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a b s t r a c t

This paper presents a generalized finite element formulation with arbitrarily continuous unknown

fields for static bending analysis of anisotropic laminated plates based on Mindlin’s kinematical model.

This consist of an extension of the work of Barcellos et al. (2009) [39] to moderate thick plates and also

exploits the properties of smooth approximation functions built from the Duarte extension of Edwards’

procedure (Duarte et al., 2006 [44]) in the framework of the so-called Ck-GFEM. The strategy is suitable

for p- and k-enrichments on a fixed mesh of finite elements and its accuracy is evaluated in numerical

experiments against analytical solutions. The performance is compared to the standard C0-GFEM/XFEM

approach and several topics of concern are investigated, such as the required number of integration

points for the computation of the element matrices, the influence of the degree of polynomial

enrichment, the degree of inter-element continuity chosen for the basis functions, the effect of

laminate thickness and the sensitivity to mesh distortions and its relation with the stiffness matrix

conditioning. Errors in-plane and transverse shear stresses are computed. The smoothness contributes

to the accuracy in terms of the energy norm and furnishes better derivatives of the solution fields,

leading to better post-processed transverse shear stresses, which can be further improved by a

proposed heuristic procedure.

& 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since the beginning of its development, the finite element
method (FEM) has been based, mostly, on C0 continuous approx-
imations for the primary variables, even when modeling varia-
tional problems involving smoother variables. In approaching
typical problems such as elasticity in continuous fields, which
has C0 variational formulation, the C0 FEM is routinely applied.
However, certain models, like the bending models for plates/
shells of Kirchhoff, and more recently the higher-order model for
plate bending of Reddy, among others, have one or more kine-
matic variables in the C1 space. Therefore, since the early years of
the FEM, numerous researchers have proposed several element
formulations based mostly on the Kirchhoff hypothesis for thin
plates/shells and Mindlin/Reissner hypothesis for the moderately
thick ones. If the plate is moderately thick, it must be modeled by
a higher-order theory, such as that of Mindlin. Here, the displace-
ment field is described by the transversal displacement, w, and
the rotations, cx and cy, of the normal to the plate middle plane.
In this case, only C0 is required continuity for the displacement

field and for this reason this model has been dominant in recent
decades, e.g. [1], in the finite element community. However, the
Mindlin/Reissner plate elements usually exhibit shear locking
when the plate thickness decreases as the Kirchhoff constraints
cease to be fulfilled over the entire element. To avoid the locking,
the early elements used reduced or selective reduced integration
which may lead to zero-energy modes that can be eliminated by
hourglass control [2]. Other attempts were based on mixed and
hybrid formulations, see e.g. [3,4], which must satisfy the Lady-
senskaja–Babuška–Brezzi (LBB) condition in order to be stable.
Since they are complex and computationally expensive, these are
not very popular in commercial codes. Other approaches to
improve the transverse shear locking include the assumed natural
strain (ANS) proposed by [5], the discrete-shear-gap (DSG) of [6],
and stabilized conforming nodal integration (SCNI) [7,8]. In
addition, special formulations for the Kirchhoff model have been
developed, for example the discrete Kirchhoff triangular (DKT)
element [2], based on the imposition of zero transverse shear
deformation at specific points of the element.

On the other hand, there have been several contributions for
removing shear locking through meshfree methods like, e.g. [9–14].
The meshless methods concepts began with the smoothed particle
hydrodynamics method (SPH) [15], which was followed by the
diffuse element method (DEM) [16], wavelet Galerkin method [17],
element free Galerkin method (EFGM) [18], reproducing kernel
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particle method (RKPM) [19], meshless local Petrov–Galerkin
method (MLPG) [20], natural element method [21], partition of
unity method (PUM) [22], and hp-clouds methods, e.g. [23,24],
among others. The latter allows a natural and effective inclusion of
p-adaptivity, avoiding the construction of functions by sophisti-
cated hierarchical techniques, and for this reason they were used
in [25,9]. The advantages of meshless procedures need to be
balanced against increased computational cost, since a background
mesh, usually triangular, is still needed for integration purposes.
Then, at each integration point, the partition of unity must be
computed and, since the cardinality at each point is arbitrary, one
needs to search for every cloud which covers such a point. In
addition, all these meshless methods present some disadvantages
regarding the imposition of boundary conditions and high
computational costs.

In order to reduce the numerical integration and implementa-
tion difficulties of meshfree methods, Oden et al. [26] proposed
that, instead of using circles to define the clouds1 around each
node as performed in the hp-clouds method [24], it would be
more convenient to use a mesh of linear finite element in such a
way that the cloud associated with a node ‘‘i’’ would be built by
the union of the finite elements connected to this node. This
concept greatly reduces the number of floating point operations,
since the partition of unity is known beforehand and allows the
use of standard integration routines to integrate the element
matrices. This new scheme led to an instance of the generalized
finite element methods (GFEM). Independently, Melenk, Babuška
and coworkers proposed essentially the same procedure, initially
named the special finite element method, then the GFEM [27],
and later, the partition of unity finite element method [28].
Belytschko and Black [29] and Moës et al. [30] applied the same
strategy, as reported in [31], to represent discontinuous solutions
and this was called the extended finite element method (XFEM).
The p-enrichment in GFEM/XFEM, as in other meshfree methods
like hp-clouds, is performed nodally, which suggests an adaptive
scheme to provide automatic control of approximation errors.
Several important contributions have been proposed, as follows.
Strouboulis et al. [32,33] exploit the capabilities provided by
GFEM enrichment using mesh-based handbook functions gener-
ated from canonical domains, containing microstructural features,
for materials with internal cracks and voids. Duarte and
Babuška [34] used p-orthotropic enrichment aligned to the
optimal direction of enrichment in the sense of the direction that
gives the largest reductions in the discretization error for a given
number of additional degrees of freedom. Barros et al. [35]
proposed an error estimator and implemented p-adaptivity for
C0-GFEM and Barros et al. [36] extended the p-adaptivity for
Ck-GFEM using arbitrary polygonal clouds. Simone et al. [37]
exploited the partition of unity property to explicitly model grain
boundaries in polycrystal materials. Garcia et al. [38] proposed
the using of pseudo-tangent planes to separate the geometric
description from the approximation space, in such a fashion that
the enrichment is defined in a locally undistorted domain, for
thick shells. Barcellos et al. [39] investigated some features of the
Ck-GFEM applied to Kirchhoff plate model and Torres et al. [40]
verified the convergence behavior of a C0-GFEM formulation
derived for adaptive piezoelectric laminated plates.

In these procedures, the solution improvement is reached by
performing extrinsic nodal enrichment without excessively
increasing the computational effort even in the presence of stress
concentration, e.g. [41], thus reducing the possible need to

perform a mesh refinement in addressing this type of problem if
the initial mesh is suitably designed.

It should be noted that the extrinsic enrichment requires
additional global degrees of freedom but the discontinuity does
not exist when different extrinsic enrichment functions are used
at different discrete points, differently of the intrinsic enrichment
of Liu et al. [19], for instance, which introduces reproducibility of
basis functions without additional global degrees of freedom but
needing to enlarge non-locality of the functions since disconti-
nuity exists when enrichment functions vary in space even if C1

functions are used.
In performing analysis using conventional Mindlin plate finite

elements, one faces discontinuous stresses between elements
which may be related to the quality of the mesh, and these have
to be dealt with by post-processing using, frequently, heuristic
procedures. In order to be able to have continuous stress dis-
tributions one needs C1 approximation functions. Toward this
end, Edwards [42,43] proposed a scheme in which a finite
element mesh is used to build arbitrarily smooth approximation
functions which have the same support as the corresponding
global finite element Lagrangian shape functions on the same
mesh. But this scheme has an important restriction as it requires
the clouds to be convex, which is not always possible to
guarantee. In order to remove this limitation, Duarte et al. [44]
proposed the use of the so-called Boolean R-function of Sha-
piro [46,45]. Barros et al. [36] later discussed this procedure to
address linear elasticity problems and Barcellos et al. [39] applied
it to the Kirchhoff plate model. The arbitrary continuity depends
on the type of selected edge functions and on the value of a
parameter of the Boolean function.

In this paper, the extension of Edwards’ procedure proposed by
Duarte is explored for convex and non-convex supports (clouds),
with the aid of the R-functions [45,46], on GFEM to generate Ck

approximation functions in triangular unstructured meshes. This
set of approximation functions is applied to solve a Mindlin plate
problem, and the influence of the type of integration rules, as well
as the mesh distortions, is analyzed. In addition, different types of
cloud edge functions are implemented and tested. The Mindlin
model is used in most commercial codes, in spite of the fact that it
is not the most appropriate for laminated composite plates [47].
The characteristics of the GFEM inhibit its comparison with the
standard FEM, particularly with the formulations available in
commercial programs. These formulations are characterized by
low-order polynomial basis, in contrast with the high orders
usually associated with GFEM. In regular problems, the rate of
convergence in p-enrichment, which is naturally performed in
GFEM, is twice the rate of the h-refinement [48] usually present in
commercial codes. Additionally, even for the same polynomial
order, the GFEM also uses enrichments defined in global coordi-
nates, in contrast to conventional p-FEM. Therefore, the most
suitable formulation to evaluate the performance of the contin-
uous formulation is the standard GFEM. Throughout this paper,
the standard GFEM/XFEM, based on C0 partition of unity, and the
continuous GFEM, will be referred to as C0-GFEM and Ck-GFEM,
respectively. It is verified in this example problem that both
continuities may accept high distortions with acceptable errors if
properly enriched. Also, since numerical integration on meshless
methods are still of concern [49], some investigation regarding
the required orders of integration is carried out.

