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Abstract A generalized finite element method based on a
partition of unity (POU) with smooth approximation func-
tions is investigated in this paper for modeling laminated
plates under Kirchhoff hypothesis. The shape functions are
built from the product of a Shepard POU and enrichment
functions. The Shepard functions have a smoothness degree
directly related to the weight functions adopted for their eval-
uation. The weight functions at a point are built as products
of C∞ edge functions of the distance of such a point to each
of the cloud boundaries. Different edge functions are inves-
tigated to generate Ck functions. The POU together with
polynomial global enrichment functions build the approxi-
mation subspace. The formulation implemented in this paper
is aimed at the general case of laminated plates composed of
anisotropic layers. A detailed convergence analysis is pre-
sented and the integrability of these functions is also
discussed.
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1 Introduction

In the last decade a number of meshless procedures have
been proposed in the FEM community. These include, among
several others, the smoothed particle hydrodynamics method
[27], the diffuse element method [37], wavelet Galerkin
method [1], the element free Galerkin method (EFGM) [12],
reproducing Kernel particle method (RKPM) [32], the mesh-
less local Petrov-Galerkin method [2], the natural element
method [46], partition of unity method [3], and the hp-clouds
methods e.g. [20,21]. The latter has the further appeal of nat-
urally introducing a procedure for performing p-adaptivity,
in a very flexible way, avoiding the construction of functions
by sophisticated hierarchical techniques. The advantages of
these procedures are, however, balanced by increased com-
putational cost since a mesh is still needed for integration
purposes and, at each integration point, the partition of unity
(POU) must be independently computed since the covering
of each point is arbitrary.

The hp-clouds approximations have been proved to be
more efficient than others like the EFGM [21,22], and for
this reason they were used in [26,36]. But all these meshless
methods present some disadvantages regarding the imposi-
tion of boundary conditions and high computational costs.
In order to ameliorate the cost of numerical integration and
the implementation difficulties of mesh free methods, Oden
et al. [38], proposed that, instead of using circles or rectan-
gles for defining the clouds around each node, it would be
more convenient to use linear finite element meshes. Here the
clouds associated with a node “i” is built by the union of the
“elements” connected to this node. This concept greatly
reduces the number of floating point operations, since the
POU is known beforehand and allows standard integration
routines for integrating the nodal matrices. This new scheme
led to a generalized finite element method (GFEM).
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Independently, Babuška and coworkers proposed essentially
the same procedure, initially named as special finite element
method [34], and later as the partition of unity finite element
method [4]. A similar philosophy is inserted in the works of
Belytschko and Black [10], and Moës et al. [35] for discontin-
uous solutions and is called extended finite element method
(XFEM). The p-enrichment, as in other meshfree methods
like hp-clouds, are performed nodally, which suggests an
adaptive scheme to provide automatic control of approxima-
tion errors. Several contributions have been proposed, among
them are the works of Strouboulis et al. [45], Babuška et al.
[4], Belytschko et al. [11], Liu et al. [32], and Barros et al.
[5]. In such procedures, the solution improvement is reached
by only performing nodal enrichment without excessively
increasing the computational effort even in presence of stress
concentration [19], thus reducing the possible need to per-
form a mesh refinement in this type of problems.

The usual GFEM scheme leads only to C0 approxima-
tion functions. On the other hand, there are several mod-
els, like the Kirchhoff plate, which require solutions to be
at least C1 continuous. This requirement has led to several
finite element formulations which release such a need under
the cost of lower accuracy and/or consistency. Many other
formulations are based on mixed or hybrid variational prin-
ciples for coping with such difficulties like, e.g. [7]. In many
circumstances, the Mindlin’s and Reissner’s models, which
requires only C0 continuity, have been dominant over the
last decades, e.g. [15]. In recent years, some meshless meth-
ods have been proposed for solving Kirchhoff plate and shell
models [8,9,16,30,31,33,43]. Again, another approach to
reduce the numerical integration costs and boundary con-
ditions difficulties of the meshless methods was proposed
by Edwards [24,25], in which a finite element mesh is used
to build arbitrarily smooth approximation functions which
have the same support of corresponding global finite element
Lagrangean shape functions on the same mesh. This scheme
has an important restriction for requiring the clouds to be
convex, which is not always possible to guarantee. Aim-
ing at removing this limitation, Duarte et al. [18] used the
so-called boolean R-function of Shapiro [41]. Latter, Barros
et al. [6] discusses this procedure for linear elasticity prob-
lems. The arbitrary continuity is based on the type of selected
edge functions and on the value of a parameter of a boolean
function.

In addition, the higher degree of regularity has the advan-
tage of enhancing the definition of error measures as is also
pointed out by [11], for the case of the reproducing kernel
particle method (RKPM), and also allows strong residual
evaluation.

Presently, the authors make use of an extension of the
Edwards’ approach, utilized by Duarte [18], for convex and
non-convex supports with the aid of the so-called R-
functions [40,41], on GFEM with Ck approximating

functions, in triangular unstructured meshes. These sets of
approximation functions are applied for solving some Kirch-
hoff plate problems. The influence of the type of integration
rules, Gaussian or triangular rules, is analyzed. Several types
of cloud edge functions are implemented and tested.

The remainder of this paper is outlined as follows: Sect. 2
summarizes the partition of unity concepts; Sect. 3 presents
the hp-cloud partition of unity functions and their enrich-
ment; Sect. 4 develops the construction of weighting func-
tions based on several cloud edge functions in order to achieve
C∞ and Ck continuity on the approximation functions;
Sect. 5 presents a summary of the laminated Kirchhoff plate
model and Sect. 6 presents results of the proposed formula-
tion in order to test its behavior under several conditions.

2 Partition of unity and approximation functions

Here, the basic idea is to employ weight functions which
are zero at the clouds boundaries, together with its first (or
higher) normal derivative in order to lead to a C1 (or higher
continuity) partition of unity as it is performed in the
hp-clouds method. Aiming to summarize such procedure, let
us consider a conventional triangular finite element mesh,
{Ke}NE

e=1 (NE being the number of elements Ke) defined by
N nodes, {xα}N

α=1, in an open bounded domain � ⊂ R2(x).

To each of these nodes, one denotes the interior of the union
of the finite elements sharing it as cloud, ωα, α = 1, . . . , N ,

as is usual in the GFEM. Over each cloud, Ck appropriate
weight functions are evaluated and used in the Shepard’s
moving least square method [42] scheme for generating a
partition of unity.

