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a b s t r a c t

The present paper develops a formulation for laminated plates with extensional distributed piezoelectric
sensors/actuators. This formulation is based on linear electroelasticity, and an equivalent single layer is
used for the mechanical displacement field, applying a Higher-Order Shear Deformation Theory (HSDT),
whereas a layerwise discretization is used in the thickness direction for the electric potential. The electric
and mechanical local equilibrium equations and local constitutive equations for the problem are identi-
fied. The Principle of Virtual Work is used to derive the dynamic equilibrium equations in terms of gen-
eralized forces and the consistent boundary conditions. The piezoelectric laminate constitutive equations
are built and used to write the equations of motion in terms of generalized displacements. Finally, ana-
lytical solutions for simply supported square laminates with piezoelectric layers are developed. The
entire laminate, composed of the base structure and piezoelectric layers, can be arbitrary orthotropic.
The solution is adequate for an arbitrary number of piezoelectric layers and stacking positions. Moreover,
the solution takes into account all material coefficients, whether mechanical, piezoelectric or dielectric.
Analytical results are obtained for static bending, both in sensor and actuation modes, and for free vibra-
tion of symmetric cross-ply laminates with piezoelectric layers externally bonded to the plate.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In general, adaptive materials have mechanical properties that
are controlled by temperature, and magnetic or electrical fields,
and may be applied in the conception of smart/intelligent struc-
tures endowed with self-monitoring and self-adaptation capabili-
ties. The focus of studies devoted to the development of these
smart/intelligent structures has ranged from shape control or
vibration control/suppression to the self-diagnostic applications
for fracture and damage detection within a structure.

Piezoelectric materials can provide to a structural system the
capability of altering its response through sensing, actuation and
control. By integrating surface-bonded and/or embedded actuators
into structural components, desired localized strains may be in-
duced by applying the appropriate voltage to the actuators. In this
regard, the mechanical interaction between the actuators and the
host structure must be fully understood.

The piezoelectric actuators used in beams and plates are gener-
ally thin rectangular elements, such that application of an electric
field in the thickness direction causes changes in the lateral dimen-
sion. This effect characterizes the extensional piezoelectric actua-
tors. These are usually bonded to the outermost surfaces of the
structures to achieve effective actuation capability. On the other

hand, if it is important to avoid damage by contact with the sur-
rounding environment, embedded shear piezoelectric actuators
may be used, in which case the application of an electric field in
the thickness direction induces transverse shear deformation of
the laminated beam, plate or sandwich structure.

In the process of testing and validating of a finite element code
it is useful to have analytic solutions available for some standard
cases, developed for the same kinematic model implemented in
the code. A second major reason for seeking analytical solutions
is that, even if they are always restricted in scope, they provide
an insight into several aspects related to the physical behavior of
the model. In recent years some analytical solutions have been ob-
tained for some of the most used kinematic models of piezoelectric
laminated plates, which are referred to in this section.

Several mechanical models for laminated plates with piezoelec-
tric layers have been developed and the work described in [1,2] can
be referenced as pioneer studies in this subject. Lee [3] developed a
theory for laminated plates with distributed piezoelectric layers
based on the Classical Laminate Plate Theory (CLPT). Wang and
Rogers [4] also applied the classical lamination theory, in this case
to plates with surface-bonded or embedded piezoelectric patches.

A coupled First-Order Shear Deformation Theory (FSDT) for
multilayered piezoelectric plates was presented by Hwang and
Wu [5]. Ray et al. [6] shows exact solutions for simply supported
linear elastic laminated plates with embedded and surface-bonded
distributed piezoelectric actuators. Vel and Batra [7] used the
Eshelby–Stroh formalism to analyze the cylindrical bending of
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laminated plates with distributed and segmented piezoelectric
actuators. Vel and Batra [8] presented an exact three-dimensional
solution for the static cylindrical bending of simply supported lam-
inated plates with embedded shear piezoelectric actuators and
subjected to mechanical and electric loading on the upper and low-
er surfaces. Vel et al. [9] presented an analytical solution for cylin-
drical bending vibrations of linear piezoelectric laminated plates
obtained by extending the Stroh formalism to generalized plane
strain vibrations.

An exact solution for the analysis of adaptive plates with dis-
tributed actuators considering a class of Piezoelectric Fiber Rein-
force Composites (PFRC) was derived by Mallik and Ray [10].
According to the authors, such a class of materials would have
more effective control capability due its better effective piezoelec-
tric coefficients as compared to its monolithic constituent
counterpart.

Mitchell and Reddy [11] presented a hybrid theory, and corre-
sponding analytical solutions, based on an equivalent single layer
theory, Reddy’s Higher-Order Shear Deformation Theory (HSDT)
[12], for the mechanical displacements and layerwise discretiza-
tion of the electric potential. It should be noted that Reddy’s HSDT
is a C1-continuous formulation, but most of the finite element for-
mulations for higher order models are based on Levinson’s model,
which requires only C0-continuous generalized displacements,
which is the model used in the present paper to describe the
mechanical displacements.

A variational asymptotic method in which the original three-
dimensional piezoelectricity problem is split into an one-dimen-
sional through-the-thickness analysis and a two-dimensional plate
analysis, electromechanically coupled, have been used by Liao and
Yu [13]. They transformed an asymptotically correct energy func-
tional into a generalized Reissner–Mindlin model, in which the
transverse shear strains are introduced as two additional degrees
of freedom. The formulation was applied for analysis of a piezo-
electric composite single layer plate, subject to cylindrical bending,
considering in-plane and thickness polarization, considering pre-
scribed electric potential on the lateral boundary, from the Ritz
approximation method.

The buckling and free vibration response of symmetrically lam-
inated hybrid angle-ply panels have been addressed by Dumir et al.
[14], considering the non-linearity, in the von Kármán sense, and
using the Improved Third Order Single Layer Theory of Kumari
et al. [15]. The authors performed comparisons with the results ob-
tained from the Third Order ZigZag Theory with additional layer-
wise terms for in-plane displacements. They also studied the
steady state forced damped response of simply supported compos-
ite and sandwich panels in cylindrical bending. Nevertheless, it
should be noted that this improved single layer theory demands
C1-continuity when it is applied to finite element formulations,
due the derivative of the transverse displacement in the in-plane
assumed displacement.

On the other hand, Moita et al. [16] have used the Higher-Order
Shear Deformation Theory of Reddy [12] in their implementation
of a triangular finite element plate based on the magneto-electro-
elasticity, considering one degree of freedom for the electrical po-
tential and another one corresponding to the magnetic potential,
both for each element layer, and considering linear strain–dis-
placement relations. They analyzed a simply-supported square
plate under static bending and free vibration and compared some
results with those obtained by Lage et al. [17]. However, an analyt-
ical development was addressed by Reddy [18] which derived a
formulation considering only the piezoelectric effect but with sim-
ilar kinematical hypothesis.

