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SUMMARY

The mechanical properties of soft biological tissues vary depending on how the internal structure is orga-
nized. Classical examples of tissues are ligaments, tendons, skin, arteries, and annulus fibrous. The main
element of such tissues is the fibers which are responsible for the tissue resistance and the main mechanical
characteristic is their viscoelastic anisotropic behavior. The objective of this paper is to extend an existing
model for isotropic viscoelastic materials in order to include anisotropy provided by fiber reinforcement.
The incorporation of the fiber allows the mechanical behavior of these tissues to be simulated. The model
is based on a variational framework in which its mechanical behavior is described by a free energy incre-
mental potential whose local minimization provides the constraints for the internal variable updates for each
load increment. The main advantage of this variational approach is the ability to represent different mate-
rial models depending on the choice of suitable potential functions. Finally, the model is implemented in a
finite-element code in order to perform numerical tests to show the ability of the proposed model to repre-
sent fiber-reinforced materials. The material parameters used in the tests were obtained through parameter
identification using experimental data available in the literature. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Soft biological tissues, such as skin, ligaments and tendons, are very important for the mechanical
functioning of the body. They are responsible, respectively, for the protection of the body, and the
transfer of loads between bones and between muscles and bones [1].

Soft biological tissues are formed mainly of elastin and collagen. Elastin, like rubber, is comprised
of long flexible molecules that form three-dimensional networks by cross-linking and is responsible
for the elasticity of the tissues. Collagen is the most important structural element of soft and hard
tissues in animals. The particular arrangement of the collagen proteins - three left-handed helices
twisted together into a right-handed triple helix - provides this structure with a high stretch resis-
tance to traction [2]. These molecules can be aggregated to form different structures depending on
the tissue. Firstly, the collagen molecules can wrap around themselves to form a collagen fibril
which varies according to the animal species and tissue. Subsequently, bundles of collagen fibrils
can be organized into collagen fibers and the fibers into tissues, where the packaging of collagen
fibers has many different modes of organization that vary depending on the tissue.

Connective tissues, such as ligaments and tendons, have a pronounced anisotropic mechanical
behavior due to their internal structure, consisting of regular parallel collagen fibers, which it is
the simplest tissue structure. The fiber structure of tendons has a largely parallel organization, and
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under the relaxed condition it can appear wavy but it becomes straight under tension. Ligaments
have a less regular structure than tendons, with the collagen fibers sometimes being curved. They
may be stressed differently for different functions of the ligament. The three-dimensional networks
of collagen in the skin are more complex, where the predominant fiber direction is parallel to the
surface. Due to its complex internal structure the skin allows large strains without stretching of the
individual fibers [2].

The mechanical properties of biological tissues vary depending on how the fibers, cells and
ground substance are organized. The main features of soft tissues are [2]: nonlinear stress-
strain relationship, hysteresis in cyclic loading and unloading, stress relaxation at constant strain,
preconditioning in repeated cycles, and also high stretching .15%/ without damage [1].

Within the set of interrelated characteristics of soft tissues, the anisotropy induced by fiber
reinforcement, the Mullins effect, related to damage and viscoelastic behavior, should also be
mentioned.

In relation to the incorporation of a finite viscoelastic representation in soft tissues an isotropic
model based on the invariants of the Cauchy and its time derivative has previously been presented
[3]. In [4] a viscoelastic model is proposed in which the anisotropy of the fibers is included by means
of a structural tensor related to the fiber directions.

Some references using classical models with anisotropy concepts to simulate these materials may
be cited. In [5] a nonlinear transversally isotropic law incorporating anisotropy and viscoelastic-
ity is proposed in order to simulate soft connective tissues at finite strain. The constitutive model
was used later in [6] where the isotropic and anisotropic contributions were decoupled to model
a human anterior cruciate ligament (ACL) under multiaxial loading. The ACL potential was split
into the sum of the strain energy functions representing the response of the ground substance and
the anisotropic behavior introduced by the collagen fibers. In [7] is proposed a thermodynamically
consistent model to describe softening phenomena in anisotropic materials. The model was able
to reproduce the general characteristics of preconditioning including hysteresis, stabilization of the
response and residual deformations.

