flux at x1Zx2Z0. The heat flux

has a singular term of the type 1=
ffiffi
r

p
when rZ0 and lZ0.

The energy norm for this problem, [42], specifically for

the present data, Eq. (70), is
jj ~TðxÞjj2E Z

ð
GD

�TðxÞ
v ~TðxÞ

vnðxÞ
dG C

ð
GN

~TðxÞ
�vTðxÞ

vnðxÞ
dG

Z 85079:28 (70)
The relative error h in the energy norm ([42]) is

evaluated as
h Z 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jj ~TðxÞjj2E K jjTðxÞjj2E

q
jj ~TðxÞjjE

(71)
where T(x) is the numerical approximation of the tempera-

ture field. Approximate solutions are computed by using the

following strategies:
1.
 Uniform mesh and uniform p refinement;
2.
 Uniform mesh and adaptive p refinement;
3.
 Geometrically refined mesh (factor 0.15 toward the

singular point) and uniform p refinement;
4.
Fig. 8. Convergence for uniform mesh and uniform p refinement. Mesh with

35 clouds.
Geometrically refined mesh and adaptive p refinement;

Numerical tests are performed with two meshes com-

posed of 15 and 35 clouds (3 and 7 clouds on each boundary

segment, respectively. See Fig. 15). The relative error (71),

is plotted as a function of the Number of Approximation

Terms, (NAF). The rate of convergence, [44], is computed

as the angular coefficient of the line joining two consecutive
points on the graph h!NAF:

a Z
logðh1=h2Þ

logðNAF1=NAF2Þ
; (72)

where: hi is the error for NAFi.
9.1.1. Strategy 1. Uniform mesh and uniform p refinement

The results for this case are displayed in Figs. 7 and 8

which show similar tendencies for the three formulations.

For low p-order, the Classic formulation presents better

results. However, as the enrichment proceeds, the Sym-

metric formulation shows a better performance. All three



Fig. 9. Convergence for uniform mesh and adaptive p refinement. Mesh

with 15 clouds.

Table 2

Error h for Strategy 2

Strategy 2

Clouds Classic Hyper Symmetric

NAF h NAF h NAF h

15 56 4.1195 53 6.2952 68 4.1469

35 73 2.4832 62 3.6181 105 2.1785

Table 1

Error h for Strategy 1

Strategy 1

Clouds Classic Hyper Symmetric

NAF h NAF h NAF h

15 90 4.1314 90 6.5583 90 4.0172

35 210 2.4399 210 3.5613 210 1.9578
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approaches present an approximately algebraic convergence

after a pre-asymptotic behavior.
9.1.2. Strategy 2. Uniform mesh and adaptive p refinement

The results for this example are presented in Figs. 9

and 10. The three formulations show a similar conver-

gence performance for both meshes, although errors are

larger for low numbers of clouds, as expected. The

adaptive scheme is remarkably superior to the uniform

one as can be noted in Tables 1 and 2.
9.1.3. Strategy 3. Geometric mesh and uniform p refinement

In this example, clouds of the boundaries attached to

the singular point are distributed in geometric progression
Fig. 10. Convergence for uniform mesh and adaptive p refinement. Mesh

with 35 clouds.
with a factor 0.15 toward this point. The polynomial

enrichment is uniform along all clouds. One may observe

that, in this case, the Symmetric approach shows an

oscillatory pre-asymptotic behavior when few clouds are

used (Fig. 11) and more stable convergence for a refined

mesh (Fig. 12). Additionally, the Classic and Hyper

formulations present a pre-asymptotic phase and later

converge exponentially. (Fig. 12 and Table 3).

9.1.4. Strategy 4. Geometric mesh and

adaptive p refinement

In this example the influence of both, mesh and p

refinements is focused. The convergence curves are

presented in Figs. 13 and 14. The Symmetric approach
Fig. 11. Convergence for geometric mesh and uniform p refinement. Mesh

with 15 clouds.