The present paper develops a formulation for piezoelectric
laminated plates with extensional distributed sensors/actuators
using a hybrid HSDT-layerwise model. This formulation is based

on linear electroelasticity, and it is hybrid in the sense that an
equivalent single layer is used for the mechanical displacement
field, whereas a layerwise discretization is used in the thickness
direction for the electric potential. Such kinematical hypothesis
keep the C0-continuity requirement for finite element implemen-
tations and have been used in Torres and Mendonça [19] for a
numerical approach based on the Generalized Finite Element
Method (GFEM).

The remainder of this paper is organized as follows. Section 2
presents the electric and mechanical local equilibrium equations
considered for this problem. The constitutive equations are derived
in Section 3. Section 4 deals with the kinematical hypotheses and
Section 5 uses the Principle of Virtual Work to derive the equilib-
rium equations associated with the model, in terms of generalized
forces, and the consistent boundary conditions. Section 6 presents
the piezoelectric laminate constitutive equations which are used in
Section 7 to write the equations of motion in terms of generalized
unknowns. In Section 8, analytical solutions are developed for sim-
ply supported square laminates with externally bonded piezoelec-
tric layers, for static bending, in sensor and actuation modes, and
for free vibration. Each piezoelectric layer admits non-zero electric
potential only at its lower surface. The applicability of the formu-
lation is verified through numerical assessments in Section 10.
Some conclusions are outlined in Section 11.

2. Equilibrium equations

Let the body forces per unit volume in Cartesian components be
designated as F ¼ fFx; Fy; FzgT and the surface forces per unit area
be T ¼ fTx; Ty; TzgT . The superscript T indicates a transposed ma-
trix. The internal stress state must satisfy the Cauchy equilibrium
equations, divrþ F ¼ 0, where the Principle of D’Alembert was ap-
plied to define the equivalent body forces per unit volume F, given
by F ¼ F� q€u, with double dot standing for second time derivative,
where u is the vector of displacement Cartesian components.

On the portion Sr of the body surface, where the boundary trac-
tion T is prescribed, it is necessary to verify the equilibrium condi-
tions rijnj ¼ Ti, where n ¼ fnx; ny; nzgT are the Cartesian
components of the outward unit normal vector of the boundary.

For the development of an electro-mechanical coupled problem
it is still necessary to establish that, if the material has a free elec-
tric charge Q e per unit volume, the electric displacement is a vector
field with components D ¼ fDx; Dy; DzgT , which must satisfy the
equilibrium condition, div D ¼ Q e in the domain, and Dini ¼ qe on
the portion Sq of the boundary where there exists a free electric
charge qe per unit area.

3. Constitutive equations

The coupling between the mechanical, thermal and electric
fields can be established utilizing thermodynamic principles and
the Maxwell relations [20]. Analogously to the deformation energy
functional U0 in the linear elasticity theory and to the free energy
functional of Helmholtz W0 in thermoelasticity, the existence of a
functional U0 is assumed such that

U0ðeij; Ei;/Þ ¼ U0 � E � D� g/

¼ 1
2

Cijkleijekl � eijkeijEk � bijeij/

� 1
2
vklEkEl � pkEk/�

qcv

2/0
/2 ð1Þ

denominated the Gibbs free energy functional, or the enthalpy func-
tional, where g is the enthalpy, Cijkl are elastic moduli, eijk are the
piezoelectric moduli or, more precisely, the constants of piezoelec-
tric deformation, vij are dielectric constants, pk are the pyroelectric
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constants, bij are thermal expansion coefficients, cv is the specific
heat at constant volume, by unit mass, and h0 is the reference tem-
perature. Differentiation of this functional with respect to the fields
e, E and h results in the coupled constitutive relations for a deform-
able pyro-piezoelectric material, as can be seen in [20].

The formulation utilized in the present paper ignores variations
in temperature, such that the coupled equations become

ri ¼ CE
ijej � eikEk

Dk ¼ ekjej þ ve
klEl

g ¼ bjej þ pkEk

ð2Þ

where rij are the components of the mechanical stress tensor, Di are
the components of the electric displacement vector and g is the en-
thalpy. In (2) the contracted notation was used, considering the
stress and strain tensors to be symmetrical. The enthalpy becomes
uncoupled from the other fields, and the problem solution is ob-
tained from the first two equations. These relations can be reor-
dered into one single-matrix linear relation, electromechanically
coupled, in the orthotropic material directions, along axes 1, 2
and 3

r1

D1

( )k

¼ C1 �e1T

e1 v1

" #k
e1

E1

( )k

ð3Þ

The superscript 1 indicates the coordinate system and k is the num-
ber of an arbitrary piezoelectric layer. For the piezoelectric exten-
sional mode of actuation, only the following coefficients in (3) are
different to zero: C1

11; C
1
12;C

1
13; C

1
22;C

1
23, C1

33;C
1
44; C

1
55 and C1

66, for the
stiffness matrix; e1

15; e
1
24; e

1
31; e

1
32 and e1

33, for the piezoelectric matrix;
and v1

11;v1
22 and v1

33 for the dielectric matrix.
In this formulation each composite layer is considered orthotro-

pic, whether it is piezoelectric or not. Therefore, the constitutive
relation (3) must be rotated to the global laminate coordinate sys-
tem, according to the layer orientation angle, and then be com-
bined into the laminate constitutive relation.

In addition, for simple monolithic piezoelectric materials polar-
ized along the principal transverse direction 3 , the piezoelectric
properties would be the same in both 1 and 2 in-plane directions.
The two piezoelectric constants that are usually tabulated are d31

and d33 (in the strain formulation) where the first subscript indi-
cates the direction of the electric field and the second subscript
the direction of the strain. It can be shown that the material
parameters are interrelated by dmi ¼ emlCli.

4. Kinematic hypotheses

In the present study the mechanical bending behavior of the
plate is described by the Equivalent Single Layer (ESL) methodol-
ogy, using the kinematical hypothesis following the Levinson’s
Higher-Order Shear Deformation Theory (HSDT) [21], which can
be summarized by the following assumed displacement field

uðx; tÞ ¼ u0 þ zwx þ z3w3x

vðx; tÞ ¼ v0 þ zwy þ z3w3y

wðx; tÞ ¼ w0

ð4Þ

where ðu; v;wÞ are the Cartesian displacement components. Using
the linear strain–displacement relations it is possible to obtain
the strain field, which is split into coplanar strains
emf ðx; tÞ ¼ fex; ey; cxyg

T and transverse strains ccðx; tÞ ¼ fcyz; cxzg
T .

The coplanar strains are expressed as

emf ðx; tÞ ¼ e0 þ zj1 þ z3j3 ð5Þ

where it is possible to identify the generalized extensional strains, e0,
the generalized flexural rotations, j1, and the generalized warp rota-
tions, j3.