In [8] an experimental study on the preconditioned response of porcine dermal tissue to stretch
and load-controlled cyclic deformation is presented. Samples were preconditioned at each load-
ing rate until the resulting hysteresis loop did not change. Full recovery of the samples to their
preloaded condition was then allowed prior to starting a new test. The results show clearly a non-
linear viscoelasticity contribution with no residual deformation reported. In [9] the response of pig
skin to different strain rates was investigated. The author states that the mechanical response of
the pig skin shows a great strain rate sensitivity indicating the existence of viscoelastic effects. On
the other hand [10] presents a uniaxial experimental study of mouse skin behavior for monotonic
and cyclic loading where mouse samples were submitted to only one strain rate in order to identify
aspects related to the Mullins effect and internal damage. The author reported pronounced internal
damage at a high level of cyclic stretching and significant viscoelastic effects due to the fact that the
unloading and reloading path do not coincide in the cycle test.

A lack of information on the relationship between the mechanical properties of the fibers and the
isotropic matrix was observed in the literature. In [11] the author reports experimental results which
indicate the existence of three regions on a typical stress-strain curve for skin. Initially, there is a high
degree of deformation at low stress, followed by an intermediate region, and finally, a rapid increase
in stress for a small increase in strain until failure. The author attributes the mechanical response at
low level of stress to the soft part of the dermis, where there is a random network of collagen fibers.
Thus, as the fibers straighten they do not carry load until some of them become completely straight
(start of the intermediate region). As the deformation progresses, additional fibers take part in the
load-carrying process until all fibers are involved. At this point the behavior is controlled by the stiff
collagen fibers. Moreover, the author states that the mechanical behavior in the first region is elastic
and almost linear, where it can be considered to have a Young’s modulus with a value around 100
times smaller than that of a soft rubber.

A general framework for viscoelastic materials proposed in [12] shows features suitable to repre-
sent the mechanical behavior of soft biological tissues. This framework is based on the variational
mathematical background presented in [13] and [14], which was also used to model porous plasticity
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in [15] and non-cohesive granular media in [16] among many other inelastic phenomena. The con-
stitutive formulation of [12] for non-linear finite viscoelastic materials is distinct from [13] in terms
of the possibility to accommodate a wide set of models depending on the choice of potentials,
allowing its use for many viscoelastic materials. In [17–19] the variational approach was applied
to characterize and simulate soft tissue. In [20], a viscoplastic contribution has incorporated into
the non-linear viscoelastic model [12]. This constitutive model is able to represent important inelas-
tic behaviors present in soft tissues: non-linear stress-strain relationship, irreversible, dissipative
and rate-dependent behavior. However, it cannot reproduce the anisotropy found in the connective
tissues or internal damage.

Since the constitutive behavior of skin is predominantly represented by the collagen fibers,
the fiber contribution should take into account the viscous effects noted in [8–10], besides the
clear anisotropy. Thus, the objective of this work is to extend the isotropic viscoelastic variational
framework presented in [12] to include fiber-reinforced viscoelastic behaviors in order to provide
viscoelastic anisotropy. The new framework allows the simulation of the anisotropy of biological
tissue with viscoelasticity without considering internal damage.

In Section 2 the mathematical background of the variational framework is presented. Section 3
applies this approach to the isotropic and fiber-reinforced viscoelastic models. Finally, Section 4
shows examples to evaluate the performance of the proposed model while Section 5 presents the
conclusions.

2. VARIATIONAL CONSTITUTIVE MODEL

Hyperelastic models are based on the existence of a free energy function W which is dependent
only on the total strain and whose derivative provides the stress state of that material point. The first
Piola-Kirchhoff stress tensor P can be defined as

PD
@W.F/
@F

D 2F
@W.C/
@C

(1)

where F is the gradient of deformation and CD FTF the Cauchy-Green tensor.
Considering that the compatibility and constitutive equations are satisfied, and K is the set of

admissible configurations, the equilibrium problem is related to the minimization of potential H.x/,
as follows:

min
x2K

H.x/ (2)

H.x/D
Z
�0

W.C.x//d�0 �
�Z
�0

b0 � xd�0C
Z
�0

f0 � xd�0

�
(3)

