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a b s t r a c t

The Third-order Plate Theory proposed by Reddy for modeling laminated composite plates has earned
wide acceptance in the engineering community. It involves the same five generalized displacement com-
ponents ðuo;vo;wo;wx;wyÞ as the first-order models (e.g. Mindlin’s) and, at the same time, its higher-order
expansion across the thickness enables it to provide more accurate displacements and layer-wise stress
estimates. However, its FEM implementation is somewhat hindered by the need to employ a C1ðXÞ con-
tinuous basis for the transverse displacement wo.

In this paper, an instance of the Generalized Finite Element Method, GFEM, which allows an arbitrary
Ck continuity, is used to solve arbitrary anisotropic laminated composite plate bending problems.

The resultant basis functions naturally exhibit inter-element continuity and can be easily enriched to
generate arbitrary p-enriched basis functions. These characteristics result in excellent abilities in terms of
approximating the layer stresses. In particular, the high degree of the basis, combined with its continuity,
enables the transverse shear stresses to be integrated from the local equilibrium equations, and also post-
processed in a scaling operation explored by the authors to provide additional accuracy of the estimates
across the thickness. Additionally, all of the estimated strain and stress fields are naturally continuous,
without the need for any heuristic averaging or smoothing operation. The procedure is robust enough
to allow for Partition of Unity (PoU) construction free of geometrical restrictions on the elements and
it is suitable for mixed Ck=C0 formulations, using continuous functions only for those variables which
require such continuity, in order to reduce the computational cost.

The method is implemented with three-node triangular elements, and its performance is illustrated
through comparisons with analytic solutions, with special emphasis on the computation of the transverse
stress field for thick laminates.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction Hence, some simplified models have been used to solve practi-
In recent decades, multilayered composite plates and shells
have been increasingly applied in engineering design due to the
well-known benefits they provide, particularly within the fields
of aeronautics and smart/intelligent materials and structures [1–
3]. In order to take advantage of its high specific strength and mod-
ulus, it must be possible to predict the behavior of these laminates.
A first approach to investigating the integrity of this type of multi-
scale media would be to use a three-dimensional model in order to
precisely capture the significant stresses which arise at the inter-
faces of the layered composites. However, this approach is limited
because it requires enormous computing effort, besides computa-
tional difficulties when some layers are much thinner than others.
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cal problems applying finite and boundary element methods, as
well as some analytic solutions in very simple cases. The simplest
one is the Classical Laminate Theory, CLT, which is based on Kirch-
hoff’s hypothesis in which the normal to the reference surface re-
mains straight, undeformed and normal [4]. The next simplest is
the First-order Shear Deformation Theory, FSDT, whose displace-
ment field follows Mindlin’s hypothesis [5] in which the normals
remain straight and undeformed but not necessarily normal to
the reference surface. These two-dimensional models are usually
adequate for thin laminates. In order to improve the displacement
description several higher-degree models have been proposed and,
of these, Reddy’s model [6] has become a very popular two-dimen-
sional model due to its simplicity. All of the higher-order models
consider the displacement components as nonlinear functions of
the normal coordinate. Further improvements can be obtained
with layer-wise theories, by assuming displacement fields with
C0 continuity along the normal coordinate between each pair of
layers, and these theories are widely accepted for thick laminates,
see, for instance [7–9].
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In this paper, the Third-order Plate Theory proposed by Reddy
[6] is used to model a laminated plate problem. This theory is sim-
ilar to the CLT and FSDT, but with more elaborate assumptions con-
cerning the in-plane displacements, which are described by cubic
functions of the thickness coordinate. As shown in Section 2, trans-
verse displacement is required to present C1-continuity, as in the
Kirchhoff’s model. When using the conventional finite element
method, FEM, this continuity requires intricate shape functions,
see, for instance [10], with several degrees of freedom including
nodal displacements, nodal rotations, and higher-order derivatives
in order to obtain a compatible formulation. For this reason, other
approaches have gained greater attention, such as the simpler (and
C0) Mindlin model, the non-conforming C1 elements and hybrid
and mixed variational formulations. The lack of simple and robust
finite elements with C1-continuity has led to the widespread devel-
opment and use of several C0-continuity elements, e.g. [11], and
several mesh-free approaches like [12,13,10,14–16].