The transverse shear strains ccðx; tÞ are given by

cc ¼ c0 þ 3z2j2 ð6Þ

where it is possible to identify the generalized shear strains, c0, and
the generalized shear-warp strains, j2.

It is assumed that the electric potential in an intermediary posi-
tion z, within an arbitrary piezoelectric layer k, is given by the lin-
ear expression

uðkÞðzÞ ¼ zk � z
hk

uk�1 ð7Þ

where uk�1 is the electric potential value on the lower surface of a
piezoelectric layer, and hk and zk are the thickness and coordinate of
the upper surface of the k-layer, respectively. Throughout this pa-
per, it is assumed that the potential at the upper surface of all pie-
zoelectric layers is zero, i.e., uk ¼ 0.

The electric field is the gradient of the electric potential

EðkÞ ¼ �ruðkÞðzÞ ð8Þ

Therefore, the in-plane components of the electric field, Ex and Ey,
are approximated by a linear piecewise function in z and the trans-
verse component Ez is a constant value in z, such that

Ex

Ey

� �ðkÞ
¼ z� zk

hk

� � uk�1;x

uk�1;y

( )
¼ z� zk

hk

� �
EðkÞp ð9Þ

EðkÞz ¼
uk�1

hk
ð10Þ

5. Principle of Virtual Work

The statement of the virtual work balance for the electro-
mechanical coupled problem is

Z
V

rTdedV �
Z

V
DTdEdV ¼

Z
V

FTdudV þ
Z

Sr

TTdudS

þ
Z

V
QedudV �

Z
Sq

�qedudS ð11Þ

which must be satisfied for any kinematically admissible du and du.
The balance stated by (11) is a necessary and sufficient condition to
satisfy the local mechanical and electric equilibrium conditions.

Next, standard operations are performed in (11): variations of
the generalized deformations are obtained from (5) and (6) and
incorporated into the equation. The volume integrals are separated
into area and thickness parts, and the z dependencies are explicitly
integrated. The resulting expression are obtained in terms of
mechanical and electrical resultant generalized forces.

The generalized resultant internal forces are defined as

N;M;M3f g ¼
XN

k¼1

Z zk

zk�1

rðkÞ 1; z; z3� �
dz ð12Þ

Q ;Q 2f g ¼
XN

k¼1

Z zk

zk�1

sðkÞ 1; z2� �
dz ð13Þ

LðkÞ ¼
Lx

Ly

� �ðkÞ
¼
Z zk

zk�1

z� zk

hk

� �
Dx

Dy

� �ðkÞ
dz ð14Þ

Jk ¼
Z zk

zk�1

DðkÞz

hk
dz ð15Þ
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where N ¼ fNx; Ny; NxygT , M ¼ fMx; My; MxygT and M3 ¼ fM3x;

M3y; M3xygT are in-plane stress resultants, whereas Q ¼ fQy; QxgT

and Q 2 ¼ fQ2y; Q2xgT are transverse shear stress resultants, and
r ¼ frx; ry; sxygT and s ¼ fsyz; sxzgT . It is important to note that
both LðkÞ, the in-plane electrical displacement resultant, and Jk, the
transversal electrical displacement resultant, are defined for each
piezoelectric layer.

In the derivation of the virtual work done by the external forces,
the body is considered to be subjected to distributed forces on the
upper surface fqsx; qsy; qszg, on the lower surface fqix; qiy; qizg and
on the boundary fTn; Tns; Tnzg. Tn; Tns and Tnz are the normal, in-
plane and transverse shear forces per unity area, respectively. Here,
nand s are the normal and tangential directions at the boundary,
respectively, which are used to express resultant forces and gener-
alized displacement at an arbitrary point of the boundary.

It is assumed that the volumetric free charge is zero, that is,
Qe ¼ 0, since the piezoelectric material is dielectric and does not
contain free electric charge. Also, in this work the application of
a surface free electric charge, denoted by qek, is assumed only on
the lower surface of a piezoelectric layer k. The upper surface of
each layer is assumed to be free of charge. Additionally, it is impor-
tant to note that du is null on the upper surface of each piezoelec-
tric layer, such that only the lower surface contributes to the
virtual work in the last integral in Eq. (11).

The following generalized external forces on the bi-dimensional
domain are defined

�qx

�qy

�qz

8><
>:

9>=
>; ¼

�qsx þ �qix

�qsy þ �qiy

�qsz þ �qiz

8><
>:

9>=
>;þ

Z h=2

�h=2

Fx

Fy

Fz

8><
>:

9>=
>;dz

�mx

�my

� �
¼ h

2

�qiy � �qsy

�qsx � �qix

� �
þ
Z h=2

�h=2
z
�Fy

Fx

� �
dz

�m3x

�m3y

� �
¼ h3

8

�qiy � �qsy

�qsx � �qix

� �
þ
Z h=2

�h=2
z3 �Fy

Fx

� �
dz

ð16Þ

Moreover, the generalized external forces applied on the boundary
are

Nn Mn

Nns Mns

Q n M3n

M3ns

2
6664

3
7775 ¼

Z h=2

�h=2

Tn zTn

Tns zTns

Tnz z3Tn

z3Tns

2
6664

3
7775dz ð17Þ

and the generalized inertial forces are

fx ¼ €u0q0 þ €wxq1 þ €w3xq3

fy ¼ €v0q0 þ €wyq1 þ €w3yq3

fz ¼ €w0q0

fmx ¼ €u0q1 þ €wxq2 þ €w3xq4

fmy ¼ €v0q1 þ €wyq2 þ €w3yq4

f3mx ¼ €u0q3 þ €wxq4 þ €w3xq6

f3my ¼ €v0q3 þ €wyq4 þ €w3yq6

ð18Þ

where the generalized mass moments are defined as

qj ¼
XN

k¼1

Z zk

zk�1

qðkÞ zj dz; j ¼ 0;1;2;3;4;6 ð19Þ

The variations of generalized deformations are substituted by vari-
ations of generalized displacements, and integration by parts is pre-
formed on the area integrals. Following standard procedures of
variational calculus, the local equilibrium equations in terms of
resultant forces are obtained as