The remainder of this paper is outlined as follows. Section 2
summarizes the partition of unity concepts and their enrichment.
It also explains the construction of weight functions with the use
of appropriate R-functions in order to achieve approximation
functions with C1 and Ck continuity for arbitrary domain
triangulation. Section 3 gives a summary of the Mindlin plate
model for anisotropic laminates. Here, one of the reasons for

1 A cloud is loosely defined as an open compact support around each node,

with the property that the countable collection of clouds defines a covering of the

domain.

P.T.R. Mendonc-a et al. / Finite Elements in Analysis and Design 47 (2011) 698–717 699



Author's personal copy

moving to this new goal was to investigate the integrability of the
Mindlin stiffness matrix with these new approximation functions.
Before moving on to better laminated bending models requiring
higher continuity, it is important to investigate their performance
in the Mindlin model since the first derivatives of the functions
present fewer oscillations of smaller magnitude, differently to the
behavior verified for the second derivatives, as was shown
in [39]. Section 4 reports the results of the proposed formulation
in order to test its behavior under several conditions. Firstly, it is
of concern to assess the performance of the approximation
functions by performing verification, comparing the discretization
procedure with exact analytical solutions to the same mathema-
tical model. The computation of accurate transverse shear stres-
ses in laminates is also investigated and, even considering an old
and well-established model like the Mindlin model, the degree of
the basis functions utilized and their inter-element smoothness
(or lack of it) have a strong influence on the quality of the
transverse shear stresses that can be computed or extracted.
Moreover, an improvement to the procedure of stress post-
processing is proposed and verified. The computational efficiency
of the Ck-GFEM is compared to the standard C0-GFEM in such a
way that the basis functions generated by smooth and C0-GFEM
are identified and compared for each type of enrichment. The
influence over the condition number of the stiffness matrix is
shown. Finally, in Section 5 some conclusions are outlined.

2. Partition of unity and approximation functions

The Ck-GFEM with arbitrary continuity can be considered a
special instance of the hp-cloud in which each cloud has an
arbitrary polygonal boundary and the weight functions are built
in such a way as to guarantee the required continuity. Let us
consider the plate mid-surface as an open bounded domain,
O�R2ðxÞ, which is partitioned in a linear triangular mesh,
fKeg

NE
e ¼ 1 (NE being the number of elements Ke), using N nodes

with coordinates fxag
N
a ¼ 1. For each of these nodes one considers

as cloud, oa,a¼ 1, . . . ,N, the union of the triangular elements
which share it so that N clouds is an open covering, IN , of the
domain O.

Consider a set of functions, WaðxÞ � Ck
0ðoaÞwhere a¼ 1, . . . ,N,

such that each one of them has the associated cloud oa as its
compact support and is denoted as a weight function. Next, one
uses Shepard’s moving least squares method [50] to obtain the set
of functions fjaðxÞg

N
a ¼ 1 as

jaðxÞ ¼
WaðxÞP
bðxÞWbðxÞ

, bðxÞAfg jWgðxÞa0g ð1Þ

One can easily verify that this set, fjaðxÞg, a¼ 1, . . . ,N, is such
that jaðxÞACk

0ðoaÞ,kZ0 and
PN

i ¼ 1 jaðxÞ ¼ 1, 8xAO, and every
compact subset of O intersects only a finite number of supports.
Therefore, it is a partition of unity (PoU) subordinate to the
covering IN , where the first requirement is met because each
jaðxÞ is, at least, k times continuously differentiable and is non-
zero only over its respective cloud oa. Moreover, it shares the
same features as the standard finite element method regarding
the domain partition and integration procedures. It is clear that
the continuity of the PoU is the same as the weight function.
Therefore, the weight function Wa must satisfy some conditions
which will impart a great influence on the approximation process.
Firstly, they must have the required continuity k, and, secondly,
the resulting PoU should have reasonable integrability properties,
and be able to, at least, represent a constant solution. The
importance of adequate continuity has been previously reported
in [51].

The weight functions are, in the case of convex clouds,
constructed by the product of the so-called cloud edge functions,
ea,j½xjðxÞ�, where xjðxÞ is a parametric normal coordinate from the
edge, as is the case of the internal node a in Fig. 1. Here, for the
associated cloud, oa, the boundary is the closed polygonal built
with the edges of the cloud elements that are not connected to
the node xa. A similar definition is used for the clouds at the
boundary of the domain. The cloud edge functions play therefore
an essential role as part of the PoU building process, that is, they
must have at least the desired Ck continuity, kZ0, with k being
an arbitrary integer. In order for the weight function to be
unitary2 at node xa, all of the Ma edge functions of the cloud
are required to have the unitary value at this node. Hence, the
weight function can be expressed as

WaðxÞ :¼
YMa

j ¼ 1

ea,jðxjÞ ð2Þ

Herein, two kinds of cloud edge functions, ea,j, are used. The
first type are the polynomials of degree P, PZkþ1, such that the
function together with its first k normal derivatives approach zero
as a point reaches its edge, j, as explained in [39]. It is given by

ea,j½xjðxÞ� ¼
ðxj=ha,jÞ

P if xj40

0 otherwise

(
ð3Þ

where ha,j is the normal distance of the cloud node a to the edge
and xjðxÞ is the distance of a point x to the cloud edge j, as shown
in Fig. 1.

The second type of edge function is an exponential with an
adequate decay, as proposed by Edwards [42]

ea,j½xjðxÞ� ¼
Ae�ðxj=BÞ�g if xj40

0 otherwise

(
ð4Þ

with constants A and B given by

A¼ eðð1�2gÞ=logebÞ
�1

and B¼ ha,j
logeb
1�2g

� �1=g

b and g are constants to be specified and, herein, values of
g¼ 0:6 and b¼ 0:3 are used following Duarte et al. [44]. The
parameter b defines how fast the edge function decays to zero
toward the edge j and it is given by

b¼
ea,j

ha,j

2

� �
ea,jðha,jÞ

ð5Þ

For convex clouds, this exponential edge function leads to C1

weighting functions, and therefore to C1 PoU. In the case of non-
convex clouds as illustrated in Fig. 2, each pair of non-convex
edges has the product of their edge functions substituted by an

Edge 3

Edge 2
Edge 4

Edge 1

3

2

1

4
x

Fig. 1. Illustration of a cloud oa built by four triangular elements.

2 The weight functions are required to be unitary at their node as a normal-

ization of their values, which is important in avoiding numerical round-off errors

in extremely distorted meshes.
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R-function ‘‘or’’ with two arguments, f1 and f2, denoted by
ðf13k

0f2Þ, defined as

ðf13k
0f2Þ :¼ f1þ f2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
1 þ f 2

2

q� �
ðf 2

1 þ f 2
2 Þ

k=2
ð6Þ

where k is a positive integer, as proposed by Duarte et al. [44].
This function is real-valued and its sign is completely determined
by the signs of its arguments. It is also analytic everywhere except
at the origin, where it is k times differentiable, i.e., it belongs to
CkðOÞ [46]. Particularly, if f1Z0 and f2Z0 define two regions in
R2, then

� ðf13k
0f2ÞZ0 and,

� ðf13k
0f2Þ40 if f140 or f240.

where the arguments, fi, can also describe curved edges.
Specifically, if a cloud oa has sides m and n identified as non-

convex, their edge functions ea,m and ea,n are substituted by

enc
a,mnðxÞ :¼

ea,mðxÞ3k
0ea,nðxÞ

ea,mðxaÞ3k
0ea,nðxaÞ

ð7Þ

where the parameter k is chosen according to the desired degree
of smoothness. The resultant cloud edge function is also scaled by
its value at the cloud node xa, such that the resulting function is
unitary at node a. This modified cloud edge function is used to
build a Ck weight function in a similar fashion as in (2), but where
enc
a,mnðxÞ replaces both ea,mðxÞ and ea,nðxÞ.

Consider the L-shaped cloud shown in Fig. 3(a), defined in
terms of the dimension a. Its node is located at ðx,yÞ ¼ ð0:8a;0:8aÞ.
The cloud possesses a pair of non-convex edges, 1 and 2. Fig. 3(b)
shows the polynomial edge function ea,1ðxÞ ¼ ðy=h1Þ

P , where
h1 ¼ 0:8a and P¼2, associated with edge 1. Figs. 3(c) and
(d) show the edge functions for the pair of non-convex edges 1
and 2, given by (7) with k¼0 and 2, respectively.

In sequence, Shepard’s formula (1) is employed to build a
partition of unity using the Ck weighting functions, WaðxÞ. This
PoU is therefore at least k-times continuously differentiable
everywhere in the domain O.

Finally, the partition of unity is employed to span the approx-
imation subspace along the same scheme as that of the hp-clouds
method, that is, for each cloud oa,a¼ 1, . . . ,N, one chooses a set
of enrichment functions, fLiagiAI ðaÞ, where I ðaÞ, a¼ 1, . . . ,N, is an
index set. The enrichment functions may be chosen as generalized
harmonic functions, anisotropic functions, singular solutions of
the specific problem to be analyzed as well as polynomials. The
local function subspaces are denoted by waðoaÞ ¼ spanfLiagiAI ðaÞ
and may also be enriched only locally according to an adaptive
procedure.

Here, without loss of generality, one performs only polynomial
enrichments because of the nature of the domain geometry and
the type of the loading. Thus, one has

PpðoaÞ � wp
aðoaÞ ð8Þ

where Pp denotes the space of polynomials a degree less than or
equal to p. For scaling purposes, a cloud characteristic length ha is
defined as the largest distance from the node xa to each of the
cloud oa edges. Thus, one defines the normalized coordinate x as

1

2

3

4 5

6

6

5

Fig. 2. Non-convex cloud where the Edwards functions are null in the hatched areas.

a

a

aa

h1

h2

x

y

1

2

Fig. 3. Visualization of edge functions. (a) L-shaped domain; (b) polynomial edge function; (c) edge function for the non-convex edges, k¼0; (d) edge function for the non-

convex edges, k¼2.

P.T.R. Mendonc-a et al. / Finite Elements in Analysis and Design 47 (2011) 698–717 701



Author's personal copy

x ¼ ðx�xaÞ=ha. This normalization renders the enrichment
functions non-dimensional.