Fig. 12. Convergence for geometric mesh and uniform p refinement. Mesh

with 35 clouds.

Fig. 13. Convergence for geometric mesh and uniform p refinement. Mesh

with 15 clouds.
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shows exponential behavior only for the 35-cloud mesh.

Classic and Hyper approaches also show asymptotic

convergence for the smallest mesh but a strong oscillation

for the mesh with 35 clouds (Fig. 12). Since this doesn’t

occur for uniform meshes (Figs. 7 and 8) this lack of

convergence seems to be associated with the very small

elements close to the singular point that introduce badly

conditioned matrices. This effect also seems to be less

sensitive for the Symmetric formulation that presents a very

smooth convergence curve (see Tables 3 and 4).
9.1.5. p enrichment

This section is used to analyze the polynomial

distribution obtained with the fourth strategy for the

mesh with 35 clouds (Fig. 15). Double nodes are used at

the corners as well as at the singular point B which is

shared by clouds 7 and 8. Clouds 1–7 and 14–8 are

distributed geometrically toward the singular point B.
Table 3

Convergence rate for Strategy 3

Strategy 3–35 clouds

NAF Classic Hyper Symmetric

h a h a h a

35 5.1820 – 4.1339 – 51.8 –

70 2.8736 0.8507 3.1530 0.3908 8.9581 2.5317

105 1.4211 1.7366 0.8146 3.3381 3.5501 2.2828

140 0.7236 2.3460 0.5119 1.6148 1.7333 2.4922

175 0.3631 3.0904 0.2149 3.8892 0.8696 3.0909

210 0.2946 1.1476 0.1083 3.7569 0.4444 3.6822

Geometric mesh, uniform p. 35 clouds.
The polynomial distribution along the boundary is shown

in Figs. 16, 17 and 18.

The theoretical convergence for the Variational or

Galerkin Boundary Element Method has been presented

by a number of authors. Among them one can mention

Schawatz et al. [45], Postell and Stephan [35], Stephan and

Suri [46] and Yu [47]. All of them prove that the

approximation error for quasi uniform meshes and p

adaptive schemes is algebraic in Sobolev norm and can be

described by expressions like
Fig. 14. Convergence for geometric mesh and adaptive p refinement. Mesh

with 35 clouds.



Table 4

Convergence rate for Strategy 4

Strategy 4–35 clouds

NAF Classic Hyper Symmetric

h a NAF h a NAF h a

35 4.8833 – 35 4.1764 – 35 51.8 –

56 2.7911 1.2849 59 3.1995 0.4888 69 8.9582 2.5853

70 1.5144 2.9127 72 0.8329 10.3948 87 3.6697 3.8501

76 0.3836 13.516 79 0.5128 K8.3314 100 1.7386 5.3643

78 0.6105 K13.427 84 0.5393 0.0661 106 0.8744 11.795

– – – 86 0.5370 0.0639 108 0.3608 47.351

Geometric mesh, uniform p. 35 clouds.
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jjw KwpjjHg %CpKðsKgÞjjwjjHs ; (73)

where
k$kHg stands for the Sobolev norm Hg;
w2Hs(G) is the exact solution;
wp is the approximate solution and belongs to the family

F
p
N ;
pZ0,1,2,3,.;
C is a constant independent of p and dependent on the

boundary partition G and on s;
Fig. 15. Distribution of 35 clouds over the boundary.
g is related to the order of the integral operator;

Since the Sobolev and Energy norms are equivalent,

[48], one may conclude that the results obtained for the

Symmetric formulation for the first two schemes are in

agreement with the theoretical predictions (Eq. (73)). The

same kind of asymptotic convergence was found for the

Classic and Hyper formulations. In addition, when geo-

metric meshes are used, the convergence curve follows the a

priori expression for the hp adaptive approaches (Postell,

[35] and Babuška, [49]):

jjejjHt %C
eKb
ffiffiffiffiffiffiffi
NAF

p

; (74)

where
k$kH is the Sobolev norm Ht;
eZFKFp is the error;
NAF is the number of approximation functions;
Fig. 16. Polynomial degree distribution along segment A–C. classic

formulation.
C* and b are positive constants which depend on the

cloud distribution but not on the NAF.