@Nx

@x
þ @Nxy

@y
þ qx ¼ fx

@Nxy

@x
þ @Ny

@y
þ qy ¼ fy

@Q x

@x
þ
@Q y

@y
þ qz ¼ fz

@Mx

@x
þ @Mxy

@y
� Qx þ �my ¼ fmx

@Mxy

@x
þ @My

@y
� Q y �mx ¼ fmy

@M3x

@x
þ @M3xy

@y
� 3Q2x þm3y ¼ f3mx

@M3xy

@x
þ @M3y

@y
� 3Q2y �m3x ¼ f3my

@LðkÞx

@x
þ
@LðkÞy

@y
� Jk þ qek ¼ 0

ð20Þ

The following variational consistent boundary conditions are also
obtained

Nn ¼ Nn Mn ¼ Mn M3n ¼ M3n

Nns ¼ Nns Mns ¼ Mns M3ns ¼ M3ns Q n ¼ Q n

ð21Þ

on Cr, the portion of the reference surface boundary where external
loads are applied, and LðkÞn ¼ 0 on CðkÞq of the lower surface of each
piezoelectric layer k. The forces on a curved boundary are given by

Nn

Nns

� �
¼

n2
x n2

y 2nxny

�nxny nxny n2
x � n2

y

" # Nx

Ny

Nxy

8><
>:

9>=
>; ð22Þ

Relations for Mn, Mns, M3n and M3ns are analogous to those for Nn

and Nns. In addition

Q n ¼ Q xnx þ Q yny

LðkÞn ¼ LðkÞx nx þ LðkÞy ny

ð23Þ

If there is a free electric charge distributed on the piezoelectric sur-
face, one has the boundary condition LðkÞn ¼ LðkÞm .

6. Constitutive equations of the piezoelectric laminate

The constitutive equations of a laminate relate the generalized
internal forces to the generalized strains and each layer is assumed
to consist of an orthotropic or transversally isotropic material.

An important aspect is an inherent limitation related to the HSDT
model used here becauserx

3 is assumed to vanish. Hence, similarly to
the correction proposed by [22] for their model based on the FSDT,
the imposition of the condition rx

3 ¼ 0 with the elimination of ex
3

leads to modified coefficients of the constitutive matrices as

C11 ¼ C11 �
ðC13Þ2

C33
C12 ¼ C12 �

C13C23

C33

C16 ¼ C16 �
C13C36

C33
C22 ¼ C22 �

ðC23Þ2

C33

C26 ¼ C26 �
C23C36

C33
C66 ¼ C66 �

ðC36Þ2

C33

C44 ¼ C44 C45 ¼ C45 C55 ¼ C55

e14 ¼ e14 e15 ¼ e15 e24 ¼ e24 e25 ¼ e25

e31 ¼ e31 þ
C13e33

C33
e32 ¼ e32 þ

C23e33

C33
e36 ¼ e36 þ

e33C36

C33

v11 ¼ v11 v12 ¼ v12 v22 ¼ v22 v33 ¼ v33 þ
ðe33Þ2

C33

ð24Þ
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where the barred quantities � are the coefficients obtained from the
property matrices after axis rotation.

Therefore, using the definitions of the resultant internal
forces, (12)–(15), the strain–displacement relations, (5) and (6),
the potential–electric field relations, (9) and (10), and the consti-
tutive equations, partitioned into in-plane stresses and transver-
sal shear stresses as well as in-plane electric displacement and
transversal electric displacement, for an arbitrary layer k, it is
possible to define the laminate constitutive equations, which in-
volve the generalized internal resultant forces and the general-
ized strains

N ¼ Ae0 þ Bj1 þ Lj3 �
Xnpiez

k¼1

eðkÞ
T

mf uk�1 ð25Þ

M ¼ Be0 þ Dj1 þ Fj3 �
Xnpiez

k¼1

eðkÞ
T

mf uk�1z1;k ð26Þ

M3 ¼ Le0 þ Fj1 þHj3 �
Xnpiez

k¼1

eðkÞ
T

mf uk�1z2;k ð27Þ

Q ¼ Ac
c0 þ Dc

j2 þ
Xnpiez

k¼1

eðkÞ
T

c z1;k
uk�1;x

uk�1;y

( )ðkÞ
ð28Þ

Q 2 ¼ Dc
c0 þ Fc

j2 þ
Xnpiez

k¼1

eðkÞ
T

c z3;k
uk�1;x

uk�1;y

( )ðkÞ
ð29Þ

LðkÞ ¼ �hk

2
eðkÞc c0 � z3;keðkÞc 3j2 þ z4;kv

ðkÞ
c

uk�1;x

uk�1;y

( )
ð30Þ

Jk ¼ eðkÞmf � e
0 þ z1;keðkÞmf � j1 þ z2;keðkÞmf � j3 þ

vðkÞ33

hk
uk�1 ð31Þ

with

z1;k ¼
1

2hk
ðz2

k � z2
k�1Þ z2;k ¼

1
4hk
ðz4

k � z4
k�1Þ

z3;k ¼
1
hk

z4
k

12
� zkz3

k�1

3
þ z4

k�1

4

� �

z4;k ¼
1

h2
k

z3
k

3
þ zkz2

k�1 � z2
k zk�1 �

z3
k�1

3

� � ð32Þ

The sub-matrices A, B, D, F, H and L are components of the purely
mechanical constitutive matrix of membrane and bending of the
laminate, of dimensions 9� 9, and the sub-matrices Ac, Dc, Fc,
are the components of the purely mechanical constitutive matrix
of transverse shear of the laminate, of dimensions 4 � 4. Their
components are obtained by integration along the thickness in
the following way
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Hij
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dz; i; j ¼ 1;2;6 ð33Þ
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8><
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Z zk

zk�1

Ck
ij

1
z2

z4

8><
>:

9>=
>;dz; i; j ¼ 4;5 ð34Þ

Moreover, we have the definitions

eðkÞmf ¼ e31 e32 e36f gðkÞ

eðkÞc ¼
e14 e15

e24 e25

� 	ðkÞ
vðkÞc ¼

v11 v12

v12 v22

� 	ðkÞ ð35Þ

7. Equations of motion in terms of generalized displacements

The strain–displacement relations (5), (6), (9) and (10) are
substituted in the constitutive relations of the laminate, Eqs.
(25)–(31). Next, the generalized internal resultant forces in these
equations are substituted in (20), which results in the motion
equations in terms of the generalized displacements
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It should be noted that (43) is applied to each piezoelectric layer.

8. Analytic solutions

Here we consider the development of analytic solutions for the
problem of a rectangular laminated plate, of dimensions aand b, as
shown in Fig. 1, simply supported at the four edges, under electric

Fig. 1. Simply supported rectangular plate and essential and natural boundary conditions.
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and mechanical distributed loads. The essential and natural bound-
ary conditions which must be satisfied are also shown in Fig. 1. The
unknown generalized displacements are assumed to be the follow-
ing infinite trigonometric series in the in-plane directions
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w3xðx; y; tÞ
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mn

� �
Sm Sn eixt
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where Sm ¼ sin amx, Sn ¼ sin bny, Cm ¼ cosamx and Cn ¼ cos bny,
with am ¼ mp=a, bn ¼ np=b, m and n are the harmonics, a and b
are the dimensions of the plate and x is the circular frequency.