The enrichment sets considered in this work are the following:

Linear enrichment :Lia ¼ ½1,x,y�

Quadratic enrichment :Lia ¼ ½1,x,y,x2,xy,y2
�

Cubic enrichment :Lia ¼ ½1,x,y,x2,xy,y2,x3,x2y,xy2,y3
�

Quartic enrichment :Lia ¼ ½1,x,y,x2,xy,y2,

x3,x2y,xy2,y3,x4,x3y,x2y2,xy3,y4
� ð9Þ

The Ck-GFEM PoU functions cannot represent linear or higher-
order monomials, as does the linear tent functions used in
C0-GFEM. That is, there is, for instance, no set of coefficients ax

a
such that

PN
a ¼ 1 ax

aja ¼ x. Therefore, the representation of linear
monomials is only possible with the use of enriched functions. For
example, with the use of the set ðxjaÞ one has

XN

a ¼ 1

ax
aðxjaÞ ¼ x

XN

a ¼ 1

ax
aja

If all the coefficients ax
a are taken to be unity, the right hand side

becomes equal to x. In general, the Ck-GFEM PoU enriched with an
arbitrary polynomial xrys is only able to represent polynomials of
the same degree

XN

a ¼ 1

ax
aðx

rysjaÞ ¼ xrys ð10Þ

The set of approximation functions in a cloud is ffag ¼ja�

fLiag, and it defines the approximation space wðoaÞ ¼ spanfja�

fLiagg. It can be seen from (10) that

wðoaÞ ¼ spanfLiag ð11Þ

If p ðp¼ rþsÞ is the largest polynomial degree in the set fLiag,
the dimensions of the basis in w are 3, 6, 10 and 15, respectively,
for p¼1,2,3 and 4 for Ck-GFEM. This is different for C0-GFEM. In
this latter case, its PoU is defined by linear functions and, also,
coefficients ax

a and ay
a exist such that

XN

a ¼ 1

ax
aja ¼ x

XN

a ¼ 1

ay
aja ¼ y ð12Þ

Therefore, the C0-GFEM PoU enriched by xrys are such that it is
possible to have

XN

a ¼ 1

ax
aðx

rysjaÞ ¼ xrþ1ys

XN

a ¼ 1

ay
aðx

rysjaÞ ¼ xrysþ1 ð13Þ

In this case an enrichment set of degree p generates a basis of
degree b¼ pþ1. Thus, for a given degree of enrichment, the
C0-GFEM generates a richer approximation space than the Ck-GFEM.
However, the set of basis functions in the C0-GFEM is linearly
dependent, as a consequence of the fact that its PoU and enrich-
ment functions are both polynomials [52]. This results in a stiffness
matrix with rank deficiency. On the other hand, in Ck-GFEM, the
PoU is a rational function which cannot be represented by a finite
linear combination of monomials. Hence, the set fja � fLiagg is
linearly independent and the stiffness matrix has the proper rank.

In the presence of an arbitrarily shaped domain, this kind of
enrichment only can be performed for the interior clouds. The
boundary clouds should be enriched in a modified scheme, taking
into account the prescribed boundary conditions. One such choice
was presented by Garcia et al. [23], where similar enrichments are

applied in a local coordinate system in which one of the axes is
normal to the boundary. Another choice is to modify the bound-
ary weight function in order to satisfy the boundary conditions
explicitly as will be detailed in a forthcoming paper.

3. Mindlin plate model

3.1. Equilibrium equations

In this section, the Mindlin plate model is briefly reviewed.
This is a plate bending model first proposed by Mindlin in
1951 [53]. Initially, it was presented as an evolution of the
Kirchhoff model, for linear homogeneous isotropic materials in
static and dynamic problems, and later expanded to plates and
shells of laminates composed of anisotropic layers, widely used in
commercial finite element codes, in spite of its mathematical
limitations to model these types of structures.

The domain of the problem consists of a region V belonging to
a three-dimensional Cartesian coordinate system R3, defined by
a constant thickness t40 and its plane middle surface O, limited
by a closed contour G. Hence, the domain can be described by

V ¼ qAR3jzA �
t

2
,

t

2

� �
,ðx,yÞAO, O�R2

� �
ð14Þ

for q¼ ðx,y,zÞ.
The Mindlin model is characterized by a few kinematic

hypothesis, which are completely represented in the following
first-order expansion, in transverse coordinate z, of the displace-
ment field

uðx,y,zÞ ¼ uoðx,yÞþcxz,

vðx,y,zÞ ¼ voðx,yÞþcyz,

wðx,y,zÞ ¼wðx,yÞ, ð15Þ

where u, v, and w are the displacement components along the x, y,
and z directions, respectively, uoðx,yÞ and voðx,yÞ are in-plane
displacements on the middle surface, w is the transverse displace-
ment, and cxðx,yÞ and cyðx,yÞ are the rotations undergone by a
straight line segment initially normal to the reference surface,
about axes x and y, respectively. All these unknowns are called
generalized displacements. This expansion represents the assump-
tion that the normal segment remains straight and inextensible.
Applying this displacement field to the linear strain–displacement
relations implies that the non-vanishing deformation components
are the in-plane deformations eðx,y,zÞ¼ fex,ey,gxyg

T (the super-
script T indicates transpose) and transverse shear deformations
csðx,y,zÞ ¼ fgyz,gxzg

T . According to (15), the in-plane and transverse
shear deformations are related to the generalized displacements by

eðx,y,zÞ ¼ eoðx,yÞþzjðx,yÞ,

gyzðx,yÞ ¼cyþ
@w

@y
,

gxzðx,yÞ ¼cxþ
@w

@x
ð16Þ

where eo and j are the membrane deformations and change of
curvatures of the middle surface, given by eo ¼ Lod and j¼ Lbd,
and the transverse shear deformations are given by cs ¼ Lsd. The
generalized displacement vector function d, and the differential
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operators Ls, Lo and Lb are given by

Lo
¼

@

@x
0 0 0 0

0
@

@y
0 0 0

@

@y

@

@x
0 0 0

2
66666664

3
77777775

,

Lb
¼

0 0 0
@

@x
0

0 0 0 0
@

@y

0 0 0
@

@y

@

@x

2
66666664

3
77777775

,

Ls
¼

0 0
@

@y
0 1

0 0
@

@x
1 0

2
664

3
775,

d¼ fuo,vo,w,cx,cyg
T ð17Þ

Next, one considers the plate built by a stack of Nl orthotropic
layers. The in-plane and transverse shear stress components
are denoted by r¼ fsx,sy,sxyg

T and ss ¼ fsyz,sxzg
T , respectively.

The generalized Hooke’s Law for an arbitrary layer k, in the plane
stress state, is expressed by r¼Q e, where Q is the 3�3 reduced
stiffness matrix representing the orthotropic layer with its prin-
cipal material directions arbitrarily oriented with respect to axis
x [54]. Similarly, the transverse shear stress–strain relation for
an arbitrary layer k is ss ¼ Cscs. The resultant in-plane forces
N¼ fNx,Ny,Nxyg

T , resulting moments M¼ fMx,My,Mxyg
T and resul-

tant transverse forces Q ¼ fQy,Qxg
T are defined as

N¼
Z t=2

z ¼ �t=2
r dz, M¼

Z t=2

z ¼ �t=2
zr dz,

Q ¼
Z t=2

z ¼ �t=2
ss dz ð18Þ

Applying the reduced Hooke’s Law, these definitions lead to
the relation between resultant forces and moments with mid-
surface deformations for the laminate

N

M

� �
¼

A B

B D

� �
eo

j

� �
ð19Þ

where A,D and B are 3�3 stiffness sub-matrices, all symmetric,
representing in-plane, bending and stretch-bending coupling
behavior, respectively, of the laminated plate. The transverse
forces are given by Q ¼ Ecs, where the laminate shear stiffness
matrix E is defined with a correction given by a shear factor ks,
such that

E¼ ks

XNl

k ¼ 1

hkCk
s ð20Þ

and hk and Nl are the k-th layer thickness and the number of
layers in the laminate, respectively.

In cases where the laminate is symmetric with respect to its
middle surface, the coupling stiffness matrix B¼ 0 and the
bending response is decoupled from the in-plane behavior. The
differential equilibrium equations are

Rx �
@Nx

@x
þ
@Nxy

@y
þsxzj

t=2
�t=2 ¼ 0

Ry �
@Nxy

@x
þ
@Ny

@y
þsyzj

t=2
�t=2 ¼ 0

Rz �
@Qx

@x
þ
@Qy

@y
þqðx,yÞ ¼ 0

Rmx �
@Mx

@x
þ
@Mxy

@y
�Qxþzsxzj

t=2
�t=2 ¼ 0

Rmy �
@Mxy

@x
þ
@My

@y
�Qyþzsyzj

t=2
�t=2 ¼ 0 ð21Þ

where q(x,y) is the distributed applied normal load. sxzj
t=2
�t=2

stands for sxzðz¼ t=2Þ�sxzðz¼�t=2Þ. Similarly, one has syzj
t=2
�t=2.

In the cases considered in this paper both faces of the laminate

are free from shear loading, such that sxzj
t=2
�t=2 ¼ syzj

t=2
�t=2 ¼ 0. The

shear forces Qx and Qy can be eliminated from the third equation
by using the last two. In the most general cases of non-symmetric
laminates, these equations are coupled. For symmetric laminates
the system becomes uncoupled, with the bending being described
by only the last three equations.