Let an open bounded domain � ⊂ R2(x), here defined
as the plate mid-surface, and �N be an open covering of this
domain made of the set of N clouds ωα , associated with nodes
xα . In other words, the closure � of the domain is contained
in the union of the clouds closures ωα:

� ⊂
N⋃

α=1

ωα (1)

One denotes the set of nodes as QN = {x0, x1, . . ., xN } =
{xα}N

α=0. Consider next a set of functions SN = {ϕα(x)}N
α=1,

each of which having the corresponding cloud ωα as its com-
pact support. If each one of these functions is such that
ϕα(x) ∈ Ck

0 (ωα), k � 0 and
∑N

i=1 ϕα(x) = 1, ∀x ∈�,
and all compact subset of � intersects only a finite number
of supports, the set {ϕα(x)}, α = 1, . . . , N is said to be a
partition of unity subordinated to the covering �N . The first
requirement indicates that the function ϕα is non-zero only
over its respective cloud ωα and is, at least, k times continu-
ously differentiable.
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Let χα(ωα) = span{Liα}i∈I(α) denote the local function
subspaces defined on ωα, α = 1, . . . , N , where I(α), α =
1, . . . , N , are index sets and {Liα}i∈I(α) is a set of enrich-
ment functions for this cloud. Without loss of generality, the
considered sets {Liα}i∈I(α), α = 1, . . . , N , are the polyno-
mial basis functions satisfying

Pp(ωα) ⊂ χ p
α (ωα) (2)

where Pp denotes the space of polynomials of degree less or
equal to p, e.g.,

– linear basis: {1, (x − xα), (y − yα)} or
– quadratic basis: {1, (x − xα), (y − yα), (x − xα)2,

(x − xα)(y − yα), (y − yα)2}.

The approximation functions of a cloud ωα are defined
to be

φαi := ϕα Liα, i ∈ I (α) (no sum on α)

Different choices of partition of unity functions are possible
leading to different types of shape functions. The Ck finite
element-based partitions of unity here described shares fea-
tures of both standard finite element (regarding domain par-
tition and integration procedure) and Shepard POU.

2.1 Standard finite element partition of unity

The linear triangular finite element shape functions is an
example of a POU. In this case, the cloud, ωα , is the union of
the elements which share the same vertex node xα. Hence,
each node is associated with its cloud, as depicted in Fig. 1.
The cloud ω1 is a convex cloud made of the elements g, h, i,
j, k and l, while the cloud ω2, including the elements a, b, c,
f, g and h is a non-convex one. The function ϕα is the same
global FEM shape function. They are computationally inex-
pensive and easily integrated by numerical quadrature. On
the other hand, their continuity is limited to C0. This is the
reason why many engineers use Reissner and Mindlin plate

Fig. 1 Examples of convex and non-convex clouds

models even for thin plates, in spite of the locking and spu-
rious energy modes which must be properly treated, instead
of the Kirchhoff model [29].

2.2 Shepard partition of unity

Shepard [20,42] proposed a very simple and general approach
to build partition of unity functions that became widely used
in meshfree methods like, e.g., hp-clouds [21], RKPM [32],
finite spheres [14], the particle-partition of unity [28], among
others. The basic concepts are reviewed in this subsection.

Let Wα:R2 → R denote a weighting function with com-
pact support ωα which belongs to the space Ck

0 (ωα). Assume
that such a weighting function is built at every cloud ωα ,
α = 1, . . . , N of an open covering �N of the domain �.

The Shepard partition of unity functions subordinated to
the covering �N is defined as

ϕα (x) = Wα (x)∑
β(x) Wβ (x)

β (x) ∈ {γ | Wγ (x) �= 0
}
, (3)

for α = 1, . . . , N . Therefore, the regularity of this parti-
tion of unity depends only on the regularity of the weight-
ing functions and, for using the Kirchhoff plate model, one
needs at least functions belonging to C1(�). This is known
as the Shepard’s scheme to define a partition of unity, and it
is adopted in this work.

3 Enrichment of the approximation functions

The aim of adaptive procedures is to improve the quality of
the numerical results by means of adequate enrichment of the
basis of approximation subspace. The most efficient alterna-
tive for enriching the partition of unity consists of multiplying
these functions by other ones such as polynomials, harmonic
functions or even functions which are part of the solution of
the boundary value problem as in the hp-clouds method. If
the Shepard’s functions, ϕα(x), are used, this procedure gen-
erates a F p

N family of functions schematically shown in the
following expression:

F p
N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ϕ1L01 ϕ2 L02 · · · ϕN L0N

ϕ1L11 ϕ2 L12 · · · ϕN L1N
...

...
. . .

...

ϕ1L p1 ϕ2L p2 · · · ϕN L pN

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(4)

In this expression, N is the number of clouds and p is the
order of the highest complete polynomial space spanned by
F p

N . For example, let LsT , T = 0, 1, 2, . . . , M , be the fam-
ily generated by the combination of all the terms of the tensor
product in �2 of polynomials:

LsT = Li (x1)L j (x2), 0 ≤ i, j ≤ p, (5)
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where Lm is a polynomial of degree m in � and T = p =
i + j . For the unidimensional case, the enrichment LsT , is
here given by the set of polynomials

Ls = {L0, L1, . . . , L p} (6)

and the set F p
N is a space formally defined as

F p
N = {{ϕα(x)}∪{ϕα(x)Li(x)} : 0 ≤ α ≤ N ;
0 ≤ i ≤ p, p ≥ k}. (7)

If the elements of the POU and the enrichment family are
linearly independent, so are the elements of the set F p

N . This
property is demonstrated in reference [21].

It is important to point out that other sets of functions such
as generalized harmonic functions, anisotropic functions as
well as singular solutions of the specific problem to be ana-
lyzed, can be used for enrichment purposes [17]. Also, one
may enrich the approximation functions space only locally,
in an adaptive scheme.

4 Weighting functions

4.1 The choice of the weighting functions

In this section, the weighting function Wα is selected in order
to satisfy some conditions which will impart great influence
on the approximation process. Firstly, they must have at least
the desired continuity k. Secondly, they should have reason-
able integrability properties. Additionally, they must have
adequate continuity as explained in [41]. In the next sub-
sections one presents a simple form of C∞ POU functions
for convex clouds followed by an enhancement to render
them applicable to non-convex clouds. This generalization
is achieved by restricting the functions to be Ck , k � 0, with
k an arbitrary integer.