In [49] Babuška identifies the following behavior for the

hp-FEM around a singular point: ‘The true optimal meshes

are geometrically graded toward the singular point with

element degrees which are described by a nearly linearly

increasing function starting in the second element away

from the singularity. Further, the degree of the first element

next to the singular point is greater than or equal to the

degree of the second element’. The results for the Motz

problem using the Strategy 4, as far as the rate of

convergence and polynomial degrees distribution are
concerned, Table 4, seem to be in agreement with the

above statement. Low values of p are needed around

the singular point which is conveniently characterized by

the geometric mesh refinement around it.



Fig. 19. L-shaped domain problem and the boundary conditions.

Fig. 17. Polynomial degree distribution along segment A–C. hyper

formulation.
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9.2. L-Shaped domain problem

This problem consists of the analysis of heat distribution

in a L-shaped domain. The geometry, coordinate system and

boundary conditions are shown in Fig. 19. Since this

problem does not have a closed form solution, a finite

element approximation is used for comparison. In this case,

quadratic finite elements are used with a total of 1872

degrees of freedom. The mesh is shown in Fig. 20 having
Fig. 18. Polynomial degree distribution along segment A–C. symmetric

formulation.
a strong refinement (but not geometric) near the singular

point. Twenty clouds are uniformly distributed along edges
�AB, �BC , �CD, and �DE of Fig. 19. Edges �EO and �OA are

covered by 26 clouds where 20 of them are equally

distributed. The remaining 6 are geometrically placed

within a neighborhood of 0.25 m around the singular

point. The value of the geometric progression ratio is

0.15. Hence, the model has initially 132 approximation
Fig. 20. Finite element model.



Fig. 22. GBEM-FEM solutions. hyper formulation.

Fig. 23. GBEM-FEM solutions. symmetric formulation.
Fig. 21. GBEM-FEM solutions. classic formulation.
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functions, reaching 144 after p-enrichment for the Classic

approach, 147 for the Hyper, and 167 for the Symmetric

approach.

Figs. 21–23 illustrate a visual comparison of the three

BEM formulations with the finite element solution. The

results show the heat flux along the edge �EO (Fig. 19).

An agreement between the FEM and GBEM heat flux

profiles is observed even very close (0.002 m) to the

singular point. For smaller distances, the chosen

finite element mesh fails to represent the singularity while
the GBEM, with an appropriate refinement, behaves

quite well.
10. Conclusions

This paper presents a procedure that improves the

advantages of the BEM for modeling different classes of

physical phenomena Starting from the geometrical data

given by B-Splines one may spread a set of nodes on the

boundaries of the domain and automatically generate clouds

to form an open covering of each of the boundaries. Next, it

is shown how to use the Moving Least Square Method

together with the clouds definition in order to obtain a

partition of unity. The fundamental step of the procedure is

the possibility of easily defining p-enrichment of test and

trial functions locally and hierarchically. In addition, the

partition of unity framework allows the enrichment with

non-polynomial functions which can be very advantageous

in many classes of problems, like those with singularities,

discontinuities, boundary layers, etc.

An error indicator is also proposed and used to control

the selective enrichment of the clouds. Numerical results

show a convergence behavior in agreement with adaptive

procedures. Uniform as well as geometric meshes are used

in the numerical experiments. Exponential convergence is

attained.

Three integral formulations are used in the numerical

experiments: Classic, Hyper and Symmetric. Numerical

experiments indicate that the Symmetric version is more

stable and reliable for p-adaptive procedures.
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