The formulation implemented in this paper is aimed at the
general case of laminated plates composed of anisotropic layers,
represented by (18)– (21), through a generalized finite element
procedure. Therefore, let us start from the bilinear and linear
operators

Gðd,ddÞ ¼
Z
O

deo

dj

( )T
A B

B D

� �
eo

j

� �
dOþ

Z
O
dcT

c Ecc dO

lðdwÞ ¼

Z
O
dwq dO ð22Þ

Hence, the plate problem can be stated in a weak form as: find
dðx,yÞAU5

1ðOÞ, such that Gðd,ddÞ ¼ lðdwÞ, for 8ddAV1, where
U1 �H1ðOÞ is the set of kinematically admissible functions,
V1 �H1ðOÞ is the spaces of admissible variation fields, and H1

is the Hilbert space of order one, in which only the functions that,
together with their derivatives up to first order, are Lebesgue
square integrable are present. The kinematic boundary conditions
are d¼ d, where d are prescribed displacement and rotation
values.

The discretization is performed on element level by approx-
imating the displacement field dðx,yÞ by d¼Nðx,yÞde, where de is
the vector containing the element degrees of freedom and Nðx,yÞ
is the matrix of approximation functions. The deformations of the
middle surface are discretized from (16)– (17), which result in

eo

j

� �
¼

Bo

Bb

" #
de and cc ¼ Bsde

ð23Þ

where Bo, Bb and Bs are the membrane, bending and transverse
shear strain matrices, respectively, given by

Bo
¼ LoN

Bb
¼ LbN

(
and Bs

¼ LsN:

The element stiffness matrix is evaluated in the standard way by

Ke
¼

ZZ
Bo

Bb

" #T
A B

B D

� �
Bo

Bb

" #
þBsTEBs

8<
:

9=
;J dx dZ ð24Þ

where J stands for the Jacobian determinant. After superposing the
element stiffness matrices and consistent element load vectors, the
equilibrium equations for static problems reduces to the standard
form Ku ¼ f, where K is the global stiffness matrix, u is the global
degrees of freedom vector and f is the equivalent nodal load vector.
After solving for u, one can compute displacements, strain, stresses
and resultant forces and moments. Low-order elements can experi-
ence shear locking, and thus some strategy must be used to
circumvent it. In the applications shown here, none of them was
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utilized, and both terms in the element stiffness matrix, membrane-
bending, and transverse shear stiffness parts are equally integrated
with the same quadrature.

3.2. Stress computation

In this subsection three procedures to compute transverse
shear stresses are described: two of them are usual (by constitu-
tive relation and by integration) and the third is a procedure
proposed to improve the computed transverse shear stresses.

3.2.1. Procedure 1—shear stresses by the constitutive equations

The transverse shear stress can be directly computed from
the shear stress–strain relationship for an arbitrary layer, k, i.e.,
ss ¼ Cscs, where the shear strains cs are computed from the GFEM
nodal values of displacements using (23).

3.2.2. Procedure 2—shear stresses by integration of the local

equilibrium equations

It is observed, however, that the transverse shear stresses
obtained from the Mindlin plate model with the constitutive
equations are too poor to be useful, since the kinematic model
approximates the transverse shear deformation as a constant
throughout the thickness of the laminate (see (16) and [54]). As
consequences, the correct boundary shear conditions at the faces
of the plate are not satisfied, and the model presents errors in
shear stresses in non-thin laminates which are too large to be
utilized. Thus, the most popular procedure to extract these
stresses is the transverse integration of the local differential
equilibrium equations for forces which, in the x and y directions
and in the absence of body forces, are

@sx

@x
þ
@txy

@y
þ
@txz

@z
¼ 0

@txy

@x
þ
@sy

@y
þ
@tyz

@z
¼ 0 ð25Þ

Expressions for the x and y differentiation of Bo and Bb are
analytically obtained from their definitions, such that the left
equation in (23) can be differentiated and derivatives of eo and j
can be computed. Next, derivatives of the in-plane stresses in an
arbitrary position z within each layer k are computed from

@r
@x
¼Q

k @eo

@x
þz
@j
@x

� �

@r
@y
¼Q

k @eo

@y
þz
@j
@y

� �
ð26Þ

The shear stress estimate is obtained by integrating each one
of the equations in (25), using the derivatives of the in-plane
stresses in (26), and applying the boundary conditions txzðx,y,z¼
�t=2Þ ¼ tyzðx,y,z¼�t=2Þ ¼ 0. For the first equation, e.g. the stres-
ses in a coordinate z within a layer k, are given by

tk
xzðx,zÞ ¼ tk

xzðx,zk�1Þ�

Z z

z ¼ zk�1

ðsx,xþtxy,yÞ dz ð27Þ

for zk�1rzrzk, where x¼ ðx,yÞ, zk�1 and zk are the z coordinates
of the lower and upper surfaces of the layer k. As usual, the layer
numbering begins at the ‘‘lower’’ surface of the laminate
ðz0 ¼�t=2Þ moving toward the top ðzN ¼ t=2Þ. The integration is
performed layer by layer, beginning with the first one, and the
following continuity conditions are applied at the layer interfaces:
tk

xzðx,y,zk�1Þ ¼ tk�1
xz ðx,y,zk�1Þ and tk

yzðx,y,zk�1Þ ¼ tk�1
yz ðx,y,zk�1Þ.

3.2.3. Procedure 3—correction of the shear stresses

From (27), it is clear that, in order to obtain accurate trans-
verse shear stresses from integration, it is essential to obtain not
only accurate in-plane stresses but also their x and y derivatives.
This should require accurate second derivatives of the displace-
ments. On the other hand, the transverse shear stresses obtained
directly from the constitutive relations require only good first
derivatives of the displacements. They are, therefore, one order
more accurate (when compared to the analytic solution also
obtained from constitutive equations), than the responses
obtained from integration.

The process of integration of the local differential equilibrium
equations incorporates physical information on the system,
regarding the stress variation through the thickness, but is
dependent on an accurate description of the in-plane stresses
along the surface. With this in mind, a third and simple procedure
can be proposed to improve the integrated transverse shear
stresses, appropriate for the FEM with high-order basis functions,
such as those provided by GFEM. This procedure is summarized in
the following steps for an arbitrary point (x;y):

(i) Compute the transverse shear stresses from constitutive
equations ( txz and tyz) at discrete points pj through the thickness
of each layer.

(ii) Compute the transverse shear stresses by integration of the
equilibrium equations ( ti

xz and ti
yz) at discrete points pj through

the thickness of each layer.
(iii) Compute the transverse shear forces from the constitutive

shear stresses

Qx ¼

Z t=2

z ¼ �t=2
txz dz, Qy ¼

Z t=2

z ¼ �t=2
tyz dz ð28Þ

In fact, Qx and Qy can also be computed directly from the
constitutive relations of the laminate.

(iv) Compute the transverse shear forces from the integrated
shear stresses

Qi
x ¼

Z t=2

z ¼ �t=2
ti

xz dz, Qi
y ¼

Z t=2

z ¼ �t=2
ti

yz dz ð29Þ

(v) Compute the correction factors

Rx ¼
Qx

Qi
x

, Ry ¼
Qy

Qi
y

ð30Þ

(vi) Compute the corrected discrete values of stresses by

tc
xz ¼ Rxti

xz, tc
yz ¼ Ryti

yz ð31Þ

In this process, if the constitutive values are computed
accurately, they can be used to provide reliable constant values
Qx and Qy at the (x; y) point, while the variation through the
thickness is provided by the physical input of the local equili-
brium equation. It must be observed that this procedure is
heuristic, in the same sense as the widely used post-processing
of the shear stresses by integration of the local equilibrium
equations.

4. Numerical results

Some aspects of the behavior of the present formulation, when
applied to the bending of Mindlin laminated plates, are tested for
the typical problem of a square symmetric laminate. Numerical
values are compared with the analytical solution obtained for the
problem, also under the Mindlin hypothesis, according to [55].
The aspects investigated are the following: (a) First, the integr-
ability of the element matrices is considered. A crude attempt is
made to identify the appropriate number of integration points. In
order to reduce the number of parameters involved, this analysis
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is first performed only on a regular mesh. Different cloud edge
functions are tested, the exponential and polynomial ones, always
generating approximation functions with C1 continuity or higher.
This is aimed at obtaining stress approximations with inter-
element continuity. Also, within this framework, the transverse
shear stresses are extracted with the integration of equilibrium
equations. The effect of thickness ratio (length/thickness) on the
response is also evaluated for several degrees of polynomial
enrichment. (b) The second part of the analysis is an evaluation
of the effect of severe mesh distortions on the accuracy of the
response for different laminate thicknesses and enrichment
degrees.

In all cases, two measurements of response are used. The first
one is the ratio E/E0 between the energy of deformation of
approximated response, E, and of the analytical response, E0.
The second measurement is the relative error, defined as

e¼

ffiffiffiffiffiffiffiffiffiffiffiffi
E0�E

E0

s
ð32Þ

Intrinsic to the Mindlin model is the requirement for a shear
factor ks in the transverse shear constitutive relation. This study
does not aim to evaluate its effect and thus a factor ks¼1 is used
throughout the computations, either approximate or analytical.

The particular form of the PoU, fjaðxÞg, used in Ck-GFEM is
only capable of representing reliably a uniform displacement
field. Therefore, a uniform deformation field requires approxima-
tion functions fa

i enriched at least with linear functions, which is
the first useful set of enrichment functions (see (9)), although its
results show the usual stiffening tendency as the laminate
thickness tends to zero. Linear approximations of in-plane defor-
mations require quadratic enrichment, and linear approximations
of the transverse shear stresses, obtained by a post-processing of
the solution, require cubic enrichment because it involves differ-
entiation of the in-plane stresses.

The present formulation is numerically implemented on parti-
tions of the plate domain in triangular elements with three nodes
and straight edges.

Regular meshes composed of equilateral or rectangular trian-
gles have all clouds defined by convex edges, such that the weight
functions are obtained with Edwards’ scheme. In cases where the
exponential cloud edge function is used, all approximation func-
tions generated in the model are C1 functions.