The constitutive expression given in Equation (1) does not apply to dissipative materials since the
stress state is dependent not only on the total strain but also on the strain history. Despite this
difficulty, an approach is proposed in [13] in which the constitutive problem can be stated analo-
gously to Equation (1) in an incremental way. In this approach a pseudo-potential energy, also called
the incremental potential, is defined at each load step, providing the first Piola-Kichhoff stress as
follows:

PnC1 D
@‰.FnC1I �n/

@FnC1
D 2FnC1

@‰.CnC1I �n/
@CnC1

(4)

In this expression, � D ¹F, Fi , Qº is the set of external and internal state variables. The elastic and
inelastic gradients of deformation Fe and Fi are obtained from the multiplicative decomposition of
F. The symbol Q includes all remaining internal variables related to the dissipative phenomena. In
[13] it is shown that the incremental potential may have the expression:

‰.FnC1I �n/D min
Fi
nC1

,QnC1

°
W.�nC1/�W.�n/C�t 

�
VFi , VQI �n

�±
(5)
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W.�/D '.F/C 'e
�

FFi
�1
�
C 'i .Fi , Q/ (6)

The strain energy allows an additive decomposition into contributions ', 'e and 'i , depending on
the total value of F, on the elastic part Fe and on the inelastic part Fi and internal variables Q respec-
tively.  is the (pseudo) potential that provides the dependence of the stress on the rate (incremental

approximation of rate) variables VFi and VQ.
In Equation (5), the minimization problem identifies the optimal values of FinC1 and QnC1, which

define the internal variables associated with the new state FnC1. Once this minimization problem
is solved, stresses may be computed by Equation (4) as in hyperelastic models. Different mate-
rial models may be constructed in this general framework depending on the particular choices and
arrangements of potentials ', 'e , 'i and  .

3. FIBER-REINFORCED VISCOELASTIC MODEL

The anisotropic viscoelastic model here proposed is based on an additive decomposition of the
incremental potential into an isotropic and a fiber-reinforcement contribution:

‰ D‰isoC‰f (7)

The potential ‰iso corresponds to the formulation proposed in [12] for isotropic viscoelastic mate-
rials, while ‰f is a potential that incorporates the fiber behavior. Figure 1 shows a rheological
representation of the addition (7) in which both the isotropic and the fiber contributions are con-
nected in parallel, reacting independently of each other for the same total strain. So, is important to
remark at this point the way in which the fiber reinforcement is treated in this proposed model. The
additive decomposition in Equation (7) clearly states that the incremental potential of the isotropic
matrix and that of the fibers are uncoupled. Both of them depend on the given strain increment
over �t and the constitutive response of the composite comes only from the additive constitutive
response of each component. Again, this is clearly illustrated in Figure 1, where each branch of the
model represents an additive contribution on the total potential in a continuum macromechanical
approach. Moreover, this model considers that fibers are continuously distributed in the isotropic
ground substance (matrix) [21] and therefore, no distinction is made on the size or length of them.

3.1. Isotropic incremental potential

As mentioned above, the incremental potential ‰iso is exactly that presented in [12]. Nevertheless,
we use this section to make a brief description of this model in order to keep the text minimally
self-contained. We begin by assuming a classical multiplicative decomposition of the gradient of
deformation into isochoric and volumetric parts FD J OF with J D det.F/. The isochoric part allows
also for a multiplicative separation into elastic and viscous contributions: OFi D OFeFv . With these

Figure 1. Rheological model.
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hypotheses, the free energy‡ W is defined as

W.C/D U.J /C '
�
OC
�
C 'e

�
OCe
�

(8)

where

OCD OF
T OF OCe D OFe

T OFe (9)

The isochoric potential ' is an isotropic function of the eigenvalues ci of C. The (elastic) volumetric
contribution originates from the potential U which is dependent on J :

U.J /D
k

2
ŒlnJ �2 (10)

The potentials ','e and  are assumed to be isochoric functions of the Cauchy tensors OC, OCe and
of the viscous stretching Dv by means of their respective eigenvalues ci , cei and d vi :

'
�
OC
�
D '.c1, c2, c3/, OCD

3X
jD1

cj ej ˝ ej D
3X
jD1

cjEj (11)

'e
�
OCe
�
D '