4.2 C∞ Finite element-based weighting functions
for convex clouds

A C∞ finite element-based weighting functions over con-
vex supports can be built from the product of the so-called
cloud edge functions. Consider first the case of an interior
convex cloud, which is a cloud associated to an internal node
(like node 1 in Fig. 2). In this case, the cloud boundary is the
polygonal built from the edges of the elements in the cloud
that are not connected to its node. Associated with each edge
j at the boundary of a cloud ωα , one defines a normal coor-
dinate ξ j , Fig. 2, which is the distance from the point P at
global coordinate x to the edge j . Therefore it is given by

ξ j (x) = nα, j · (x − bα, j
)

(8)

Fig. 2 Illustration of a cloud ωα built by five triangular elements

where bα, j is a boundary point which is selected to be the
midpoint of the edge j, and nα, j is the unit vector normal to
this edge, pointing toward the interior of the cloud. Next, one
chooses as a cloud edge function a function which vanishes
smoothly as the edge is approached and is positive on the
cloud support. Many functions can be used and the one pro-
posed by Edwards [24,25] is adopted here resulting in C∞
continuity. One starts with the following function

εα, j
[
ξ j (x)

] = ε̂α, j (x) :=
{

e−ξ
−γ
j if 0 < ξ j

0, otherwise
(9)

where γ is a positive real constant yet to be specified.
For building the cloud weighting function, Edwards

defined it as

Wα(x) := ecα

Mα∏

j=1

εα, j
(
ξ j
)

(10)

where Mα is the number of cloud edge functions associated
with the cloud ωα and cα is a scaling parameter selected for
each node such that Wα(xα) = 1. Next, we follow a devel-
opment which leads to a numerical implementation a little
simpler than that presented by Edwards.

Associated with each edge j at the boundary of a cloud
ωα , one defines the height hα, j as the normal distance of the
cloud node α to the edge j , i.e.

hα, j = ξ j (xα) = nα, j · (xα−bα, j
)
. (11)

Scaling of the cloud edge functions is very important to pre-
vent then from varying greatly from cloud to cloud.
Numerical experiments show that it is important to have edge
functions of similar shapes for all edges associated with a
given cloud node, i.e., a given weighting function, regard-
less of the number of edges, or the height hα, j of each one.
One propose two restrictions to be satisfied by all cloud edge
functions:
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a. To be unitary on the cloud node: ε̂α, j (xα) = 1, or εα, j

(hα, j ) = 1. As a consequence, the weighting function is
automatically unitary there too, i.e., cα = 0 in Eq. 10.

b. The rate of decay of all cloud edge functions is controlled
by a parameter β defined by

β =
εα, j

(
hα, j

2

)

εα, j
(
hα, j

) (12)

In order to achieve these two restrictions, the cloud edge
function (9) is redefined with the introduction of two new
parameters, A and B, as

εα, j
[
ξ j (x)

] =
{

A e−(ξ j /B)
−γ

if ξ j > 0,

0 otherwise
(13)

From Eq. 12 and utilizing Eq. 13 one has

εα, j
(
hα, j

) = 1

β
εα, j

(
hα, j

2

)

(
hα, j

B

)−γ

=
(

hα, j

2B

)−γ

+ loge β

Therefore the scaling parameter B given by

B = hα, j

(
loge β

1 − 2γ

)1/γ

(14)

guarantees the condition (12). At the cloud node the function
has the value

εα, j
[
hα, j

] = A e
−
(

1 − 2γ

loge β

)1/γ

which is constant for every edge j . Imposing εα, j [hα, j ] = 1,
one obtains

A = e

(
1 − 2γ

loge β

)1/γ

(15)

Therefore, the cloud edge function defined by Eq. 13, with
constants A and B defined by Eqs. 15 and 14, respectively,
meets conditions a and b. In the present implementation the
values γ = 0.6 and β = 0.3 is used.

A similar construction is performed for the boundary
nodes. In this case, the cloud weight functions are built solely
from the cloud edges which do not contain the associated
boundary node.

4.3 Ck finite element-based weighting functions
for non-convex clouds

It should be mentioned that the function Wα(x) as proposed
by Edwards is restricted do convex clouds because, by con-
struction, it would be zero for areas inside the cloud if it
were defined with non-convex support as illustrated in Fig. 3.

Fig. 3 Non-convex cloud where the Edwards functions are null at the
hatched areas

In order to extend the applicability of Edwards weight func-
tions (13) for non-convex clouds, Duarte [18] proposed a pro-
cedure, based on R-functions, to deal with two consecutive
non-convex cloud edges. Toward this end, let one consider
the R-function “or” with two arguments, f1 and f2, denoted
by ( f1 ∨k

0 f2)

(
f1 ∨k

0 f2

)
:=
(

f1 + f2 +
√

f 2
1 + f 2

2

)(
f 2
1 + f 2

2

) k
2

(16)

where k is a positive integer. This function is analytic every-
where except at the origin ( f1 = f2 = 0), where it is at least
k times differentiable, i.e., it belongs to Ck(�) [41].

If f1 � 0 and f2 � 0 define two regions in R2, then

–
(

f1 ∨k
0 f2

)
� 0 and,

–
(

f1 ∨k
0 f2

)
> 0 if f1 > 0 or f2 > 0.

where the arguments, fi , can also describe curved edges.

Let one assume that sides m and n are identified as non-
convex sides for a cloud ωα . A new cloud boundary function
combining εα,m and εα,n is then defined as

εnc
α,mn (x) := εα,m (x)

∨k
0 εα,n (x)

εα,m (xα)
∨k

0 εα,n (xα)
(17)

where the parameter k is chosen according to the desired
degree of smoothness. The combined cloud boundary func-
tion is also scaled by its value at the cloud node xα , such
that the resulting function is unitary at node α. This com-
bined cloud boundary function is used to build a Ck weight
function in a similar fashion as in (13), but where εnc

α,mn(x)

substitutes both εα,m(x) and εα,n(x).

A similar weighting function construction, but employing
R-function as a boolean “and”, could be used instead. That
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Fig. 4 Graph of the partition of unity along the line y = 2, associated
with the central node in the mesh, for several edge functions: Exponen-
tial Eq. (13) and polynomials of degree P = 2, 3, 4 and 5, (cf. Eq. 11)

is, instead of (16), one could use

(
f1 ∧k

0 f2

)
:=
(

f1 + f2 −
√

f 2
1 + f 2

2

)(
f 2
1 + f 2

2

) k
2

(18)

which is also at least k times continuously differentiable.
Shepard’s formula, Eq. 3, is then used to build a partition of

unity using the Ck weighting functions, Wα(x), so obtained.
This POU is therefore at least k continuously differentiable
everywhere in the domain � and the resulting approxima-
tion functions F p

N have the same continuity as long as the
enrichments are also at least Ck .