The equations in (44) satisfy the natural boundary conditions un-
der the condition that A16 ¼ A26 ¼ B16 ¼ B26 ¼ D16 ¼ D26

¼ L16 ¼ L26 ¼ F16 ¼ F26 ¼ H16 ¼ H26 ¼ 0.
Moreover, the expansions in Eq. (44) satisfy the equations of

motion (36)–(43) under the additional restriction of nullity:
Ac

45 ¼ Dc
45 ¼ Fc

45 ¼ eðkÞ14 ¼ eðkÞ25 ¼ eðkÞ36 ¼ vðkÞ12 ¼ 0.
Therefore, the analytical solution developed next is adequate

for square, simply-supported, arbitrary orthotropic base laminates,
such as symmetric and antisymmetric cross-ply regular laminates,
in which the piezoelectric layers are bonded or embedded.

8.1. Static bending analysis

The static formulation is obtained by setting the frequency to
null, x ¼ 0, in the equations of motion. Next, let us consider trans-
verse mechanical load and electrical distributed load in each layer
k, expressed by the following Fourier series

qzðx; yÞ ¼
X1
m¼1

X1
n¼1

Qmn sen amx sen bny

qekðx; yÞ ¼
X1
m¼1

X1
n¼1

HðkÞmn sen amx sen bny
ð45Þ

With these expansions for the external loads, the equations of mo-
tion are satisfied at all points in the domain, for each given m and n
pair, if the algebraic condition, KmnZmn ¼ Fmn, is satisfied, where Kmn

is the stiffness matrix, symmetric and whose dimension is np � np,
with np ¼ ð7þ npiezÞ;Zmn ¼ Umn; Vmn; Wmn; Xmn; Ymn; Xmn; Ymn;f
Uð1Þmn; U

ðNpiezÞ
mn gT is the vector of generalized displacements, and

Fmn ¼ 0; 0; Qmn; 0; 0; 0; 0; Hð1Þmn H
ðNpiezÞ
mn

n oT
is the external forces

vector, both for a harmonic mn.
The coefficients of Kmn are expressed as follows
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8.2. Free vibration analysis

The free vibration formulation is obtained zeroing the external
forces applied to the motion Eqs. (36)–(43), substituting the gener-
alized displacement expansions (44) and applying the restrictions
of nullity to some stiffness coefficients of the laminate, as shown
at the beginning of this section. The motion equations are satisfied
if the condition KZmn ¼ x2MZmn is satisfied. This is a typical real
symmetric eigenvalue problem, where each eigenvector Zmn is
associated with an eigenvalue x2. M is the inertia matrix and its
coefficients are defined in (19).

9. Boundary conditions

The final representation of the coupled system can be expressed
in matrix form as

M 0
0 0

� 	 €U
€U

( )
þ

Kuu Ku/

K/u K//

� 	
U
U

� �
¼

FðtÞ
Q ðtÞ

� �
ð47Þ

where Kuu is the purely mechanical stiffness matrix, Ku/ ¼ KT
/u is

the piezoelectric stiffness matrix, K// is the purely electrical stiff-
ness matrix, and €� stands for the second time derivative. In (47)
one can have more than one piezoelectric layer, with U repre-
senting a vector with all electric degrees of freedom and U con-
tains all mechanical nodal displacements. Here, FðtÞ is a vector
of generalized forces applied on the reference plane and Q ðtÞ is
the vector of the electric charge on the bottom surfaces of piezo-
electric layers.

For purely mechanical essential boundary conditions, it is cur-
rent practice to partition the mechanical degrees of freedom vector
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into prescribed values on the boundary (referred to here as
‘‘applied”) and free values, that is, U ¼ fUf ; Uag, where f stands
for free and a stands for applied. Therefore, the appropriate matri-
ces in (47) are also partitioned in the form

Mff Mfa 0
Maf Maa 0

0 0 0

2
64

3
75

€Uf

€Ua

€U

8><
>:

9>=
>;þ

Kff
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uu Kff
u/

Kaf
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uu Kaa
u/

Kff
/u Kaa

/u K//

2
664

3
775

Uf

Ua

U

8><
>:

9>=
>; ¼

F
FR

Q

8><
>:

9>=
>;
ð48Þ

Considering system (48) as three matrix equations, the third one is
used to isolate U ¼ �K�1

//½K
aa
/uUa þ Kff

/uUf �, taking Q ¼ 0 as the sensor
case [23]. This expression is used to eliminate U in the first equa-
tion, which generates the reduced algebraic problem (49) for the
mechanical unknowns only. This problem is solved first and its
solution is used next to obtain U.

Mff €Uf þ KUf ¼ F ð49Þ

with

K ¼ Kff
uu � Kff

u/ K//

� �1Kff
/u


 �
ð50Þ

F ¼ Fþ Kff
u/ K//

� �1Kaa
/u � Kfa

uu


 �
Ua �Mfa €Ua ð51Þ

Since the piezoelectric layers may behave as actuators or sensors,
the electrical boundary conditions can be imposed by the following
procedure, according to [23,24]. The electric potential vector is sub-
divided into a free or sensory component Uf representing the volt-
age output at the sensors, and a forced or active component Ua

representing the voltage imposed on the active layers, such that
U ¼ fUf ; UagT . Thus, the purely electric stiffness K// and coupled
piezoelectric matrices Kfa

u/ and Kfa
/u are partitioned such that
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The zeroes in the stiffness matrix come from the fact that K// is
diagonal due to the layerwise description. Separating the active
and sensory potentials, the first two lines of (52) take the following
form

M 0
0 0

� 	 €U
€Uf

( )
þ

Kuu Kff
u/

Kff
/u Kff

//

" #
U
Uf

� �
¼

F
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0

( )
Ua

ð53Þ

where the right-hand side includes the excitation of the structure in
terms of mechanical loads and voltages applied on the actuators.
The electric charge at the sensors Q f remains constant with time
and is assumed to be zero. The second equation in (53) is used to
isolate Uf , which is used to eliminate it in the first of the equations
in (53). The final system of equations is

M€Uþ KU ¼ F
Kff

//Uf ¼ �Kff
/uU

(
ð54Þ

with

K ¼ ðKuu � Kff
u/ðK

ff
//Þ

�1Kff
/uÞ

F ¼ F� Kfa
u/Ua

(
ð55Þ

The equations in (54) form a set of two uncoupled algebraic prob-
lems. The purely mechanical displacements U are obtained from
the first problem and are applied to the right hand side of the sec-
ond one, whose solution gives the nodal values of the sensory volt-
ages Uf .