The most common schemes are those based on incompatible
functions and Hermite functions are not adequate for p-refinement
of the models. One alternative which provides a consistent formu-
lation with arbitrary continuity was proposed by Duarte et al. [17]
and involves constructing shape functions with arbitrary continu-
ity through the use of the Edwards’ scheme [18] and R-functions
[19] as an instance of the Generalized Finite Element Method,
GFEM. The GFEM, in turn, was independently proposed by Babuška
and Melenk as an instance of the Partition of Unity (PoU) method,
e.g. [20,21], and by Oden et al. [22] as a scheme for reducing the
computing time of meshless methods like hp-Cloud. The meshless
procedures usually use circles or spheres, as clouds, around each
node with arbitrary radius, and each integration point is then cov-
ered by an arbitrary number of clouds. This obviously increases the
cost of building the PoU. The main idea proposed in [22] is to sub-
stitute the circular clouds with an arbitrarily-shaped polygonal
cloud defined as the union of elements connected to the associated
node ‘‘a’’. As a result, the PoU is known beforehand since it is a glo-
bal FEM shape function and the enrichments are performed in ex-
actly the same way as in the hp-Cloud Method. The same
procedure, from the mathematical point of view, was later denoted
by XFEM, see, for instance, Belytschko et al. [23] and Moës et al.
[24], with emphasis on applications with discontinuity fields.

In this paper, an instance of the Generalized Finite Element
Method, GFEM, based on Duarte’s scheme [17], is used to generate
arbitrary, Ck-continuous basis functions which are used to solve an
arbitrary anisotropic laminated composite plate, based on Reddy’s
kinematic model, as a test of its suitability for interlaminar shear
stress estimation. This Ck-GFEM implementation is based on Shep-
ard’s PoU with at least Ck continuity and is enrichments according
to the hp-Cloud Method. The weighting functions used in Shepard’s
PoU are built as products of C1 edge functions of the distance of
such a point to each of the cloud boundaries through the Edwards
procedure [18] for convex clouds. For non-convex clouds, a boolean
composition of these edge functions, following Rvachev [25], may
be adopted as proposed by Duarte [17].

The basis functions thus generated are continuous at inter-ele-
ment interfaces and can be easily enriched to generate arbitrary p-
enriched basis. These characteristics result in an excellent capacity
to approximate the layer stresses. In particular, the high degrees
obtained with p-enrichment allow for better solutions for the
stress across the thickness, despite using single-layer plate models
as demonstrated by Torres et al. [26]. The high continuity of the ba-
sis, in turn, enables that the transverse shear stresses can be inte-
grated from the local equilibrium equations, and also be post-
processed, in a scaling operation proposed by the authors, to pro-
vide additional accuracy of the estimates across the thickness.
Additionally, all of the estimated strain and stress fields are natu-
rally continuous, without the need for any heuristic averaging or
smoothing procedure. An example is used to illustrate the ability
of the formulation to approximate the stress field continuously.

The remainder of this paper is outlined as follows: Section 2
summarizes Reddy’s kinematic plate model; Section 3 briefly pre-
sents the construction of PoU functions with the desired continuity
and the enrichment procedure used to enhance the ansatz space;
and Section 4 presents the results for the proposed formulation
in order to test its behavior under some combinations of continuity
and enrichment. Finally, Section 5 summarizes some conclusions.

2. Reddy’s kinematic plate model

This plate bending model was proposed by Reddy [6] and is one
of the higher order shear deformation plate theories, HSDT, in-
tended to improve the description of the complex displacement
field across the thickness of laminated plates as compared to the
CLT and FSDT. As a matter of completeness, the main aspects of this
model are summarized in the present section.

Let us consider a laminate occupying a region V defined in a three-
dimensional Cartesian coordinate system R3, with a plane middle
surface, X, bounded by a closed Lipschitzian contour, C, and with a
constant thickness H > 0. Hence, the domain can be described by

V ¼ ðx; zÞ 2 R3jz 2 �H
2
;
H
2

� �
; x 2 X

� �
; ð1Þ

where x ¼ ðx; yÞ and X � R2. Reddy’s Third-order Plate Theory is
characterized by the following displacement assumption

uðx; y; zÞ ¼ u0ðx; yÞ þ zwxðx; yÞ � c1z3 wxðx; yÞ þ
@w0ðx; yÞ

@x

� �
vðx; y; zÞ ¼ v0ðx; yÞ þ zwyðx; yÞ � c1z3 wyðx; yÞ þ

@w0ðx; yÞ
@y

� �
wðx; y; zÞ ¼ w0ðx; yÞ; ð2Þ

where u; v , and w are the displacement components along the x; y,
and z directions, respectively, u0ðx; yÞ and v0ðx; yÞ are inplane dis-
placements of the middle surface, w0ðx; yÞ is the transverse dis-
placement, and wxðx; yÞ and wyðx; yÞ are the rotations undergone
by a straight segment initially normal to the reference surface,
about the x and y axes, respectively, in a similar fashion to that in
FSDT. Here, the normal does not remain normal after the deforma-
tion as in lower-order models, but if one defines c1 as equal to zero,
one recovers the Mindlin model. In Reddy’s model c1 is set to equal
4=ð3H2Þ, which ensures zero transverse shear strains on both faces
(z ¼ �H=2) of the laminate.