�
ce1 , ce2 , ce3

�
, OCe D

3X
jD1

cej eej ˝ eej D
3X
jD1

cejEej (12)

 .Dv/D  
�
d v1 , d v2 , d v3

�
, Dv D

3X
jD1

d vj mv
j ˝mv

j D

3X
jD1

d vj Mv
j (13)

where ej , eej and mv
j are the eigenvectors and Ej , Eej and Mv

j are the eigenprojections of the
corresponding tensors. The viscous stretching Dv is defined by

Dv D Sym.Lv/D Lv D PFvFv
�1

(14)

where it is defined that Lv is symmetric. The viscous flow is assumed to be isochoric by means of
the following constrains on the spectral components of Dv

d vj 2KQ D
®
pj 2R) p1C p2C p3 D 0

¯
Mv
j 2KM D

®
Nj 2 Sym) Nj �Nj D 1, Ni �Nj D 0, i ¤ j (15)

From these definitions, it is shown in [12] that at each time increment �t , the isotropic incremental
potential in Equation (5), takes the form

‰iso.FnC1I �n/D�'
�
OCnC1

�
C�U.JnC1/C min

Mv
j

,�qv
j

°
�'e

�
OCenC1

�
C�t 

�
DvnC1

�±
(16)

subject to

d vj D
�qvj

�t
, �qvj 2KQ D

®
pj 2R) p1C p2C p3 D 0

¯
(17)

Mv
j 2KM D

®
Nj 2 Sym) Nj �Nj D 1, Ni �Nj D 0, i ¤ j (18)

In expression (16) we have

�'
�
OCnC1

�
D '

�
OCnC1

�
� '

�
OCn
�

�'e
�
OCenC1

�
D 'e

�
OCenC1

�
� 'e

�
OCen
�

(19)

�U.JnC1/D U.JnC1/�U.Jn/

‡ For simplicity of notation we omit the subscript iso from the potentials associated with the isotropic contributions.
However, we maintain the subscript f for the potentials associated with the fiber counterpart.
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with

OCenC1 D OF
eT

nC1
OFenC1 D OC

pr
�
expŒ�tDvnC1�

��2
OCpr D Fv

�T

n
OCnC1Fv

�1

n �tDvnC1 D
X3

jD1
�qvjMj (20)

FvnC1Fv
�1

n D exp
�
�tDvnC1

	
OFenC1 D OFnC1 OF

v�1

nC1

The optimality condition of (16) with respect to Mv
j results in OCenC1, OCpr and Dv sharing the same

eigenvectors Eej D Eprj DMv
j respectively. Finally, the minimization with respect to�qvj results in

the following set of nonlinear equations [12]:

@'e

@"ej
�
@ 

@d vj
C �D 0 j D 1, 2, 3

�qv1 C�q
v
2 C�q

v
3 D 0

(21)

where � is the Lagrangian multiplier associated with the constraint (17) and "ej D
1
2

ln
�
cej

�
. The

four nonlinear equations (21) can be solved by the Newton method, a technique that also provides the
analytical tangent modulus to be used in the global equilibrium problem. Once the minimizers �qvj
are obtained, the first Piola-Kirchhoff stress tensor is calculated by the classic “hyperelastic-like”
expression

PnC1 D 2FnC1
@‰.CnC1I En/

@CnC1
D FnC1

"
J
�2=3
nC1 DEV

 
2
@'e

@ OCnC1

!
C

@U

@JnC1
JnC1C�1nC1

#
(22)

with

@'e

@ OCnC1
D Fv

�1

n

 
3P
jD1

@'e

@"ej

1

2c
pr
j

Mv
j

!
Fv
�T

n . (23)

c
pr
j being the eigenvalues of OCpr . Detailed information regarding these operations is found in [12].