10. Numerical results

The first set of applications aims to show the capability of the
present formulation to evaluate primal variables, i.e., mechanical
displacements and electrical potentials. Such an assessment is
accomplished through the static analysis of square homogeneous
and composite laminates with piezoelectric layers on the bottom
and top surfaces, subjected to distributed mechanical loads or dis-
tributed electrical potential. The results are compared with those
of an analytical solution based on the LT-FSDT model, developed
by Machado [25]. Next, the results for the stress distribution are
compared with those of an exact solution based on the elasticity
theory presented by Mallik and Ray [10]. Finally, the results for
the free vibration analysis of a square piezoelectric composite lam-
inated plate considering two electrical boundary conditions, open
and closed circuit, are discussed in Section 9. In all cases, in order
to be able to make comparisons with other similar analytical solu-
tions, the host plate is composed of symmetric cross-ply laminates,
although the analytical solution is not restricted to this case.

10.1. Case 1 – static bending analysis of homogeneous plate

This case consists of a square plate with three layers. The piezo-
electric layers are the first and third ones, and each has a thickness
t=2, where t is the sum of the thicknesses of all piezoelectric layers.
The total laminate thickness is h. The internal layer is assumed be
aluminum with the properties E ¼ 70:0 GPa and G ¼ 26:0 GPa. The
piezoelectric layers are PZT, with the following properties

E1 ¼ E2 ¼ 94:95 GPa E3 ¼ 81:89 GPa
G12 ¼ 35:90 GPa G23 ¼ G13 ¼ 25:40 GPa
m12 ¼ 0:32 m13 ¼ m23 ¼ 0:38

e31 ¼ e32 ¼ �2:10 C=m2 e15 ¼ e24 ¼ 9:20 C=m2

e33 ¼ 9:50 C=m2 v11 ¼ v22 ¼ 4:07� 10�9 F=m

v33 ¼ 2:08� 10�9 F=m

In the first load case the piezoelectric layers are assumed to be sen-
sors, characterizing the sensitive case, and a uniformly distributed
mechanical load, qzðx; yÞ ¼ 1 N=m2, is applied. The corresponding
Fourier coefficients in (45) are Qmn ¼ 16=ðp2mnÞ, for
m; n ¼ 1;3;5; . . ..

The second load case consists of an active case, where a uni-
formly distributed electrical potential, u0 ¼ �u2 ¼ 1 V, is applied
as the essential boundary conditions on the bottom surfaces of
the piezoelectric layers. The corresponding Fourier coefficients in
(45) are U0

mn ¼ �U2
mn = 16=ðp2mnÞ, for m;n ¼ 1;3;5; . . ..

For the sensitive case, the deflections and potentials on the bot-
tom surfaces of the piezoelectric layers are evaluated at the center
plate and are shown in Table 1 for several ratios t=h of piezoelectric
to laminate thicknesses, and plate aspect ratios a=h of length to
laminate thickness. For the active case, the deflections are tabu-
lated in the Table 2.

Table 1 shows that for the sensitive case the results provided by
the LT-FSDT [25] and LT-HSDT (this study) agree better for the
thicker homogeneous plates. In addition, the relative errors are
more expressive for the computed potentials. For the active case,
Table 2 shows that there is almost no difference between the
two formulations.

10.2. Case 2 – displacement in static bending of composite laminated
plates

For the sake of generality and aiming to provide more reference
results, a square composite laminated plate is considered with
stacking sequence ½0=90=0� of Graphite/Epoxy and two PZT-4
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piezoelectric layers bonded on the surfaces. The material proper-
ties [26] for each substrate layer are

E1 ¼ 132:38 GPa E2 ¼ E3 ¼ 10:76 GPa
G12 ¼ 3:61 GPa G13 ¼ G23 ¼ 5:65 GPa
m23 ¼ 0:49 m12 ¼ m13 ¼ 0:24

and the material properties for the PZT-4 are

E1 ¼ E2 ¼ 81:30 GPa E3 ¼ 64:50 GPa
G12 ¼ G13 ¼ 25:60 GPa G23 ¼ 30:60 GPa
m12 ¼ 0:33 m13 ¼ m23 ¼ 0:43

d31 ¼ d32 ¼ �122� 10�12 C=N d33 ¼ �285� 10�12 C=N

v33 ¼ 18:585� 10�9 F=m

The plate is subjected to a sinusoidal mechanical load of amplitude
qz ¼ 1:621 N=m2 for the sensitive case and to a sinusoidal electrical
potential of amplitude u0 ¼ �u4 ¼ 1:621 V, (the layers k ¼ 1 and
k ¼ 5 are piezoelectric), for the active case. The results for maxi-
mum deflection and electric potential are given in Tables 3 and 4,
respectively. In these tables, the values are normalized to E2 and
d32, which are properties of the base structural layers and the piezo-
electric layers, respectively.

10.3. Case 3 – stresses in static bending of composite laminated plates

The performance of the proposed LT-HSDT model to evaluate
stress distributions is considered in the problem of a square piezo-
electric composite plate subjected to a mechanical load or com-
bined mechanical/electrical loads, as presented by Mallik and Ray
[10]. The material properties for the layers of the substrate are

E1 ¼ 172:9 GPa E1=E2 ¼ E1=E3 ¼ 25
G23 ¼ 0:2E2 G12 ¼ G13 ¼ 0:5E2

m12 ¼ m13 ¼ m23 ¼ 0:25

The material properties of the Piezoelectric Fiber Reinforced Com-
posite (PFRC), a composite material obtained by combining an
Epoxy matrix with PZT unidirectional fibers, were calculated using
the micromechanics model derived by Mallik and Ray [10] and
are as follows:

C11 ¼ 32:6 GPa C12 ¼ C21 ¼ 10:76 GPa
C23 ¼ 3:85 GPa C13 ¼ C31 ¼ 4:76 GPa
C44 ¼ 1:05 GPa C22 ¼ C33 ¼ 7:20 GPa

C55 ¼ C66 ¼ 1:29 GPa e31 ¼ �6:76 C=m2

v11 ¼ v22 ¼ 0:037� 10�9 C=Vm v33 ¼ 10:64� 10�9 C=Vm

Table 1
Maximum deflection and maximum potential for a homogeneous plate with piezoelectric sensors subjected to a uniformly distributed mechanical load.

t=h Source a=h

ðw=hÞ � 109 ð/0=hÞ � 102

7 10 20 7 10 20

0.10 This study 1.4337 5.6295 86.1268 �3.0078 �6.1127 �24.3769
[25] 1.4369 5.6299 85.9884 �2.9964 �6.1355 �24.6012

0.20 This study 1.3087 5.1106 77.8483 �5.1104 �10.4197 �41.6509
[25] 1.3122 5.1092 77.6435 �5.0710 �10.4320 �41.9677

0.30 This study 1.2290 4.7773 72.4956 �6.6806 �13.6755 �54.8219
[25] 1.2318 4.7732 72.2506 �6.5998 �13.6571 �55.1706

0.40 This study 1.1780 4.5620 69.0151 �7.8958 �16.2431 �65.3446
[25] 1.1798 4.5552 68.7447 �7.7651 �16.1824 �65.6958

Table 2
Maximum deflection for a homogeneous plate with piezoelectric actuators subjected
to distributed uniform electrical potentials.