Substituting this displacement field into the linear strain–dis-
placement relations results in the non-vanishing deformation com-
ponents being the in-plane deformations �ðx; y; zÞ ¼ f�x; �y; cxyg

T

(the superscript T indicates transpose) and the transverse shear
deformations ccðx; y; zÞ ¼ fcyz; cxzg

T . According to Eq. (2), the in-
plane deformations are related to displacements by

�ðx; y; zÞ ¼ �0ðx; yÞ þ zj1ðx; yÞ þ z3j3ðx; yÞ; ð3Þ

where �0ðx:yÞ and j1ðx; yÞ are the membrane deformations and
changes in curvatures of the reference surface, respectively, and
j2ðx; yÞ is the higher-order curvature. The transverse shear defor-
mations are given by

ccðx; y; zÞ ¼ c0ðx; yÞ þ z2c2ðx; yÞ; ð4Þ

where c0ðx; yÞ are the shear strains and c2ðx; yÞ are the shear-warp-
ing strains.

Denoting the generalized displacement vector u ¼ fu0;v0;w0;

wx;wyg
T , one can write �0 ¼ L0 � u; j1 ¼ L1 � u; j3 ¼ L3 � u;

c0 ¼ Ls0 � u; c2 ¼ Ls2 � u, where L0; L1; L3; Ls0, and Ls2 are differen-
tial operators given by
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264
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0 0 0 0 @
@y

0 0 0 @
@y

@
@x

264
375;

L3 ¼
0 0 �c1

@2

@x2 �c1
@
@x 0

0 0 �c1
@2

@y2 0 �c1
@
@y

0 0 �2c1
@2

@x@y
@
@y

@
@x

2664
3775; Ls0 ¼

0 0 @
@y 0 1

0 0 @
@x 1 0

" #
;

Ls2 ¼
0 0 �3c1

@
@y 0 �3c1

0 0 �3c1
@
@x �3c1 0

" #
: ð5Þ

The in-plane and transverse shear stress components are de-
noted by r ¼ rx;ry;rxy

� 	T and ss ¼ syz; sxz
� 	T , respectively. The

Generalized Hooke’s Law for an arbitrary layer k, in the plane stress
state, can be written as

r ¼ Q�; ð6Þ

where Q is a 3� 3 reduced stiffness matrix representing the ortho-
tropic layer with its principal material directions arbitrarily ori-
ented with respect to axis x [4]. Similarly, the transverse shear
stress–strain relation for an arbitrary layer k can be described as
ss ¼ Cscs, where Cs is the 2� 2 reduced transverse shear stiffness
matrix of a layer. The resultant inplane forces N ¼ fNx;Ny;NxygT ,
resultant moments M ¼ Mx;My;Mxy

� 	T , resultant transverse forces
Q ¼ Qy;Qx

� 	T , and resultant higher-order stresses P ¼ Px; Py; Pxy
� 	T

and R ¼ fRy;RxgT are defined as

N ¼
Z H=2

z¼�H=2
rdz; M ¼

Z H=2

z¼�H=2
zrdz;

P ¼
Z H=2

z¼�H=2
z3rdz; Q ¼

Z H=2

z¼�H=2
ss dz; R ¼

Z H=2

z¼�H=2
z2ss dz: ð7Þ

By using the reduced Hooke’s Law, these definitions lead to the
relation between resultant forces and moments with mid-surface
deformations of the laminate

N
M
P

8><>:
9>=>; ¼

A B E
B D F
E F H

264
375 �0

j1

j3

8><>:
9>=>;; ð8Þ

where A;B;D;E; F and H are 3� 3 stiffness sub-matrices, all sym-
metric, representing in-plane, bending and stretch-bending cou-
pling behavior of the laminated plate. The transverse resultant
forces are given by