3.2. Fiber incremental potential

We will now focus on the new terms originating from the addition of fibers. Consider an arrange-
ment (family) of fibers all oriented along a direction af defined on the reference configura-
tion. Since they introduce an anisotropic behavior related to their directions, the corresponding
incremental potential is not only dependent on the Cauchy tensor C , but also on the structural ten-
sor Af D af ˝ af , where af is the unit vector defining the fiber direction. This dependence in the
present case is related to the invariant If [4]:

If D OC W Af D af � OC � af D �
2
f (24)

which has the particular physical interpretation of the quadratic stretch in the direction of the fiber.
Other invariants related to the cross relationships between different fiber directions may also be
set as strain measurements. However, these invariants are frequently avoided in practice due to
the difficulties associated with the material parameter identification for such contribution terms. The
total elongation �f may be decomposed into elastic and viscous contributions: �f D �e

f
�v
f

. The
logarithmic strains related to the elongations and viscous stretching are defined in the usual manner:

"f D ln�f , "ef D ln�ef "vf D ln�vf

d vf D
P�vf =�

v
f (25)
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The incremental evolution of the viscous stretch is obtained using the exponential mapping proposed
in [22] that allows us to write

�vfnC1 D exp
�
�t d vf

�
�vfn , �"vf D�t d

v
f D ln

 
�v
fnC1

�v
fn

!
D ln

�
��vf

�

"efnC1 D "fnC1 � "
v
fnC1

D "fnC1 �
�
"vfn C�"

v
f

�
D "

pr

f
��"vf

(26)

The analogy between expressions (20) and (26) thus becomes clear, and the latter can be consid-
ered as the one-dimensional counterpart of the former. With these definitions and following the
arguments detailed in [12] the fiber incremental potential is defined as

‰f D�'f .�fnC1/Cmin
�"v
f

°
'ef

�
"ef

�
�"vf

��
C�t f

�
�"v
f

�t

�±
(27)

analogously to (16). Physically, the fibers only contribute to the traction, i.e., to positive stretches.
Therefore, potentials 'f , 'e

f
and  f have some particularities, which leads to some care being

required in approaching the minimization problem. This will be discussed in detail in Section 3.4.

3.3. Material models

Different materials may be represented, however, a suitable choice of potential function is ', 'e , U
and  in (16) and 'f , 'e

f
and  f in (27).

3.3.1. Isotropic material models. In the isotropic incremental potential (16), the basic expressions
of important hyperelastic models, like the Neo-Hooken, Mooney-Rivlin, Ogden and Hencky models,
can be used for the potential functions ', 'e and  . The Hencky expressions are of the type

' D �

3X
jD1

�
"j
�2

, 'e D �e
3X
jD1

�
"ej
�2

,  D 	v
3X
jD1

�
d vj
�2

while the Ogden expressions are written as

' D

3X
jD1

NX
pD1

�p

˛p

��
exp."j /

	˛p
� 1

�
, 'e D

3X
jD1

NX
pD1

�ep

˛p

��
exp

�
"ej
�	˛p
� 1

�
, (28)

 D

3X
jD1

NX
pD1

	vp

˛p

��
exp

�
d vj
�	˛p
� 1

�
. (29)

Symbols �, �e , 	v , �p , �ep , �vp , ˛p are material parameters to be identified. More details on this
issue are found in [12].

3.3.2. Fiber material models. The accumulated energy due to the presence of fibers has the main
characteristic of being null for compressive strain in the fiber direction. Different expressions of
hyperelastic fiber-materials are found in the literature, and in this paper we use that proposed in [4]:

'ef D

²
k1
2k2
¹expŒk2.If � 1/2�� 1º if �f > 0

0 if �f 6 0
(30)

where If D �2f . Similar behavior is set for the dissipative potential  f , attributing a zero value to
a compressive viscous stretching:

 f

�
d vf

�
D

´
 f

�
d v
f

�
if d v

f
> 0

0 if d v
f
< 0

(31)

where  f is any of the viscous models previously used in the isotropic contribution.
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3.4. Minimization operations

Since the isotropic minimization problem (16) was presented and studied extensively in [12], we
focus here on the discussion of the minimization expression (27) that corresponds to the dissipative
energy balance of the Maxwell branch of the fiber contribution shown in Figure 1. Graphically, this
problem may be analyzed for two different cases, depending on the signal of "pr

f
. Consider as an

example the material models and parameters shown in Table I and take "pr
f
D 0.05. For this case

the graph of the potentials 'e and  and their sum is shown in Figure 2. Note that due to the strict
convexity of 'e and  in this region, there exist only one minimum for �"v

f
. On the other hand, if

"
pr

f
D �0.05, the curves take the form shown in Figure 3. In this case, we have multiple solutions

Table I. Material models and parameters for the Maxwell
branch of Figure 1.