4.4 CP−1 FEM functions with polynomial edge functions

In this paper we investigate the integrability of the finite ele-
ment functions originated from cloud edge functions differ-
ent from the exponential type (Eq. 13). Simple cloud edge
functions can be defined by polynomials of degree P as1

ε̂α, j
[
ξ j (x)

] = εα, j (x) :=
{(

ξ j/h j
)P if 0 < ξ j

0, otherwise
(19)

where h j is the distance from this edge to the cloud node,
as defined in Eq. 11. These functions generate weighting
functions with continuity CP−1. Also, they are unitary in the
cloud node xα , for all edges j . Figure 4 shows the partition of
unity along the line y = 2 for the mesh in Fig. 5a, generated

1 One must notice that P is the degree of polynomial edge functions
defined in Eq. 19, while p is the degree of cloud approximation defined
in Sect. 4.

from edge functions of exponential type and polynomials
of degrees P = 2, 3, 4 and 5. These degrees were selected
in view of the minimum continuity requirement of the most
common problems in solid mechanics modeled with FEM:
C0 for Mindlin type plate bending and two- and three-dimen-
sional solid formulations, and C1 for Kirchhoff plate and
some higher order shear models for composite laminated
plate. Also, one notice that the required continuity degree is
increased by one in elasticity problems if one requires conti-
nuity of stresses across element interfaces. Further, the most
utilized process to extract transverse stresses in laminates,
from Mindlin and Kirchhoff models, requires differentiation
of the stress components in the inplane coordinates, which
may suggest the use of C2 and C3 functions, respectively.
Finally, investigations on strong residuals of the differential
equilibrium equation in the Kirchhoff model requires the use
of C4 functions. In principle, the C∞ finite element-based
weighting function associated with the exponential cloud
edge function would suffice. However, as will be shown in
the present paper, numerical results show that each function
requires different amounts of numerical effort in the element
integration.

5 Kirchhoff plate model

In this section, the Kirchhoff plate model is summarized. This
thin plate bending model for linear homogeneous isotropic
materials, leading to a bi-harmonic equation, was first pro-
posed by Sophie Germain in 1809 and corrected by Lagrange
in 1811 [13]. It involved three boundary conditions on a
free edge. Kirchhoff [29] succeeded in obtaining both the
bi-harmonic Lagrange/Germain equation governing the
transversal displacement and two independent boundary con-
ditions, as required by the fourth order differential equation.
This work is celebrated as the first successful application of
the calculus of variations to furnish the correct and appropri-
ate boundary conditions for a differential equation, as stated
by Stoker [44].

Let us consider a region V belonging to a three-
dimensional Cartesian coordinate system R3, defined by a
constant thickness t > 0 and its plane middle surface �,

which has the contour �. Hence, for x = {x, y, z}, the region
V can be described by

V =
{

x ∈ R3 | z ∈
[−t

2
,

t

2

]
, (x, y) ∈ �, � ⊂ R2

}
(20)

In the Kirchhoff model straight normal segments to the mid-
dle surface in the undeformed state are assumed to remain
straight and normal during the deformation process. Addi-
tional Kirchhoff assumptions adapted to a plate composed
by orthotropic layers are: the normal stress σz does not affect
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Fig. 5 Views of some enriched basis functions and its derivatives at node 5 in the mesh shown in a. b φ(x, y); c x̄φ; d ∂(x̄φ)/∂x; e ∂2(x̄φ)/∂x2;
f x̄2φ, where x̄ = (x − xnode 5)/h5

the deformations εxx and εyy and can be ignored; and the
transversal displacements and normal rotations are very
small. Under these hypothesis, the displacement field can
be described as:

u (x, y, z) = uo(x, y) − ∂w

∂x
z

v (x, y, z) = vo(x, y) − ∂w

∂y
z (21)

w (x, y, z) = w (x, y)

where u, v, and w stand for the displacement components
along the x, y, and z directions, respectively, and uo and
vo are inplane displacements on the middle surface. This
displacement field implies the only non-vanishing linear
deformation components are ε(x, y, z) = {εx, εy , γxy}T (the
superscript T indicates transpose). These components are
related to displacements by Eq. 21, resulting

ε(x, y, z) = εo(x, y) + zκ(x, y), (22)

where εo and κ are the in-plane deformations and change of
curvatures of the middle surface, given by εo = Lo · d and

κ = Lk · d, where Lo and Lk are differential operators given
by

Lo =

⎡

⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

∂

∂y

∂

∂x
0

⎤

⎥⎥⎥⎥⎥⎥⎦
, Lk =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − ∂2

∂x2

0 0 − ∂2

∂y2

0 0 − ∂2

∂x∂y

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

and d ={uo, vo, w}T . The in-plane stress components are
σ={σx, σy, σxy}T . The Generalized Hooke’s Law for an arbi-
trary layer k, under plane stress state, is expressed by σ =
Qε, where Q is the 3 × 3 reduced stiffness matrix represent-
ing the orthotropic layer with its principal material direc-
tions arbitrarily oriented with respect to axis x [39]. The
resultant forces N = {Nx, Ny , Nxy}T and resulting moments
M = {Mx, My, Mxy}T are defined as

N =
∫ t/2

z=−t/2
σ dz and M =

∫ t/2

z=−t/2
zσ dz (24)

By utilizing the reduced Hooke’s Law, these definitions lead
to the relation between resultant forces and moments with
mid-surface deformation for the laminate
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{
N
M

}
=
[

A B
B D

]{
εo

κ

}
(25)

where A, D and B are 3 × 3 stiffness matrices, symmetric,
representing in-plane, bending and stretch-bending coupling
behavior, respectively, of the laminated plate.