t=h Source w� 109

a=h

7 10 20

0.10 This study 3.5563 7.2201 28.7717
[25] 3.5511 7.2471 28.9883

0.20 This study 3.1545 6.4117 25.5716
[25] 3.1553 6.4394 25.7577

0.30 This study 2.8396 5.7750 23.0423
[25] 2.8426 5.8012 23.2049

0.40 This study 2.5830 5.2439 20.9651
[25] 2.5858 5.2771 21.1084

Table 3
Maximum deflection and maximum potential for a laminated composite plate with
piezoelectric sensors subjected to a sinusoidal mechanical load.

t=h ðwE2h3
=a4q0Þ � 103 ð/h3

=q0d32Þ � 10�4

a=h a=h

5 10 20 5 10 20

0.03 13.805 8.816 8.137 1.747 0.368 0.091
0.05 13.021 8.321 7.060 2.638 0.567 0.134
0.10 11.631 7.389 6.263 4.304 0.961 0.231
0.20 10.024 6.248 5.268 6.380 1.494 0.365
0.30 8.934 5.549 4.681 7.662 1.853 0.458
0.40 7.919 5.035 4.300 8.526 2.122 0.529
0.50 6.946 4.631 4.042 9.129 2.336 0.587
0.60 6.122 4.328 3.873 9.555 2.510 0.635
0.70 5.507 4.121 3.771 9.847 2.649 0.674
0.80 5.087 3.995 3.719 10.008 2.755 0.705
0.90 4.816 3.926 3.702 10.021 2.821 0.725
1.00 4.645 3.895 3.705 98.527 2.841 0.735

Table 4
Maximum deflection for a laminated composite plate with piezoelectric actuators
subjected to sinusoidal electrical potentials.

t=h ðwE2h3
=a4q0Þ � 102

a=h

5 10 20

0.03 52.889 22.193 10.437
0.05 48.304 20.689 9.981
0.10 40.022 17.779 8.535
0.20 30.344 14.058 6.858
0.30 24.839 11.773 5.794
0.40 21.298 10.223 5.054
0.50 18.816 9.090 4.504
0.60 16.933 8.205 4.069
0.70 15.392 7.471 3.707
0.80 14.048 6.827 3.388
0.90 12.811 6.233 3.095
1.00 11.621 5.661 2.812
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The following non-dimensional parameters are used to present the
numerical results

ðSx; Sy; SxyÞ ¼
1

f0s2 rk
x ;r

k
y; s

k
xy


 �

ðSxz; SyzÞ ¼
1

f0s
sk

xz; s
k
yz


 � ð56Þ

where s ¼ a=h is the length to laminate thickness ratio, and f0 is the
amplitude of the distributed sinusoidal mechanical load. It is impor-
tant to note that the analytical solution of Mallik and Ray [10] is re-
stricted to a single piezoelectric layer placed on the laminate top
surface and, also, the bottom surface of the piezoelectric layer is
grounded, i.e., the electric potentials may be different from zero
only on the top surface of the piezoelectric layer. In contrast, in
the present formulation only the bottom surface of the piezoelectric
layer admits non-zero potential. Also, we are able to consider any
number of piezoelectric layers. Therefore, in order to represent
the loading of Mallik and Ray [10], the present study considers a
plate with one piezoelectric layer on the bottom surface, a mechan-
ical load applied upwards and, based on the definition of the electric
field vector and the physical effect of the sign of the piezoelectric
constants, the positive electrical potential loading here corresponds
to a negative electrical potential loading of Mallik and Ray [10].

The substrate is a cross-ply laminate ½0=90=0� with all layers
having 1 mm of thickness. A single PFRC layer with 250 mm of
thickness is bonded onto the bottom surface of the laminate. A dis-
tributed sinusoidal mechanical load is applied, of amplitude
f0 ¼ 40 N=m2 (upwards), with and without applying voltages of
amplitudes 100 V and �100 V to the PFRC.

The comparative results at characteristic points are shown in
Table 5, and the stress distributions along the laminate thickness
are shown in Figs. 2–6. The transverse shear stresses shown are
not those obtained directly from the constitutive relations, but
from the post-processing of the local equilibrium equations (see
the Appendix A). Therefore, it should be noted that, while all other

results displayed are exact with respect to the continuous model,
the shear transverse stresses are only approximate results associ-
ated with the model. Moreover, in this procedure of integration,
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Fig. 2. Distribution of non-dimensional in-plane normal stress for a thin cross-ply
laminate with one piezoelectric layer with and without applied voltage.

Table 5
Non-dimensional stresses of cross-ply substrates ½0=90=0�with and without voltage
applied to the PFRC layer.

a=h V (v) Source Sx Sy Sxy
a
2 ;

b
2 ; � h

2

� 
a
2 ;

b
2 ; � h

6

� 
0; 0; � h

2

� 
20 0 This study �0.4914 �0.1849 0.0210

0.5312 0.1973 �0.0220
0 [10] �0.5035 �0.1901 0.0215

0.5305 0.2044 �0.0224

100 This study �57.1024 �10.6108 1.8334
19.9104 14.3041 �1.1743

�100 [10] �58.276 �10.84 1.8648
18.875 14.566 �1.1679

�100 This study 56.1107 10.2393 �1.7912
�18.8448 �13.9072 1.1300

100 [10] 57.269 10.459 �1.822
�17.81 �14.16 1.1232

100 0 This study �0.4903 �0.1634 0.0196
0.5181 0.1744 �0.0204

0 [10] �0.4948 �0.1643 0.0197
0.5193 0.1758 �0.0204

100 This study �2.7421 �0.5879 0.0921
1.2585 0.7461 �0.0660

�100 [10] �2.7445 �0.5882 0.0922
1.2566 0.7470 �0.0660

�100 This study 1.7528 0.2594 �0.0268
�0.2196 �0.3950 0.0251

100 [10] 1.7549 0.2596 �0.0527
�0.2181 �0.3955 0.0251
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Fig. 3. Distribution of non-dimensional in-plane normal stress for a thin cross-ply
laminate with one piezoelectric layer with and without applied voltage.
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Fig. 4. Distribution of non-dimensional in-plane shear stress for a thin cross-ply
laminate with one piezoelectric layer with and without applied voltage.
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it is only possible to impose the nullity of the transverse shear
stresses on the laminate bottom surface. Thus, the implementation
used in this study may ensure null transverse shear stresses only
on the laminate bottom surface whereas the results displayed by
Mallik and Ray [10] show that the transverse shear stresses are null
only on the laminate top surface. Therefore, the values for the
stress shown in Table 5 at these characteristic points are different,
because the stacking sequences are not the same. However, the
stress distributions are very similar, as may be seen in Mallik
and Ray [10].