Potential Fiber

Model Parameters

'e Holzapfel k1 D 5 MPa e k2 D 50 MPa
 Hencky 	v D 100 MPa.s�1

−0.04 −0.02 0 0.02 0.04 0.06
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Δεv

ε  = 0.05

φ

ψ

Ψ

Figure 2. Fiber minimization problem for "pr
f
> 0.

−0.08 −0.06 −0.04 −0.02 0 0.02
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Δεv

ε  = −0.05

φ

ψ

Ψ

Figure 3. Fiber minimization problem for "pr
f
< 0.
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since the arguments �"v
f

that solve the minimization belong to the set
h
"
pr

f
, 0
i
. The choice of dif-

ferent values of �"v
f

within the set in these cases leads to different internal variable evolutions and
thus to different fiber representations.

In the present case the following strategy is chosen: if "pr
f
< 0 and "nC1 6 0, which means that

the fiber reaches a shorter configuration than the original one on compression, then �"v
f

is set to

zero. Conversely, if "pr
f
< 0 and "nC1 > 0 (traction configuration) then �"v

f
D "

pr

f
.

These assumptions verify that the rheological mechanical behavior is consistent with the obser-
vations: the viscous strain "v

f
cannot reach values greater than the total strain "f and the stress

contribution provided by the fibers should be null at any instant for a compressive configuration.
Figures 4 and 5 show the curves of �e

f
, �v

f
and �pr

f
versus time for two different cycles of total

stretch �f . It is possible to see that �e
f

, responsible for the stress contribution, is different from zero
for positive total stretches.

4. NUMERICAL EXAMPLES

This section presents a set of numerical examples with the aim of showing the ability of the pro-
posed model to simulate the mechanical behavior of fiber reinforced viscoelastic materials. The
formulation introduced in this work was implemented in GNU Octave [23] and in the academic
finite element code METAFOR [24] - developed by LTAS, Belgium.
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Figure 4. Stretch curves for the first tensile loading.
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Figure 5. Stretch curves for the first compression loading.
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4.1. Parameter identification

Few experimental studies on the mechanical behavior of fiber-reinforced biological tissues are
reported in the literature and, frequently, those published have no enough information to charac-
terize the material. Despite this difficulty, a parameter identification based on experimental data is
presented in this paper.

The identification was performed using the experimental data presented in [10], where spec-
imens of mouse skin were investigated under cyclic loading at a strain rate of 0.01 s�1. Since
no information regarding the orientation of the collagen fibers and transversal strain was pro-
vided, the simulations were carried out orientating fibers in the loading direction. The isotropic
contribution in the mechanical behavior of skin is known to be much smaller than the fiber
contribution. In [11] the author states that the mechanical behavior of human skin may be mod-
eled by an elastic and almost linear model with a Young’s modulus value around 100 times
smaller than that of a soft rubber. In this study, the isotropic contribution is modeled using the
Hencky model with a small constant value � D 2.5 kPa. With this assumption at hand, the
identification of the fiber parameters was performed. A merit function based on the square dif-
ference between the experimental and numerical data was set and the minimizer point is sought
within a feasible box. Table II shows the values obtained through the identification procedure.
Figure 6 presents the comparison between the experimental data and numerical curves obtained
with the proposed model. From the experimental data in Figure 6 a viscous behavior and a slight
loss of load carrying capability of the material can be noted, probability due to internal damage.
Besides this damage phenomenon, which is not considered here, the model is able to reproduce the
experimental data quite satisfactorily, even for different loading and unloading paths.

4.2. Uniaxial cases

Uniaxial stretching tests are generally the first tests used to visualize the mechanical behavior of
proposed constitutive models. Two tests are performed here with controlled stretching cycles as

Table II. Material parameters of the experimental data
fitting for the fiber contribution.