However, in most non-structured meshes there will be clouds
defined with a mixture of convex and non-convex edges, such
that a given weight function can be generated from a product
involving, simultaneously, both types of cloud edge functions,
those adequate for the convex edges and those for the non-convex
ones. Therefore, typically, a given mesh will be modeled with
several different types of approximating functions, in each region
of the mesh: some clouds will be ‘‘pure’’, with all cloud edge
functions ‘‘convex’’, and other clouds, generally most of them, will

have one, two or more pairs of edges whose cloud edge functions
are of the type ‘‘non-convex’’. Since the weight function is given
basically by a product of several edge functions, many different
types of weight functions can be generated, depending on the
number of ‘‘convex’’ and ‘‘non-convex’’ edge functions used to
define it. One of the consequences is that, in distorted meshes, C1

continuity cannot usually be reached everywhere in the mesh.
The continuity will be limited to Ck, with k defined by the non-
convex cloud edge function chosen. However, even in this case,
the limitation of Ck continuity will occur only at the vertices
between pairs of non-convex edges [46].

4.1. Numerical applications

The problem considered consists of a simply supported square
plate with sides of length a¼b, thickness t and three equal
orthotropic layers with orientations [01/901/01] with respect to axis
x. Each layer has the following properties in its orthotropic direc-
tions: E1 ¼ 25E2, G12 ¼ G13 ¼ 0:5E2, G23 ¼ 0:2E2, E2 ¼ 7 GPa and
n12 ¼ n23 ¼ 0:25. A transverse distributed load is applied, defined as
qðx,yÞ ¼ q0sinðpx=aÞsinðpy=bÞ. The analytical central displacement
in the plate, w0, is given by [55], and the energy of deformation is
E0¼q0w0ab/4.

The uniform meshes are identified by an index M, which is the
number of elements in each direction, as illustrated in Fig. 4 for
M¼1 and 4. In all cases the entire plate is meshed in order to be
able to test the coarsest mesh, with M¼1.

A symmetric laminate is chosen because a pure bending
problem is sufficient to highlight all the aspects of interest in the
present analysis. This particular configuration also has the advan-
tage of having analytical solutions for the kinematic models of
Kirchhoff, Mindlin and the higher-order shear deformation theory
of Reddy [56], and also possess a full three-dimensional elastic
solution by Pagano [57]. Nevertheless, the formulation investigated
in this paper is general for arbitrary anisotropic laminates.

The applied simply supported boundary conditions are repre-
sented as

For xAG, and x¼ const:

-uoðxÞ ¼ voðxÞ ¼wðxÞ ¼cyðxÞ ¼ 0 ð33Þ

For xAG, and y¼ const:

-uoðxÞ ¼ voðxÞ ¼wðxÞ ¼cxðxÞ ¼ 0 ð34Þ

The above conditions for uo and vo are included for the sake of
completeness, since the particular problem being solved is
uncoupled and the in-plane displacements vanish everywhere.
The imposition of boundary conditions on edges not parallel to
the axis, as well as for curvilinear edges, can be dealt with
modifications on the PoU functions defined on the edges or with

Fig. 4. Examples of meshes used in the laminated plate problem, with mesh indices M¼1, 4 and 8, and coordinate axis.
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procedures similar to those used in, e.g. hp-cloud method. These
details of the formulation is left for a forthcoming publication.

The actual nodal degrees of freedom to be restricted in order to
satisfy conditions (34) can be identified by expressing the
complete expression for any of the displacement functions
associated with an arbitrary node a, for the partition of unity
j¼jðx,yÞ enriched by the fourth degree polynomial (from (9)):
taking w(x, y) for example one has

wðx,yÞ ¼w1jþw2ðxjÞþw3ðyjÞþw4ðx
2jÞþw5ðxyjÞþw6ðy

2jÞ
þw7ðx

3jÞþw8ðx
2yjÞþw9ðxy2jÞþw10ðy

3jÞ
þw11ðx

4jÞþw12ðx
3yjÞþw13ðx

2y2jÞ
þw14ðxy3jÞþw15ðy

4jÞ ð35Þ

Thus, w(x, y) is defined by the 15 nodal coefficients wj, j¼1,y,15,
if the PoU is enriched by the fourth degree polynomial. In general,
the number of coefficients in (35) are 3, 6, 10 and 15, for uniform
enrichment degrees of 1, 2, 3 and 4, according to (9). Since the
PoU and the enriched functions are non-dimensional and normal-
ized, and the late are null at the nodes, it follows that the
coefficient w1 (associated with the PoU) is the nodal value of
the function w(x, y). The remaining coefficients do not posses a
clear physical meaning, although it can be shown that some of
them are related to the derivatives of w at the cloud node.

For nodes on boundary lines x¼const., one has x ¼ 0, and
condition w¼0 makes it necessary to impose

w1 ¼w3 ¼w6 ¼w10 ¼w15 ¼ 0 ð36Þ

and, similarly, for nodes on boundary lines y¼const., one has
y ¼ 0 and it is necessary to impose

w1 ¼w2 ¼w4 ¼w7 ¼w11 ¼ 0 ð37Þ

The indices are the same for the other displacement functions
in (34). One can note that this procedure of selecting nodal
coefficients, instead of simply deleting all of the coefficients of
the node, enables the interior of the domain to remain enriched,
with the monomials involving the coordinate normal to the
boundary. For example, in boundaries x¼const., monomials in x

are kept, i.e., those corresponding to coefficients 2, 4, 5, 7–9,
11–14 in (35). Similarly, in boundaries y¼const., all monomials in
y remain: 3, 5, 6, 8–10, 12–15.

It is implied in the concept of a simply supported boundary
that w¼0 not only at the nodes but also along the whole
corresponding segment of the boundary. It can be verified that
conditions (37)–(38) are sufficient to nullify w along the entire
segment of the cloud boundary. This condition can also be

represented by w¼ @nw=@yn ¼ 0, for n¼1,2,y, along a boundary
x¼const. Differentiation of (35) shows that this is accomplished
under the same conditions (36).

4.2. Integrability

The PoU functions generated by the present procedure have
complex shapes with large plateaus and sharp hills, as shown
in Fig. 12 and also in [39], such that the first and highest
derivatives are still more irregular in shape. As a consequence,
the coefficients in the stiffness matrix require a considerable
amount of computational effort to be integrated. The results
shown in Figs. 5–7 consist of the energy ratios versus the number
of integration points in order to indicate the minimum amount of
integration points necessary to adequately perform the integra-
tion in the Ck-GFEM. Fig. 8 shows a comparison between the effect
of the integration for the C0-GFEM/XFEM and Ck-GFEM. The
parameters used in the evaluation are the following:

� The energy ratio E/E0 between the energy of deformation of
approximate response, E, and of the analytical response, E0.
� NIP is defined as the square root of the total number of

integration points used in the element. Tests are performed
with triangular and Gaussian rules. Clearly the triangular
rule [58] is the most efficient choice for integration in a
triangular element, but the number of points in the available
codes are usually limited. In contrast, the Gaussian rule algo-
rithms are easily extended to an arbitrarily large number of
points and can be used when a high accuracy of integration is
of interest. In the integrability tests shown in this paper
Dunavant’s triangular rules [58] are used until NIP¼8.54 and
higher values of NIP are obtained from the Wandzura rule [59].
� Mesh parameter M defined as the number of partitions along

directions x and y (illustrated in Fig. 4). In this section all
meshes are regular.
� Thickness ratio, a/t, with a and t being the side and thickness of

the plate, respectively.
� Degree of the polynomial enrichment, p.
� Type of edge function, designated in the figures as ‘‘Exp’’ for the

exponential function, according to (4), or degree of polynomial
edge function P, given in (3) [39].

Figs. 5 and 6 show the energy ratio versus NIP for a very thick
plate, with ratio a/t¼4, for enrichments p¼1,2,3 and 4, and some
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Fig. 5. Energy ratio versus number of integration points (NIP) index for Ck-GFEM with several edge functions, P¼1, P¼2 and exponential, which produce C0, C1 and C1

partition of unities, respectively. Regular mesh 6�6, a/t¼4. (a) Enrichment p¼1, (b) p¼2.
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different edge functions. Triangular integration rules are used
with a fixed mesh M¼6. Fig. 7 shows similar results for a thin
plate with a/t¼100 and enrichment degrees p¼2 and

4 respectively.3 In all cases, it can be seen that for a higher degree
of the polynomial in the edge function it is more difficult to
adequately integrate the element matrices. In general, the edge
function of degree P¼1 is the most easily integrated, requiring
approximately NIP¼5. It should be noted that this function leads
to C0 functions only, the least continuity required to the Mindlin
model. The most easily integrated configurations with inter-
element continuous in-plane stresses can be obtained with edge
functions of degree P¼2, which lead to C1 PoU, or exponential
functions, which lead to C1 PoU and require similar integration
effort, with NIP values of approximately 6.48–8.

Fig. 8 shows a comparison between the energy ratio versus the
number of integration points (NIP) index for: (a) the present
formulation, Ck-GFEM (with exponential cloud edge functions and,
therefore, C1 partition of unity) and (b) the standard C0-GFEM
obtained from the linear partition of unity enriched with global
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Fig. 7. Energy ratio versus number of integration points (NIP) index for Ck-GFEM with several edge functions, P¼1, P¼2 and exponential, which produce C0, C1 and C1

partition of unities, respectively. Regular mesh 6�6, a/t¼100. (a) Enrichment p¼2, (b) p¼4.
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Fig. 6. Energy ratio versus number of integration points (NIP) index for Ck-GFEM with several edge functions, P¼1, P¼2 and exponential, which produce C0, C1 and C1

partition of unities, respectively. Regular mesh 6�6, a/t¼4. (a) Enrichment p¼3, (b) p¼4.
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Fig. 8. Energy ratio versus number of integration points (NIP) index for Ck GFEM

(with exponential edge functions and C1 partition of unity), and C0 GFEM with

linear partition of unity. Mesh 6�6, basis degree b¼2, 3 and 4, a/t¼100, regular

mesh 6�6, triangular integration rule. 3 Although the Mindlin kinematic model is incapable of accurately predicting

response for such thick plates as a/t¼4, some results for this case are included

here in order to observe the behavior of the numerical procedures in an extreme

case, opposite to the other practical extreme, a/t¼100. This is usual, since we are

investigating the behavior of the numerical approximation procedures, rather than

the efficiency of the kinematic model.
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polynomials of degree p. Results are shown with reference to b, the
degree of the basis in the element. For the Ck-GFEM, b¼p, since the
Ck partition of unity can only reliably represent a constant displace-
ment field. On the other hand, the partition of unity used in
C0-GFEM is built with the linear tent functions. Therefore, when it
is enriched with polynomials of degree p, the resulting basis is able
to span the polynomials of degree b¼pþ1. The results in Fig. 8
show that the C0-GFEM is much easier to integrate, requiring around
NIP¼2.45, while Ck-GFEM requires NIP¼4–8.