The slight difference between the two sets of results is due to
the approximation nature of the kinematic model used here with
respect to the elasticity solution used in Mallik and Ray [10].

It is possible to note from the figures that the applied voltage
changes effectively the response of thin plates. Due the difference
of stiffness between the materials, a relatively low applied voltage
increases significantly the normal stress Sx in the layer in contact
with the activated PFRC layer. Moreover, more severe transverse
shear stresses are developed across the thickness. Substantial
amount of induced stress can be developed in the structural layers
and the reversal takes place due to the change of polarity.

10.4. Case 4 – free vibration analysis of composite laminated plate

The free vibration problem of a five-ply simply supported
square laminated composite plate with surface bonded piezoelec-
tric layers is now considered in order to validate the model devel-
oped in the evaluation of natural frequencies. The laminate is made
of three layers of Graphite/Epoxy with the stacking sequence
½0=90=0� and two surface bonded PZT-4 piezoelectric layers. The
properties of the materials are the same as those used in Sec-
tion 10.2, provided by [26], and the value of the first natural fre-
quency, obtained with the finite element method, is taken as a
reference since these authors also used a higher-order theory for
the displacement field. The density is assumed to be q ¼ 1 kg=m3

for all layers. The natural frequencies for an open and closed circuit
are given in Tables 6 and 7 for several piezoelectric to laminate
thickness ratios t=h, and plate aspect ratios a=h of length to lami-
nate thickness. The results are normalized by the parameter
�x ¼ xa2

h
ffiffiffi
q
p � 103 Hzðkg=mÞ1=2.

The difference between the results for the two simulated elec-
trical boundary conditions becomes more significant for thin
plates, as can be noted in Table 7. In general, the open circuit con-
dition, when the electric potentials are unknown variables, leads to
higher first normalized natural frequencies. However, with the
expression for the normalized parameter x in mind, it is possible
to note that the closed circuit condition, when the piezoelectric
layers are grounded, i.e., the potentials are enforced to be nulls,
the stiffness of the plate is increased.

11. Concluding remarks

This paper presents a hybrid plate theory for analysis of piezo-
electric laminated composite plates based on a Higher-Order Shear
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Fig. 5. Distribution of non-dimensional transverse shear stress for a thin cross-ply
laminate with one piezoelectric layer with and without applied voltage.
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Fig. 6. Distribution of non-dimensional transverse shear stress for a thin cross-ply
laminate with one piezoelectric layer with and without applied voltage.

Table 6
Normalized natural frequencies, a=h ¼ 10.

t=h �x

Closed circuit Open circuit

0.00 166.19 166.19
0.03 173.92 174.90
0.05 178.51 180.04
0.10 188.46 191.12
0.20 203.73 207.90
0.30 215.46 220.62
0.40 225.62 231.56
0.50 234.75 241.37
0.60 242.44 249.58
0.70 248.24 255.65
0.80 252.16 259.59
0.90 254.61 261.79
1.00 256.10 262.80

Table 7
Normalized natural frequencies, t=h ¼ 0:20.

a=h �x

Closed circuit Open circuit

3 119.50 120.79
4 143.21 145.10
5 161.17 163.62

10 203.73 207.89
15 216.79 221.61
20 222.08 227.18
25 224.69 229.93
30 226.15 231.47
35 227.04 232.42
40 227.63 233.04
45 228.04 233.47
50 228.33 233.78
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Deformation Theory and a Layerwise Theory. The HSDT used for
the mechanical displacements is a general cubic expansion in the
z coordinate with inextensible transverse normal. The Layerwise
Theory used for the electric potential admits a linear variation of
potential across each piezoelectric layer.

The equilibrium equations in terms of generalized resultant
internal forces are obtained from the Principle of Virtual Work
and subsequently the equations of motion in terms of generalized
displacements and potentials are derived. The formulation is com-
plete in the sense that it takes into account all material coefficients
and may be applied to static or dynamic analysis.

Analytic solutions for static problems in sensor and active cases
as well as for free vibration are developed for orthotropic square
simply-supported laminates with piezoelectric layers.

The proposed model allows piezoelectric layers at any position
along the laminate thickness, and in-plane and transverse distrib-
uted mechanical forces and electrical loadings can be considered.

Numerical results were obtained for cross-ply laminates and
compared to similar models. The results are displayed in table
and figures for easy reference.

The kinematical assumptions provided useful representation for
bending of cross-ply piezoelectric laminated plates as shown by
the assessments of displacements and electric potentials as well
as stresses.
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Appendix A. Stress computations

The in-plane stresses in each layer k can be computed from
rkðx; tÞ ¼ Ckekðx; tÞ, where

Ck ¼
C11 C12 C16

C12 C22 C26

C16 C26 C66

2
64

3
75

k

ð57Þ

whose stiffness coefficients are given in (24).
The transverse shear stresses are evaluated by integration of lo-

cal equilibrium equations, which can be accomplished in each
layer as follows (in the absence of body forces)

sðkÞxz ðx; tÞ � sðkÞxz ðx; y; zk�1; tÞ ¼ �
Z z

zk�1

rðkÞx;x þ sðkÞxy;y dz

sðkÞyz ðx; tÞ � sðkÞyz ðx; y; zk�1; tÞ ¼ �
Z z

zk�1

sðkÞxy;x þ rðkÞy;y dz
ð58Þ

The stress derivatives for each harmonic are

rx;x ¼ �
X1
m¼1

X1
n¼1

C11a2
mUmnCmSn þ C12ambnVmnCmSn

�
þ C16ambnUmnSmCn þ C16a2

mVmnSmCn


ð59Þ

ry;y ¼ �
X1
m¼1

X1
n¼1

C12ambnUmnSmSn þ C22b
2
nVmnSmSn

�
þ C26b

2
nUmnCmSn þ C26ambnVmnCmSn


ð60Þ

sxy;x ¼ �
X1
m¼1

X1
n¼1

C16a2
mUmnCmSnC26ambnVmnCmSn

�
þ C66ambnUmnSmSn þ C66a2

mVmnSmSn


ð61Þ

sxy;y ¼ �
X1
m¼1

X1
n¼1

C16ambnUmnSmSn þ C26b
2
nVmnSmSn

�
þ C66b

2
nUmnCmSn þ C66ambnVmnCmSn


ð62Þ

where, for a harmonic mn,

UmnðzÞ ¼ Umn þ zXmn þ z3Xmn;

VmnðzÞ ¼ Vmn þ zYmn þ z3Ymn

and Sm ¼ sin amx, Sn ¼ sin bny; Cm ¼ cosamx and Cn ¼ cos bny.
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