In case the laminate is symmetric with respect to its middle
surface, the coupling stiffness matrix B = 0 and the bend-
ing response is decoupled from the in-plane behavior. The
equilibrium equations in bending are

∂ Qx

∂x
+ ∂ Qy

∂y
+ q = 0

∂ Mx

∂x
+ ∂ Mxy

∂y
− Qx = 0 (26)

∂ My

∂y
+ ∂ Mxy

∂x
− Qy = 0

where q(x, y) is the transverse applied load and Qx and
Qy are shear forces resultants. These shear forces can be
eliminated from the first equation by using the remaining
ones. In the most particular case, the plate is homogeneous
and isotropic, such that resulting moments in the first equi-
librium equation is eliminated in terms of the curvatures
using Eq. 25 and further, with operator Lk these can be
expressed in terms of displacement only, resulting the well-
known differential equation for the Kirchhoff plate bending
model, for a isotropic-homogeneous and constant thickness
plate:

∂4w (x, y)

∂x4 + 2
∂4w (x, y)

∂x2∂y2 + ∂4w (x, y)

∂y4 = q

D
(27)

or, �4w(x, y) = q/D, where D = E t3

12(1−ν2)
is the bending

stiffness modulus of the homogeneous isotropic plate.
The formulation implemented in this paper is aimed at

the general case of laminated plates composed of anisotropic
layers, represented by Eq. 25. Therefore, let us define the
bilinear and linear operators

G(d, δd) =
∫ ∫

�

{
δεo

δκ

}T [
A B
B D

]{
εo

κ

}
dxdy

(28)
l(δw) =

∫ ∫

�

δw q dx dy

Hence, the plate problem can be stated in a weak form
as: Find u(x, y) ∈ U1, v(x, y) ∈ U1 and w(x, y) ∈ U2

such that G(d, δd) = l(δw), for ∀ δuo ∈ V1,∀ δvo ∈ V1

and ∀ δw ∈ V2, where U1⊂ H1(�) and U2⊂ H2(�) are
sets of kinematically admissible functions V1⊂ H1(�) and
V2⊂ H2(�) are the spaces of admissible variation fields. H1

and H2 are Hilbert spaces of order one and two, respec-
tively, in which all functions, together with its derivatives up
to first and second order, respectively, are Lebesgue square
integrable.

The kinematic boundary conditions are the transversal dis-
placement w(x, y) and its normal derivative, ∂w

∂n , and the
natural boundary conditions are bending moment, Mn, and
effective transversal shear stress resultant Qn + ∂ Mns

∂s , where
n and s stand for outer normal and tangent local directions,
respectively. Therefore, a conforming finite element requires
that the displacement field w(x, y) must belong to C1 space.
In the present implementation, this can be easily met at the
boundaries by using the POU together with linear enrich-
ments along the tangential and normal directions and, then,
the boundary conditions can be applied as in conventional
FEM.

The discretization is performed at the element level by
approximating the displacement field d(x, y) by d =N̄(x,y)

de, where de is the vector containing the element degrees of
freedom and N̄(x, y) is the matrix of approximation func-
tions. The deformations of the middle surface are discretized
from Eqs. (22) to (23), which result in
{
εo

κ

}
=
[

Bo

Bk

]
de and

{
Bo = LoN̄
Bk = LkN̄

(29)

where Bo and Bk are the in-plane and bending strain matri-
ces, respectively. The element stiffness matrix is evaluated
in the standard way by

KE =
∫ ∫

[B]t [DK ] [B] J dξ dη (30)

where J stands for the Jacobian. After superposing the ele-
ment stiffness matrices and consistent element load vectors,
the equilibrium equations for static problems reduces to
Kū = f , where K is the global stiffness matrix, ū is the global
degrees of freedom vector and f is the equivalent nodal load
vector. After solving for ū, one can compute displacements,
strain, stresses and resultant forces and moments.

In this paper, all the enrichments are of polynomial type.
For scaling purposes, let us define the cloud radius hα as
the largest distance from the node xα to each of the cloud ωα

edges. That is, consider a node xα and its approximation func-
tions φα

i = ϕα(x)Liα(x̄), i ∈ I (α) where x̄ is the intrinsic
coordinate defined as x̄ = (x −xα)/hα . The enrichment sets
considered are the following:

Quadratic: Liα = [
1, x̄, ȳ, x̄2, x̄ȳ, ȳ2

]

Cubic: Liα = [
1, x̄, ȳ, x̄2, x̄ȳ, ȳ2,

x̄3, x̄2ȳ, x̄ȳ2, ȳ3
]

Quartic: Liα = [
1, x̄, ȳ, x̄2, x̄ȳ, ȳ2,

x̄3, x̄2ȳ, x̄ȳ2, ȳ3,

x̄4, x̄3ȳ, x̄2ȳ2, x̄ȳ3, ȳ4 ]

(31)

The linear enrichment is the starting point for meeting the
displacement normal derivative boundary conditions, but it
cannot represent a constant curvature state. Thus, the qua-
dratic enrichment generates the first useful approximation
function set.
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Fig. 6 Views of some enriched basis functions and its derivatives, associated with the mesh shown in Fig. 5a. For node 5: a ∂(x̄2φ)/∂x;
b ∂2(x̄2φ)/∂x∂y; c ∂2(x̄2φ)/∂x2; d ∂2(x̄φ)/∂x∂y, where x̄ = (x − xnode 5)/h5. For node 7: e φ(x, y); f ∂(φ)/∂x

Figures 5 and 6 show some of the enriched functions and
some of their derivatives over two typical clouds, one inte-
rior, cloud 5, and one at a corner, cloud 7, of the mesh shown
in Fig. 5a. These and other views qualitatively show the com-
plexity of the surfaces associated with the derivatives of the
enriched functions. The simplest form of the partition of unity
on cloud 5, shown in Fig. 5b becomes more complex when
it is multiplied by x̄ = (x − x5)/h5, as shown in Fig. 5c. Its
first and second x derivatives are shown in Fig. 5d, e, where
one can see the wide flat plateaus and deep sharp valleys.
The same general behavior is observed with other functions
and their differentials, some of which are shown in Fig. 6.
The functions were obtained from the exponential edge func-
tion, and are, therefore, C∞ functions on convex clouds. This
implies that all their normal derivatives are null along the
edges of the cloud. Observing, for instance, cloud 5, function
φ is equal to one at node 5 and zero along the edge between
nodes 6 and 8, in the same way required by any C0 family
of interpolation functions. However, the present family also
have all normal derivatives null along that line. This generates
a wide plateau with value close to zero extending close to that
line, inwardly. Function φ drops in high gradient from value
1 to zero as shown in Fig. 5b. The level of steep oscillations of
each function directly defines the amount of effort required
in the numerical integration of the finite element matrices.

Functions φ with different behaviors can be obtained from
different types of edge functions utilized in the generation
of the weighting functions. Figure 4 shows a graph for φ

associated with an internal node, obtained from exponential
and polynomial edge functions. Clearly, only the exponen-
tial one generates C∞ approximation functions. Still, it is the
most smooth function compared with those based on poly-
nomial edge functions. Only the second degree polynomial
edge function generates φ with similar shape as the expo-
nential one. This is also identified from the numerical exper-
iments shown in the next section. Consistently, those results
show that functions based on these two functions are the most
easily integrated.