Some of the numerical data used to generate the curves in
Figs. 5–8 were used to compute the relative error e15 ¼ ðE�E15Þ=E15,
as shown in Table 1, where E15 is the energy of the numerical
solution obtained with NIP¼15. Therefore, e15 is not the solution
error, but an estimative of the relative error of the integration. The
table shows this error for NIP¼9 and 12, for all polynomial
degrees of enrichment tested, for cloud edge functions P¼2 and
exponential, and thickness ratios a/t¼4 and 100. The results show
that the thick laminate is easier to integrate than the thin one, for
both edge functions, if the enrichment function degree is p¼2. On
the other hand, the results for enrichments p¼3 and 4 show the
opposite case, i.e., the thin configuration is easier to integrate.

Fig. 9 shows the variation in the energy ratio with mesh index,
M, for different enrichment functions and thicknesses a/t¼4
and 100. The edge function is exponential, which produces C1

partition of unity, and the triangular integration rule with
NIP¼6.48 is used. The results for the thin laminate with enrich-
ment p¼1 are excessively stiff to be shown with the other results
in the same graph and are omitted, as expected due to locking.
The entire set of curves show smooth, monotonic convergence for
all enrichments and both laminate thicknesses.

The thickness effect can be seen in Fig. 10, where the error is
given in terms of the relative error e. The edge function chosen is
exponential, which, accordingly to the previous results, requires
more integration points than the polynomial ones. The Gaussian
rule with NIP¼20 is applied in order to evaluate the errors with
sufficient accuracy and the mesh index is M¼6. Results range
from a/t¼4 to 1000. This shows the sensitivity of the results with
respect to the thickness, for all enrichments considered, although
no sharp stiffening peak was observed in any computations.

4.3. Mesh distortion test

Fig. 11 shows some distorted meshes which are generated
starting from a regular mesh of 2�2 and 4�4 elements and

Table 1
Variation of the relative error in energy, ðE�E15Þ=E15, with thickness ratio a/t, for

Ck-GFEM. Cloud edge functions P¼2 and exponential, which lead to C1 and C1

partition of unities, respectively. Gaussian rule with NIP¼9 and 12 and mesh

index M¼6. Values are multiplied by 106.

a/t 4 4 4 4 100 100 100 100

Edge

function

P¼2 P¼2 Exp Exp P¼2 P¼2 Exp Exp

p NIP

9 12 9 12 9 12 9 12

1 706 84.7 3460 426

2 29.7 19.4 �61.8 30.7 315 39.0 1740 �23.9

3 36.8 2.83 174 6.32 4.01 0.694 �21.0 11.0

4 91.2 1.03 292 7.96 6.04 0.092 42.3 1.15
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Fig. 9. Energy ratio for different mesh indices M and enrichment functions p, for Ck-GFEM with C1 partition of unity. Triangular rule with NIP¼6.48. (a) a/t¼4, (b) a/

t¼100.
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Fig. 10. Relative error e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEo�EÞ=Eo

p
versus thickness ratio t/a for different

enrichment functions p. Exponential edge function and C1 partition of unity,

triangular integration rule with NIP¼13.23. Regular mesh 6�6.

P.T.R. Mendonc-a et al. / Finite Elements in Analysis and Design 47 (2011) 698–717708



Author's personal copy

multiplying the coordinates of the internal nodes by a constant s,
such that sAð0;1�. The parameter s¼1 indicates a regular mesh,
examples of which are given in Fig. 4. For the mesh 2�2,
in Fig. 11(a), all clouds are defined by convex edges for sZ0:5,
and all approximation functions can be chosen to be C1.
For 0oso0:5, as in Fig. 11(c), the cloud of node j, formed
by nodes jgbh, has non-convex gb and bh edges, such that the
weight function associated with node j will have limited con-
tinuity at the node b. Figs. 12(a) and (c) show the PoU function
associated with this node corresponding to the meshes
in Figs. 11(a) and (c), respectively. In all results the edge functions
on convex edges are exponential, and on non-convex edges
they are obtained from (7) with k¼4. Although the functions
displayed in both figures have different natures and continuities,
their general aspect is similar. For s¼0.25 the node b is closer
to corner j than in the case s¼0.5, such that the function
becomes steeper from 0 to 1, with a larger gradient between
the two nodes. This gradient becomes larger as the parameter s

decreases. Along most of the diagonal jb, on the other hand, the
function follows a plateau close to unity, in a similar fashion to
the functions C1 of regular meshes as shown in [39]. The region
close to the corner, with large gradients, and the plateau region
suggest two distinct regions with different interpolator abilities
offered by the PoU function. This difference can be, in principle,
equilibrated by the adequate choice of enrichment functions in
each region.

Figs. 12(b) and (d) show the PoU function associated with node
b corresponding to the meshes in Figs. 11(b) and (d) respectively
for meshes 4�4 and distortions s¼0.5 and 0.25. In contrast to the

Mesh 2x2, s = 0.5 Mesh 4x4, s  =0.5

Mesh 2x2, s = 0.25 Mesh 4x4, s = 0.25

y

x

h

j g

b
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0 j g c
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a f
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d

e
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h
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g
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j g c

Fig. 11. Illustration of some distorted meshes, with cases of convex and non-convex edges and coordinate axes. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

Fig. 12. Views of non-enriched basis functions defined in convex and non-convex

edges, for Ck-GFEM.
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mesh 2�2, here there is no amount of distortion that can result
in a pure mesh with all functions C1. The cloud j, formed by
nodes jgbh, are convex for sZ0:5, as in Fig. 11(b), and non-convex
for so0:5, as in the Fig. 11(d), where the edges gbh generate Ck

weight functions at node b. On the other hand, the cloud
associated with node b, in Figs. 11(b) and (d), marked with red
boundaries (line jcasj), have, for all values of distortion so1, two
concave vertices along the path cas, with two corresponding Ck

continuous functions. The functions in Figs. 12(b) and (d) vanish
along the edges of the cloud (red line in Figs. 11(b) and (d)), and
the gradients near the edges increase considerably as s is reduced.

4.3.1. Results on distorted meshes

The laminate problem is the same as that described in Section
4.1, but the mesh is distorted according to the parameter s.
Illustrations of regular and distorted meshes are shown
in Figs. 4 and 11, respectively. Fig. 13 shows the error in the
energy norm versus distortion, for M¼2, that is, eight elements
on the entire laminate. The plate is thick, with a/t¼4. The results
were obtained with a continuity constant k¼4 in these functions,
and in Fig. 13 the curves were obtained with more points around
the value s¼0.5, in order to identify some discontinuity in the
response at the value below which there are non-convex clouds.
This discontinuity is more pronounced in the curve for enrich-
ment p¼4, but can be noted in the other curves as well. For a thin
laminate, a/t¼100, Fig. 13(b) shows similar results as those

obtained for the thick plate, except that results are not obtained
for enrichment p¼1. In both figures, a large number of integration
points is used, NIP¼30, in order to obtain enough integration
accuracy to be able to estimate approximation errors in the
energy norm of the order of 10�8, as in the results that follow.

Fig. 14 shows the results for the error versus distortion rate for
a mesh M¼4, of the type shown in Figs. 11(b) and (d). In this
mesh there are non-convex clouds for any distortion sa1.4

Therefore, no discontinuity is seen in the curves, since the types of
edge functions are the same for all values of s, except for the
undistorted mesh, s¼1. In all curves, the smallest value of s was
arbitrarily chosen as s¼0.02. The numerical data used to
generate Fig. 14(b) (for the very thin laminate) shows that, for
enrichments p¼3 and 4, the errors start to increase quickly as s is
reduced to values below 0.06.

Fig. 15 shows the energy ratio versus NIP for different
continuity parameters k used in the functions for non-convex
edges in a distorted mesh with s¼0.5 and M¼4. The edge
functions on convex edges are exponential. The laminate is thin,
with a/t¼100. The curves show a slight tendency toward lower
values of continuity k being easier to integrate. However,
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Fig. 13. Mesh distortion test. Error in energy norm, e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0�EÞ=E0

p
versus mesh distortion ratio, s, for Ck-GFEM. Gaussian rule with NIP¼30. Mesh 2�2, edge function

Exp, continuity k¼4. (a) a/t¼4, (b) a/t¼100.
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Fig. 14. Test on mesh distortion. Error in energy norm, e¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE0�EÞ=E0

p
versus mesh distortion ratio, s, for Ck-GFEM. Gaussian rule with NIP¼30. Mesh 4�4, edge function

Exp, continuity k¼1. (a) a/t¼4, (b) a/t¼100.

4 For this test, the continuity constant was arbitrated to k¼1 (differently

from Fig. 13), only for the sake of illustrating responses with different values of k.

The results for k¼4 (not shown) are qualitatively similar to these for k¼1.

P.T.R. Mendonc-a et al. / Finite Elements in Analysis and Design 47 (2011) 698–717710



Author's personal copy

considering an error of about 0.6% as sufficient in a routinely
engineering analysis, it can be seen that NIP about 8 is sufficient
for any of the k’s tested.