Potential Fiber

Model Parameters

' Holzapfel k1 D 0.096 MPa e k2 D 8.856 MPa
'e Holzapfel k1 D 0.409 MPa e k2 D 20.355 MPa
 Hencky 	v D 23.526 MPa.s�1
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Figure 6. Experimental data fitting for mouse skin.
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shown in Figures 4 and 5. The material model is set with the potentials and parameters (Table II)
identified in the previous section. The stress/stretch curves obtained are presented in Figures 7 and 8.
Both figures show the stiffness of the material for positive strains due to the presence of the fibers.
Moreover, the hysteresis shown in the curves is entirely due to the viscous response of the fibers,
since the viscous contribution of the isotropic potential is set to zero in these cases.

4.3. Three-dimensional cases

Two cases of solids under finite strain are shown here to illustrate the anisotropic behavior of the pro-
posed model and to emphasize the geometrical nonlinearities. In the first example a membrane-like
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Figure 7. Stress response for the first tensile loading.
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Figure 8. Stress response for the first compressive loading.
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Figure 9. Stress response along the Y and Z directions of the membrane. Cyclic pressure loading.

3D body clamped at its edges is subject to a cyclic pressure loading from below. Figure 9 shows the
cyclic pressure applied to the membrane and the stress response along the Y and Z directions.

The material parameters set in Table II are used here, representing a family of fibers oriented along
theZ direction. A mesh containing 2400 hexahedrical eight-node 3D elements are used to discritize
a symmetric quadrant of the membrane. The sequence of deformed configurations at six different
time instants is presented in Figure 10, where the anisotropic behavior introduced by the fibers is
clearly shown. These configurations correspond to the points highlighted on the curve pressure vs.
time presented in Figure 9. The stretching along the Z direction is somewhat contained, while the
typical membrane instability rapidly appears for stretches along the Y direction. The problem used
an average of 2.87 Newton iterations at each load substep consuming 2.01 seconds each Newton
iteration (2.66 GHz microprocessor) with a residual tolerance of 1E � 8.

A second example shows the anisotropic behavior of a fiber-reinforced composite tube submitted
to axial stretching. In this case, the fibers are oriented along a direction of 30ı with respect to axial
direction. The same material parameters used in the last example are applied in this case. The tube
was discretized with 960 hexahedrical eight-node 3D elements. The sequence of deformed config-
urations is shown in Figure 11, where the typical rotation of the reinforced tube can be observed
as long as the axial stretching increases, in an attempt to align the fibers in the axial direction. The
problem used an average of 2.5 Newton iterations at each load substep consuming 0.79 seconds
each Newton iteration (2.66 GHz microprocessor) with a residual tolerance of 1E � 8.

5. CONCLUSIONS

Despite the difficulties involved in modeling anisotropic tissues, the main objective of this work
was achieved. A possible extension of the variational framework for isotropic viscoelastic mod-
els to the case of fiber-reinforced materials was developed. The variational framework allows the
obtainment of the internal variable updates through the minimization of the respective incremental
potentials of the fibers and the isotropic matrix contributions. This minimization is achieved by sat-
isfying the optimality conditions using the Newton iterations. The technical details of the fibers are
discussed. Preliminary results show the capability of the proposed anisotropic model to represent
fiber-reinforced materials, including rate-dependence of both isotropic and fiber contributions.

A material identification was carried out in order to relate the proposed formulation to a spe-
cific material. In particular, parameter identification was performed to characterize an anisotropic
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Figure 10. Sequence of configurations of the membrane.

biological tissue. The numerical examples aimed to verify the ability of the proposed approach to
follow expected qualitative behaviors. The objective of further studies will be to characterize the
mechanical behavior of ligaments and tendons where the anisotropy properties are quite evident.

APPENDIX A: MATERIAL MODELS

A.1. Hencky model

Hencky model is commonly used to model the behavior of vulcanized rubber. The model has a strain
energy identical to infinitesimal elasticity.

' D

3X
jD1

�
�

j
�2

, (A.1)

'e D

3X
jD1

�e
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ej
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Figure 11. Sequence of configurations of the fiber-reinforced tube.
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A.2. Ogden model

The Ogden model is usually chosen due to its flexibility in representing polymeric materials. For
the isotropic contribution the following expressions are used
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A.3. Holzapfel model

In [4] a hyperelastic model is presented in which the collagen fibers are governed by a potential of
type
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. Note again that these expressions are null, respectively, for �f 6 1 and �e
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6 1.
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