6 Numerical results

In order to assess the performance and identify characteristic
behaviors of the model described, some typical problems of
thin laminated plates are analyzed. The results obtained are
compared with those obtained from analytical solution based
on thin laminated plate theory [47]. In all cases, only bend-
ing behavior is considered, with symmetric laminates under
transverse distributed load. However, the model is equally
adequate to general non-symmetric laminates.
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Fig. 7 Some meshes utilized in
the square laminated plate
problem. Examples of mesh
indices M = 1, 4 and 8

The formulation is numerically implemented on partition
of the plate domain in triangular elements with three nodes
and straight edges. The stiffness matrix, although non-singu-
lar, become ill-conditioned when enriched with higher order
polynomials. In the present work, the Kε scheme is adopted,
following [17].

6.1 Square laminated plate

A simply supported square plate is modeled, with equal sides
a and b along x and y directions, respectively, and thickness
t , with a/t = 4, and three equal orthotropic layers with ori-
entations [0◦/90◦/0◦] with respect to axis x. Each layer has
the following properties in its orthotropic directions:

E1 = 175 GPa G12 = 3.5 GPa
E2 = 7 GPa ν12 = 0.25

A normal distributed load is applied, varying as q(x, y) =
qo sin πx/a sin πy/b. The uniform meshes are identified by
an index M , whose definition is illustrated in Fig. 7 for M =
1, 4 and 8, along with the global coordinate axis.

The boundaries are simply supported, such that the
following conditions have to be imposed:

w = ∂w

∂y
= ∂2w

∂y2 = · · · = 0 for x = const.

w = ∂w

∂x
= ∂2w

∂x2 = · · · = 0 for y = const.

(32)

The need for imposition of higher order derivatives on the
boundaries is due to the presence of higher non-zero deriva-
tives present in the approximation functions, which are
inherited from the characteristics of the selected cloud edge
functions.

The actual nodal degrees of freedom to be restricted in
order to attain conditions (32) can be identified by express-
ing the complete expression for the transverse displacement
w(x, y) associated with an arbitrary node α, for the parti-
tion of unity φ = φ(x̄, ȳ), enriched by the fourth degree

polynomial (Eq. 31) as:

w(x, y) = wαφ + wx (x̄ φ) + wy (ȳ φ) + wx2

(
x̄2 φ

)

+wxy (x̄ȳ φ) + wy2

(
ȳ2 φ

)
+ wx3

(
x̄3 φ

)

+wx2y

(
x̄2ȳ φ

)
+ wxy2

(
x̄ȳ2 φ

)
+ wy3

(
ȳ3 φ

)

+wx4

(
x̄4φ

)
+wyx3

(
x̄3ȳ φ

)
+wx2y2

(
x̄2ȳ2φ

)

+wxy3

(
x̄ȳ3 φ

)
+ wy4

(
ȳ4 φ

)
(33)

The coefficients wα , wx, wy and so on, are the nodal coef-
ficients. The expression for w with enrichments of third and
second degree polynomials are obtained truncating Eq. 33
adequately.

For clouds on boundary lines x = const., one has x̄ = 0,
and condition w = 0 makes it necessary to impose

wα = wy = wy2 = wy3 = wy4 = 0 (34)

and for clouds on boundary lines y = const., one has ȳ = 0
and it is necessary to impose

wα = wx = wx2 = wx3 = wx4 = 0 (35)

Differentiation of w(x, y) in Eq. 33, for ∂w/∂x and ∂w/∂y

enables to identify the necessary coefficient restrictions to
satisfy conditions (32). For instance,

∂w

∂x
= wαφ̄,x + wx

(
φ + x̄ φ̄,x

)+ wy

(
ȳ φ̄,x

)+ wx2
(
2x̄ φ̄

+ x̄2 φ̄
)

+ wxy

(
ȳ φ̄ + x̄ȳ φ̄,x

)+ wy2

(
ȳ2 φ̄,x

)

+wx3

(
3x̄2φ̄ + x̄3 φ̄,x

)
+ wx2y

(
2x̄ȳ φ̄ + x̄2ȳ φ̄,x

)

+wxy2

(
ȳ2 φ̄ + x̄ȳ2 φ̄,x

)
+ wy3

(
ȳ3 φ̄,x

)

+wx4

(
4x̄3 φ̄+x̄4 φ̄,x

)
+wyx3

(
3x̄2ȳ φ̄ + x̄3ȳ φ̄,x

)

+wx2y2

(
2x̄ȳ2 φ̄ + x̄2ȳ2 φ̄,x

)

+wxy3

(
ȳ3 φ̄ + x̄ȳ3 φ̄,x

)
+ wy4

(
ȳ4 φ̄,x

)
(36)

where φ = φ(x̄, ȳ), φ̄ = φ/hα and φ̄,x = 1
hα

∂φ/∂x̄ =
∂φ̄/∂x̄. By construction, ∂φ/∂x = 0 on node α. Restriction
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Fig. 8 Center displacement ratio versus number of integration points
index NIP for several edge functions. Mesh 6 × 6, enrichment p = 2

of coefficients (35) also nullifies ∂w/∂x along boundaries
y = const. In fact, differentiating w further, one can easily
show that restrictions (35) also nullify all x derivatives of w

along these borders. Analogously, restrictions (34) nullify all
y derivatives of w along boundaries x = const.

Firstly, the overall behavior of functions generated by dif-
ferent types of cloud edge functions is addressed in Figs. 8,
9, 10, where five different edge functions are considered: the
exponential function, Eq. (13) and the polynomial ones, of
degree P, defined in Eq. (19). Central displacement w is nor-
malized with respect to analytical displacement wo [47]. The
approximate and analytic strain energy of the plate are E and
Eo, respectively. For this orthotropic symmetrical laminate
with sinusoidal distributed load, analytical solution based on
Kirchhoff hypothesis produce wo = (a/π)4qo/D̄ and Eo =
qowoab/4, with D̄ = D11 + 2(D12 + 2D33)(a/b)2 + D22

(a/b)4, and Di j are components of bending stiffness matrix
D in Eq. (25). These figures show displacement and strain
energy versus NIP, the square root of the total number of
Gaussian integration points in the element, for a mesh
M = 6, with functions enriched by polynomials of degrees
p = 2, 3 and 4. In all cases, it is observed that the conver-
gence behavior of central displacement is similar to those
for strain energy, such that only displacements for p = 2 are
shown.