The influence of the thickness on the integration effort is seen
in Fig. 16, for s¼0.5, enrichment p¼4 and a continuity constant
k¼4 for the non-convex edges. In this case the Gaussian rule is

used. While for a/t¼100 integration requires an NIP of 9–10, for
a/t¼4 more points are needed, around 12 or 13. As is normally
the case, the results obtained by applying the Gaussian rule are
monotonic, in contrast to most of those obtained by applying the
triangular rule.

A general comparison between the behavior of the mesh
distortion of the present continuous formulation, Ck-GFEM, and
the standard C0-GFEM can be seen in Fig. 17, with the relative
error e versus the distortion ratio s for different basis degrees b.
For the Ck-GFEM, b¼p, and for C0-GFEM, b¼pþ1, where p is the
degree of the enrichment. The edge function is exponential and
the continuity parameter is k¼1. Gaussian integration with
NIP¼30 was used. One can observe that for basis degrees 3 and
4 the continuous formulation is more accurate for all levels of
distortion and for degree 2 the results are similar to those of the
C0 formulation.

It should be pointed out that, for the same order b, the number
of degrees of freedom is different between both formulations, and
the Ck-GFEM involves more operations to perform the analysis,
although, with smaller errors, depending on the basis degree and
the level of mesh distortions.

The mesh distortion parameter s can be related to other
geometrical parameters associated with the mesh distortion. Let
us consider the mesh M¼4, under an arbitrary distortion s, as
shown in Fig. 11(b) or (d). As s is reduced, an element like the one
denoted by nodes abc, tends to distort a straight triangle into a
needle-like shape. The aspect ratio of this element can be
determined as follows. Considering a Cartesian coordinate system
with the origin at node j, and a square plate of sides a, one can
identify the following coordinates for nodes a, b and c:

xa ¼ ðxa; yaÞ ¼
as

4
ð2;1Þ

xb ¼ ðxb; ybÞ ¼
as

4
ð1;1Þ

xc ¼ ðxc; ycÞ ¼
a

2
ð1;0Þ ð38Þ

6
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Fig. 15. Test on mesh distortion in Ck-GFEM. Energy ratio versus NIP, for different

continuity parameters k. Triangular integration rule. Mesh distortion ratio, s¼0.5.

Mesh 4�4, edge function Exp, a/t¼100.
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Mesh 4�4, edge function Exp, a/t¼100. Continuity k¼4.
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Gaussian integration with NIP¼30.
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The vectors along the sides ca and cb are va ¼ xa�xc and
vb ¼ xb�xc. The vector along the height of the triangle abc

associated with the base cb is given by h¼ va�ðva � v̂bÞv̂b, where
v̂b is the unit vector along vb. Simplifications show that

JhJ¼
as2

4
ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�2 sþs2
p , JvbJ¼

as2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2sþs2
p

2
ffiffiffi
2
p ,

such that the aspect ratio of the smallest element becomes

rm �
JvbJ

JhJ
¼

2ð2�2sþs2Þ

s2
: ð39Þ

The area of element abc is A1 ¼ labyb=2, where lab ¼ ðxa�xbÞ is
the distance ab. Simplification gives A1 ¼ a2b2=32. The element
def in Fig. 11(b), is the largest one in the mesh. Its area is
A2 ¼ ð4�3sÞa2=32. The following element area ratio is defined as

mm �
A2

A1
¼
ð4�3sÞ

s2
: ð40Þ

Fig. 18 shows the evolution of rm and mm with the parameter s

used to generate the distorted mesh. Observing Figs. 13 and 14
one can note that the simulation is extended to very small values
of s. The extreme value of s¼0.02 was arbitrarily chosen for the
simulations, and all results for this mesh are still ‘‘reasonable’’,
although much less accurate than those for larger values of s.
With the help of Fig. 18, one can observe the level of distortion
from two other viewpoints. For s¼0.02, (39) and (40) gives
rm¼9802 and mm¼9900 for mesh M¼4, i.e., the smallest element

is a needle with aspect ratio 9802:1 and the ratio between the
largest and the smallest element in the mesh is 9900:1. In general,
no mesh generator produces such distorted elements although
elements with aspect ratios of around 100 can be produced in
badly generated geometries, with cuspids and other maladies.
Other situations where severe distortion occurs, with aspect
ratios of around 100, are those generated from the large material
deformation in Lagrangian meshes, in processes like metal form-
ing, for example.

4.3.2. Condition number of the stiffness matrix

Table 2 shows the variation in the condition number with the
distortion parameter s. The results are obtained from both,
smooth Ck-GFEM and the standard C0-GFEM formulations. The
mesh used is M¼4�4, and the degree of the most complete
polynomial is b¼4. In the continuous formulation the edge
function is exponential, with a continuity parameter k¼1. In all
cases, the integration rule is triangular with NIP¼11.2. It can be
seen that, for moderate levels of distortion, the smooth Ck-GFEM
shows stiffness matrices significantly better conditioned than the
standard C0-GFEM. However, for more severe distortions, with
s¼0.6 or smaller, the condition number is equally excessive for
both formulations.

The high condition numbers for C0-GFEM are well known, and
it makes necessary the use of the iterative K2e method [52,60] to
solve the algebraic system of equations, irrespective of the
mathematical model being discretized. Results like those shown
in Table 2, for models with mesh distortion, consistently indicate
better condition number with Ck-GFEM.

4.4. Stresses

Some stress distributions along the thickness are presented
and discussed as follows. Figs. 19 and 20 show normalized in-
plane and transverse shear stresses through thickness at the
center of the laminate and at the center of the boundary at the
y-axis, (0;a/2), respectively. The exponential edge function and
Gaussian integration with NIP¼10 for the in-plane stresses and
triangular rule with NIP¼11.22 for the shear values were used.5

The laminate is very thick, with a/t¼4. Only enrichments p¼1
and 2 give results sufficiently distant from the analytical curve of
sx to be visible on the graph, therefore, results for p¼3 and 4 are
not shown. The analytical values for shear stresses shown were
obtained by constitutive equations and by integration of the local
equilibrium equations, according to (27).

The Ck-GFEM results in Fig. 20 are the transverse shear stresses
obtained directly from the constitutive equations, from integration
of the local equilibrium equations and corrected values obtained
from (28)–(31). These values are indicated as ‘‘constitutive’’,
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Fig. 18. Variation in the element aspect ratio and element size ratio with

distortion ratio for distorted mesh M¼2, 4.

Table 2
Condition number for continuous and standard GFEM in distorted meshes.

Distortion parameter s Ck-GFEM C0-GFEM

1.0 9.74 13.4

0.8 10.6 13.5

0.6 13.3 14.6

0.4 16.3 16.5

0.2 20.7 19.0

0.05 26.8 23.8

5 The integrated shear stresses utilize second derivatives, which are more

oscillatory than the first derivatives utilized in the in-plane stresses. The triangular

rule was chosen for the shear stresses due to its better efficiency in triangular

domains, compared with the Gaussian rule. However, the Gaussian rule could be

utilized as well.
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‘‘integration’’and ‘‘corrected’’, respectively. Since the integration
procedure requires the differentiation of the approximated in-plane
stresses, the least required enrichment is p¼2. The responses for
p¼3 and 4 become visually indistinguishable on the analytical curve
and are not shown. Numerical values are shown in Table 3 for
enrichment p¼2. The accuracy of the shear stresses obtained from
the constitutive equations ðtxz0Þ and the improvement of the
corrected values ðtc

xz0Þ in relation to the integrated ones ðti
xz0Þ can

be noted.
Fig. 21 shows the transverse shear stress at the reference

surface of the laminate versus y-axis, along the boundary x¼0, for
enrichments p¼2 and 3. One can note that for p¼2 the integrated
approximation is irregular, probably due to intrinsic character-
istics of the second derivatives of the Ck-GFEM basis functions. As
expected, values for p¼3 show a smoother variation along the
boundary. The same figure also shows the results for the shear
stresses obtained from the corrections of (28)–(31). These correc-
tions have the ability to improve and smoothen the curve, even
for p¼2. The irregularities observed in the second derivatives
were also shown in the transverse shear stresses, Fig. 24.

4.5. Transverse shear stresses by FEM and Ck-GFEM

In this section the cost of the analysis is appreciated by
comparing three methods: the standard FEM, the standard
discontinuous C0-GFEM and the continuous Ck-GFEM. The
problem analyzed is the same square laminated plate used in
the previous cases, subjected to the same sine distributed load
with a maximum value of 0.001 Pa. The total thickness of the
laminate is t¼0.020 m, such that the aspect ratio is a=t¼ 10. Each
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triangular integration rule with NIP¼11.22. a/t¼4. Mesh index M¼6.

Table 3

Normalized stresses along the thickness: sx0 ¼ sxt2=ðqoa2Þ at ðx; yÞ ¼ ða=2; a=2Þ

and txz0 ¼ txzt=ðqoaÞ at ðx; yÞ ¼ ð0; a=2Þ. Mesh index M¼ 6, a=t¼ 4, enrichment

p¼ 2.

Analytic Ck-GFEM

z a

sx0 txz0 ti
xz0

sx0 txz0 ti
xz0

tc
xz0

0.0 0.0 0.122354 0.342815 0.0 0.1220 0.3465 0.3417

0.167 0.010241 0.122354 0.337052 0.0100 0.1220 0.3410 0.3363

0.167 0.149161 0.305885 0.337052 0.1457 0.3051 0.3410 0.3363

0.500 0.447483 0.305885 0.0 0.4371 0.3051 0.0 0.0

-0.5

z0

-0.5

-0.3

-0.1

0.1

0.3

0.5

σ x
0

Edge function: Exp

NIP = 12

Analytical

p = 2

p = 1

-0.17 0.17 0.5

Fig. 19. Normalized in-plane normal stress sx0 ¼ sxt2=ðq0a2Þ, along the thickness

at ðx; yÞ ¼ ða=2; b=2Þ, with Ck-GFEM. Normalized coordinate z0z=t. Exponential

edge function, Gaussian integration rule with NIP¼12. a/t¼4. Mesh index M¼6.
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of the three models was designed to have approximately the same
number of unrestricted degrees of freedom, so that the computa-
tional cost of the solution of the algebraic system of equations is
approximately the same in all cases. The characteristics of each
model are described next.