Figure 8 for enrichment polynomial p = 2, show that
the most easily integrated functions are those based on expo-
nential and polynomial P = 2 edge functions, which approx-
imate the converged values with NIP somewhere below 8
with reasonable accuracy. Edge functions of degrees P = 3–
5 require a greater effort in the integration process. The same
behavior can be seen for enrichment polynomials p = 3
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0.96
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1.12

1.16
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E
 / 

E
o

Mesh M = 6
Enrichment p = 3

Edge: P = 2
Edge: P = 3
Edge: P = 4
Edge: P = 5
Edge: Exp

Fig. 9 Energy norm E versus number of integration points index NIP
for several edge functions. Mesh 6 × 6, enrichment p = 3
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Enrichment p = 4

Edge: P = 2
Edge: P = 3
Edge: P = 4
Edge: P = 5
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Fig. 10 Energy norm ratio versus number of integration points index
NIP for several edge functions. Mesh 6 × 6, enrichment p = 4

and 4 in Figs. 9 and 10. These figures also show the con-
vergence of solution as the enrichment degrees grow, for all
edge functions tested. Observation of this and other numer-
ical results indicate that NIP = 9 points in Gaussian rule
leads to an accurate integration for the functions based in the
exponential edge function, for all enrichment polynomials
tested. Approximation functions generated by the remaining
types of edge functions require a larger number of integration
points, except for the quadratic edge function, which can be
integrated with the same effort as the exponential one. In the
sections that follow, this proposition is tested under different
circumstances.

Figure 11 shows the central normalized displacement ratio
for different mesh indices M , for enrichments p = 2, 3 and 4,
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Edge function: Exp
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Fig. 11 Central displacement ratio for different mesh indices M , for
enrichments p = 2, 3 and 4. Exponential edge function. Gaussian
Integration Rule with NIP = 9
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Fig. 12 Normalized in-plane normal stress σxo = σxt2/(qoa2), along
thickness at (x, y) = (0, 0). Normalized coordinate zo = z/t .
Exponential edge function, Gaussian integration rule with NIP = 12.
a/t = 4. Mesh index M = 6

with partition of unity generated by exponential edge func-
tions. The results are obtained with NIP = 9 Gaussian inte-
gration rule and illustrates the h-convergence of the method.
Figure 11 shows that high accuracy in displacements can
be met even by using two elements (M = 1) with uniform
p -enrichment for this load case.

Figures 12 and 13 show the normalized in-plane normal
stress σxo through the thickness at center plate, (x, y) =
(a/2, b/2), and normalized transverse shear stress τxzo along
the thickness at coordinates, (x, y)= (0, b/2). The mesh
index is M = 6 and the functions are enriched with poly-
nomial of degree p = 2, 3 and 4. The edge function is expo-
nential, and the Gaussian integration rule is utilized with

-0.50 -0.17
Z

0.17 0.50

o

0

0.1

0.2

0.3

0.4

0.5

xz
o

Edge function: Exp
Enrichment: p = 4

GFEM

Analytical

Fig. 13 Normalized transverse shear stress τxyo = τxy t/(qoa), along
thickness at (x, y) = (0, a/2). Normalized coordinate zo = z/t . Expo-
nential edge function, Gaussian integration rule with NIP = 12. a/t =
4. Mesh index M = 6

NIP = 12. The stresses and transverse coordinate are nor-
malized according to σxo = σxt2/(qoa2), τxyo = τxyt/(qoa)

and zo = z/t , respectively. In Fig. 12 the results for enrich-
ment p = 4 is too close to the analytical solution to be visible,
and it is suppressed. The relative error in l∞ norm is 0.0928%
for p = 4. These transverse shear stresses are obtained by
integration of equilibrium equations and the analytical solu-
tion is also obtained from integration of the analytical solu-
tion of the Kirchhoff model for the problem.

One verifies how important the numerical integration issue
is for this class of GFEM. Unexpectedly, the use of sec-
ond degree edge functions may be convenient if one is not
concerned with stress continuity in element interfaces, since
it requires less integration points under appropriate h and
p enrichments. Otherwise, the exponential edge functions
should be preferred for its computational efficiency com-
pared with higher order polynomials.

6.2 Test with triangular integration rule

In principle, the most adequate integration rule to integrate a
triangular domain is a triangular rule. However, the triangular
rules available are limited in their maximum number of inte-
gration points, and hence in the largest polynomial exactly
integrated by then. On the other hand, Gaussian quadra-
tures codes are based on algorithms readily expandable to
arbitrarily large number of integration points. The inherent
difficulty of integration in the present formulation naturally
suggests the use of Gaussian rule to asses reliable integra-
tion values of the approximate responses. In the figures that
follow, these results are compared with those obtained from
the Dunavant triangle integration rules [23].
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Fig. 14 Triangular integration rule. Central displacement ratio versus
integration index NIP, for enrichments p = 2, 3 and 4, mesh index
M = 6. Exponential edge function
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Fig. 15 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomials p = 2, 3 and
4, mesh index M = 6. Exponential edge function. Square laminate

Figure 14 shows the central displacement ratio versus inte-
gration index NIP, obtained with the triangular integration
rule, with enrichment polynomials p = 2, 3 and 4, mesh
index M = 6 and exponential edge function. Figure 15
is obtained under similar conditions, but shows the energy
norm ratio instead central displacement and compares results
of Gaussian and triangular integration rules. The number
of triangular integration points is limited to the maximum
available [23], which is 73 points, (NIP = 8.54), which, in
most cases tested, give result similar to those obtained with
NIP = 9 Gaussian points. For certain level of accuracy, good
results appear in these figures with NIP = 6.48 triangular

points (more detailed discussion on the convergence integra-
tion errors is described in the next section). Similar test is
represented in Fig. 16, where second degree edge function
is utilized. These results also indicate similar integrability
of approximation functions generated from exponential and
quadratic edge functions. The integrability characteristics of
the quadratic edge functions is detailed in the next section.

These results indicate that the Dunavant triangle integra-
tion rules allows good accuracy using less integration points
but, contrary to Gauss-Legendre rules, it does not lead to
monotonic convergence as the number of integration points
is increased.
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Fig. 16 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomials p = 2, 3 and
4, mesh index M = 6. Edge function: polynomial of degree P = 2.
Square laminate
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Fig. 17 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomial p = 2, mesh
index M = 4. Edge function: polynomial of degree P = 2. Rectangular
laminate
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Fig. 18 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomial p = 2, mesh
index M = 8. Edge function: polynomial of degree P = 2. Rectangular
laminate
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Fig. 19 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomial p = 3, mesh
index M = 4. Edge function: polynomial of degree P = 2. Rectangular
laminate

6.3 Tests on edge function P = 2: rectangular laminated
plate

One considers the same laminated plate of the previous sec-
tion but in rectangular shape, with sides a = 2b. The meshes
are of the same type shown in Fig. 7. Here the results are
normalized with respect to a reference value obtained with
NIP = 15 Gaussian integration points, being Ec such value.
Therefore, the ratio E/Ec indicates integration error instead
of analytical solution error. Figures 17 and 18 show compari-
sons of energy ratio versus integration index NIP obtained by
Gaussian and triangular integration Rules. The enrichment is
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Fig. 20 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomial p = 3, mesh
index M = 8. Edge function: polynomial of degree P = 2. Rectangular
laminate
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Fig. 21 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomial p = 4, mesh
index M = 4. Edge function: polynomial of degree P = 2. Rectangular
laminate

polynomial p = 2, mesh index M = 4 and 8 for each figure,
and the edge function is the polynomial of degree P = 2.
Figures 19, 20, 21 and 22 show the results obtained under
the same conditions, but for enrichment polynomials p = 3
and 4. Firstly, one observe in all cases an asymptotic behavior
of the Gaussian rule results, in opposition to the oscillatory
response of triangular rule. For all enrichment degrees, tri-
angular rule converge with NIP = 6.48 (42 points), with
better or similar accuracy than Gaussian rule with the same
number of points. However, in several of the cases shown,
Gaussian rule give better or similar accuracy than triangular
rule at NIP = 9. Finally, moderate accuracy of about 1% or
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Fig. 22 Gaussian and triangular integration rules. Energy norm ratio
versus integration index NIP, for enrichment polynomial p = 4, mesh
index M = 8. Edge function: polynomial of degree P = 2. Rectangular
laminate
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Fig. 23 Triangular integration rule. Energy norm ratio versus integra-
tion index NIP, for enrichment polynomials of degrees p = 2, 3 and
4. Mesh index M = 4. Edge function: polynomial of degree P = 2.
Rectangular laminate

less can be obtained with NIP = 5 of triangular rule, for all
enrichment polynomials tested. This number of points seems
similar to the 4×4 Gaussian integration rule of usual bi-cubic
quadrangular finite elements in Co continuous applications
like plane elasticity. It must be pointed out, however, that,
in the present formulation, the integration effort seems to be
unaltered by the degree of enrichment of the approximation
functions utilized, as can be seen in Figs. 23 and 24, which
summarize the results of the previous figures for triangular
rule in meshes M = 4 and 8.
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Fig. 24 Triangular integration rule. Energy norm ratio versus integra-
tion index NIP, for enrichment polynomials of degrees p = 2, 3 and
4. Mesh index M = 8. Edge function: polynomial of degree P = 2.
Rectangular laminate
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Fig. 25 Illustration of distorted mesh with 2c/a = 0.25

6.4 Test on mesh distortion

Here the behavior of the method is tested in a more severe
mesh distortion than the previous application. The regular
mesh with index M = 2 for the square laminate problem
was taken, and its central node was made to move towards
the coordinate system origin. The resulting mesh is shown in
Fig. 25, and it is defined by the mesh distortion ratio 2c/a,
such that 2c/a = 1 indicates a regular mesh of the type
shown in Fig. 7 and the elements distortion grows as 2c/a
approaches zero. Figure 26 shows the variation of the rela-
tive error in energy norm against 2c/a, for enrichment poly-
nomial of degree p = 4 and polynomial edge function of
degree P = 2. Results are obtained with Gaussian and trian-
gular integration rules. In all cases, it can be observed that
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Fig. 26 Test on mesh distortion. Triangular and Gaussian integration
rules. Relative error of energy norm versus mesh distortion ratio 2c/a,
for enrichment polynomial of degree p = 4. Mesh index M = 2. Edge
function: polynomial of degree P = 2. Square laminate

mesh distortion causes some loss in accuracy. This is a char-
acteristic of the methods based on partition of unity. Since
the enrichment functions are defined in global coordinates,
they are not quite susceptible to the mesh shape, but the par-
tition of unity is defined in a support composed by a patch of
more or less distorted elements, which renders the formula-
tion with some mesh dependency in its accuracy in this very
poorly refinement, with only one interior node.

7 Conclusions

In this paper, an arbitrarily smooth kind of Partition of Unity
has been investigated under the GFEM approach for the mod-
eling of laminated composite plate under Kirchhoff model.
The procedure to build generalized finite element approxi-
mation functions has the following features:

(i) The formulation proposed was capable to approximate
the solution of the Kirchhoff plate model meeting the
Ck continuity requirement;

(ii) It allows higher continuity without additional effort
if one is interested to have continuity in higher order
derivatives to obtain continuous stress resultants;

(iii) Non-structured mesh composed of triangular elements
are presently adopted.

(iv) Although the POU of this implementation for the gen-
eralized finite element shape functions can exactly
reproduce polynomials up to the fourth order, higher
order polynomials and non-polynomials can be used
as well.

(v) The examples in this paper only considered simply
supported plates, but any distributional boundary con-
ditions can be dealt with.

(vi) The approximation functions have the same support
as corresponding triangular finite element shape func-
tions.

(vii) It is possible, with the present formulation, to obtain
a continuous in-plane stress field without the need to
perform smoothing operations.

(viii) With appropriate enrichment, good quality of the
in-plane stresses is achieved. This, in turn, results in
good estimates of the transverse shear stresses in the
laminate, when compared to the values obtained by
integration of equilibrium equations of the in-plane
analytical stresses of the Kirchhoff model.

Although property (vi) listed above facilitates the domain
numerical integration, the required number of integration
points is larger than in the case of generalized finite ele-
ment methods based on C0 partitions of unity, as expected.
The issue of numerical integration is presently discussed for
Gaussian quadratures and for the Dunavant’s rule for trian-
gular elements, for various types of edge functions. Among
these, the exponential one is the most general and with easier
integration behavior together with the second order polyno-
mial. The later one is obviously restricted to C1 continuity,
but it requires less computational effort and also leads to
reasonable accuracy. In addition, it is also shown that high
accuracy can be obtained in stress evaluation.

The proposed Ck functions and associated p-enrichments,
in spite of presenting steep second derivatives oscillations,
lead to good accuracy for both h and p refinement. This prop-
erty indicates that they may be a good choice for other plate
models for laminated composites which require C1 continu-
ity for appropriate stress computations.
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