1. Standard finite element model. This model was chosen to
provide a reference based on the formulations used in most
commercial codes. In these codes (see Ansys, for instance), the
degenerate solid formulation is used to model shells and plates,
which corresponds to a first-order kinematic model. To obtain
the results shown here the same first-order model with a
triangular element of six nodes and quadratic standard shape
functions based on intrinsic triangular coordinates was used.
The mesh employed is regular and consists of a grid of 27�27
nodes and 338 triangular elements, rendering 1979
non-restricted degrees of freedom associated with the bending.

2. Standard discontinuous C0-GFEM model. The mesh M¼8
(see Fig. 4), that is, 128 elements and 81 nodes was used.
The enrichment functions are of degree p¼3, such that the
basis has degree b¼4. The number of non-restricted degrees of
freedom associated with the bending is 2174.

3. Continuous Ck-GFEM model. The mesh M¼6 (see Fig. 4), that is,
72 elements and 49 nodes was used. The enrichment functions
are of degree p¼4, such that the basis has degree b¼4. The
edge function is exponential. The number of non-restricted
degrees of freedom associated with the bending is 1965.

Table 4 shows the analytical and numerical results for normal
stress sx at coordinates ðx; y; zÞ ¼ ða=2; a=2; t=2Þ, transverse shear
stress at coordinates ðx; y; zÞ ¼ ð0; a=2;0Þ and energy of deforma-
tion E. Transverse shear stress is computed directly from the
constitutive equations, txz, from integration through the thick-
ness of the local equilibrium equations, ti

xz, and from the
correction procedure from the transverse shear force, tc

xz. Firstly,
observing the energy of deformation, the exceptional accuracy of

both forms of GFEM when compared with the standard FEM
model can be observed, although in everyday engineering practice
the accuracy of the latter is acceptable. The accuracy for the
normal stress is similar in all three cases, as in the constitutive
transverse shear stress. However, one can note that the relative
error in the integrated shear stress for the FEM model is �2:4%,
and for GFEM, þ0.23%. Considering the corrected values, the
C0-GFEM relative error is �0.0063%. The explanation for these
results is that the process of integration of the equilibrium
equations involves differentiation of the in-plane stresses. There-
fore, formulations with a low-order basis like the standard FEM
used in commercial packages cannot provide accurate integrated
values for the transverse shear stresses with the ease the GFEM
can provide.

In this section a comparison is made among FEM with quad-
ratic approximation, and C0-GFEM and Ck-GFEM with quartic
approximations, utilizing one different mesh for each case, in
order to obtain approximately the same number of degrees of
freedom in each model. The fact that the rate of p-convergence in
FEM and GFEM is higher than the rate of h-convergence, appar-
ently renders the present comparison unfair. However, the
comparison illustrates perfectly an important part of everyday
reality: the FEM formulations most commonly utilized are of low-
order basis. Therefore, it shows not only poorer convergence
rates, but also, in the case anisotropic laminate bending models,
it is unable to provide accurate response to transverse shear
stresses (or any other post-processed values that requires higher-
order differentiation) irrespective of the h-refinement utilized.

Figs. 22–24 show the fields of the transverse shear stresses
at the reference surface obtained from integration, for all three
models. The FEM results are discontinuous, with a constant
value in each element, as expected, since the basis are of second
degree and the integration involves derivatives of the in-plane
stresses. The C0-GFEM shows a discontinuous but very smooth
response. The Ck-GFEM results for shear stresses obtained from
the integration, in Fig. 24(a), shows peaks at the surface. These
peaks are probably due to the behavior of the second derivatives
of the basis functions. Fig. 24(b) shows the results for shear
stresses obtained from the process of correction with the trans-
verse shear force. This correction smoothes the results, in the
same way as seen in Fig. 21 along the boundary of the
laminated plate.

5. Conclusions

A generalized finite element method based on a partition of
unity (PoU) with smooth approximation is developed in this
paper to model laminated plates under the Mindlin kinematic

Table 4
Energy norm and stresses—comparative results for FEM, C0-GFEM and Ck-GFEM.

Values multiplied by 1000. Units in J and Pa.

ndof’s Analytical FEM C0-GFEM Ck-GFEM

1979 2174 1965

2E 1.801674467 1.80142 1.801674457 1.8016787

sx 51.7249 51.66 51.721 51.61

txz 1.37103 1.385 1.3702 1.3735

ti
xz

3.82823 3.7368 3.8370 3.8366

tc
xz 3.8258 3.8352

Fig. 22. Transverse shear stress ti
xz by integration, from FEM, at coordinate z¼0.
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hypothesis, generating a set of enriched shape functions capable to
result in arbitrarily continuous in-plane stresses everywhere in
the domain. The formulation possess the following characteristics:

(i) The shape functions are obtained from enrichment of PoU
ones. The enrichment functions are of the polynomial type and
defined in global coordinates. The PoU is defined in global
coordinates but with compact support, such that the enrichment
degree can be specified independently in each region of the mesh,
making the procedure appropriate for adaptive schemes.

(ii) The proposed formulation proved to be able to approximate
the solution of anisotropic laminated Mindlin plate problems with
the prescribed degree of continuity in the displacement and stress
fields. In particular, in-plane and transverse shear stresses are
obtained with arbitrary smoothness degree and with excellent
agreement with analytical solutions. Even though the paper con-
centrates all its numerical results on the bending phenomenon the
formulation is complete, including all the coupling effects between
bending and membrane, as is required in the analysis of aniso-
tropic composites. Therefore, the formulation is equally able to
deal with purely membrane problems. The reason for concentrat-
ing on bending is that the ever present difficulties associated with
accurate transverse shear stress computations are traditionally
addressed in bending studies.

(iii) Compared with the standard FEM, the continuous GFEM has
a more elaborate formulation, but shows about the same level of
complexity as the C0-GFEM, except in its elaborated form to
compute the PoU. The demand for more integration points is
associated with increased CPU time instead of formulation com-
plexity. In fact, all the particular details of the formulation can be
encapsulated in a well delimited set of program routines, whose
final result is the set of values for the basis functions and their
derivatives at an integration point, which, as in the FEM, are used in
the standard way in the computation of the deformation matrices.

(iv) The approximation functions generated by the present
procedure have complex shapes with large plateaus and sharp hills,
such that their derivatives are still more irregular in shape. As a
result, the amount of numerical effort required to perform an
adequate evaluation of the coefficients of the stiffness matrix is of
concern. The results show that the edge functions of the polynomial
type require less integration points for the lower degrees. However,
these polynomial degrees also define the level of continuity of the
shape functions generated. Since the weak form of the Mindlin plate
problem requires C0ðOÞ displacement functions, the polynomial
with a degree of one is the simplest polynomial edge function
possible, which generates a discontinuous in-plane stress response.
In this study, surprisingly, it was found that similar integration
difficulties are associated with the Mindlin model, similar to the
Kirchhoff counterpart as reported in [39], but to different extents.

(v) CkðOÞ continuous in-plane stress approximations are
obtained using kþ1 degree polynomial edge functions. If one is
interested in CkðOÞ continuous transverse shear stress approx-
imations, it is necessary to use kþ2 degree polynomial edge
functions. In parallel, instead of the polynomial edge functions,
the exponential ones can be used, which generates C1ðOÞ fields
in convex clouds.

(vi) In clouds with pairs of non-convex edges, the continuity of
the shape functions generated in the method are limited to CkðOÞ,
with k arbitrary and kZ0. This lower continuity applies only at
the corner between the two non-convex edges. Everywhere else
on the edges, the continuity is defined by the selected type of
edge functions. Clearly, the value of k does not affect the
computational cost.

(vii) The heuristic procedure proposed to post-process the
transverse shear stress was shown to be able, in the numerical
experiments, to smoothen the distributions and to improve the
accuracy of the transverse shear stresses.

Fig. 24. Transverse shear stress at coordinate z¼0, from Ck-GFEM with C1 partition of unity. ti
xz is obtained by (a) integration and (b) by using shear force correction.

Fig. 23. Transverse shear stress ti
xz from C0-GFEM by integration, at coordinate z¼0.
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(vii) The required number of integration points for the approx-
imation functions generated from the exponential edge functions
are similar to those of polynomials of degree 2 or 3. The
integration effort varies with the enrichment degree, the plate
thickness and mesh distortion.

(viii) The results show sensitivity with the plate thickness,
although no special care was taken to prevent shear locking.
Consistent results are obtained with aspect ratios length/thick-
ness of between 4 and 1000, for enrichment degrees 2, 3 and 4.

(ix) The results of both formulations, standard and continuous
GFEM, show excellent ability to withstand high mesh distortion.
Consistent results are obtained when meshes built of elements
with aspect ratios of 1:1 to 9800:1 are used. For a given degree of
the most complete polynomial the basis can represent, the
continuous GFEM shows better results than those for the standard
GFEM/XFEM, although it requires more degrees of freedom
operations. However, the preset PoU is much less computationally
expensive than most meshless methods like hp-clouds and ele-
ment-free Galerkin methods, which are usual alternatives for Ck

or C1 approximation functions.
(x) In general, the results show that the continuous GFEM

behaves similarly to the standard GFEM with regard to complex-
ity of formulation, accuracy, resilience to mesh distortion and
condition number. The former shows some improved accuracy for
similar basis and mesh distortion. Therefore, the formulation is
appropriate to discretize boundary value problems, where the
continuous basis is used to approximate the variables which
require higher-order continuity and the standard GFEM/XFEM to
approximate the C0 variables.
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