Q
R

� �
¼

As Ds

Ds Fs

� �
c0

c2

( )
; ð9Þ

where As; Ds and Fs are 2� 2 stiffness sub-matrices representing
the transverse shear behavior of the laminate. These matrix compo-
nents are obtained by integration across the thickness in the follow-
ing way

fAij;Bij;Dij; Eij; Fij;Hijg ¼
XN

k¼1

Z zk

zk�1

Q k
ijf1; z; z2; z3; z4; z6gdz; i; j

¼ 1; 2; 3:

ð10Þ

fAsij
;Dsij

; Fsij
g ¼

XN

k¼1

Z zk

zk�1

Ck
sij
f1; z2; z4gdz; i; j ¼ 1; 2: ð11Þ

In cases where the laminate is symmetric with respect to the
reference surface, the coupling stiffness matrices B and E are both
null and, therefore, the bending response is decoupled from the in-
plane behavior. For a complete reference, see [4].
The formulation implemented in this paper is aimed at the gen-
eral case of laminated plates composed of anisotropic layers, repre-
sented by Eqs. (2)–(9), through a generalized finite element
procedure. Therefore, let us start from the bilinear and linear
operators

Bðu; ûÞ ¼
Z

X

�̂0

ĵ1

ĵ3

8><>:
9>=>;

T A B E
B D F
E F H

264
375 �0

j1

j3

8><>:
9>=>;dX

þ
Z

X

ĉ0

ĉ2

� �T As Ds

Ds Fs

� �
c0

c2

� �
dX; LðŵÞ ¼

Z
X

ŵ0qzdX; ð12Þ

where qz is the z-component of distributed force. Hence, the plate
problem can be stated in a weak form as: find uðx; yÞ 2 U1ðXÞ, such
that

Bðu; ûÞ ¼ Lðŵ0Þ; for 8û 2 V1 ð13Þ

where U1 � H0ðXÞ � H0ðXÞ � H1ðXÞ � H0ðXÞ � H0ðXÞ is the set of
kinematically admissible functions, V1 � H1ðXÞ is the space of
admissible variation fields û, and Hm is the Hilbert space of order
m, in which lie all of the functions that, together with their deriva-
tives up to m order, are Lebesgue square integrable. The kinematic
boundary conditions are u ¼ �u, where �u is used to denote pre-
scribed displacement and rotation values.

As in FEM, the discretization is performed element-wise by
approximating the displacement field uðx; yÞ by u ¼ Nðx; yÞde,
where de is the vector containing the element degrees of freedom
and Nðx; yÞ is the matrix of approximation functions. The deforma-
tions of the middle surface are discretized from Eqs. (3)–(5), which
results in

�0

j1

j3

8><>:
9>=>; ¼

B0

B1

B3

264
375de and

c0

c2

( )
¼ Bs0

Bs2

" #
de
; ð14Þ

where B0; B1; B3; Bs0, and Bs2 are generalized strain matrices,
respectively, given by

B0 ¼ L0N
B1 ¼ L1N
B3 ¼ L3N

8><>: and
Bs0 ¼ Ls0N;
Bs2 ¼ Ls1N:

ð15Þ

The element stiffness matrix is evaluated in the standard way
by

Ke ¼
Z

Xe

B0

B1

B3

264
375

T A B E
B D F
E F H

264
375 B0

B1

B3

264
375þ Bs0

Bs2

" #T
As Ds

Ds Fs

� �
Bs0

Bs2

" #8><>:
9>=>;dX:

ð16Þ

After superposing the element stiffness matrices and consistent
element load vectors, the equilibrium equations for static problems
reduce to the standard form Kd ¼ f , where K is the global stiffness
matrix, d is the global degrees-of-freedom vector and f is the equiv-
alent nodal load vector added by concentrated external loads. After
solving for d, one can compute the displacements, strain, and
stresses and the resultant forces and moments. Low-order elements
may present shear locking, such that usually some scheme must be
introduced in order to circumvent it. However, in this paper, none
such scheme was utilized, and both terms in the element stiffness
matrix, membrane-bending, and transverse shear stiffness parts,
are equally integrated with the same quadrature.

The evaluation of the in-plane stresses is performed directly
from the constitutive equations. However, it is well known that
the transverse shear stresses obtained from the constitutive equa-
tions are too poor to be useful. The most popular procedure to ex-
tract these stresses is by integrating the two local differential
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equilibrium equations for forces in the x and y directions, in the ab-
sence of body forces:

@rx

@x
þ @sxy

@y
þ @sxz

@z
¼ 0;

@sxy

@x
þ @ry

@y
þ @syz

@z
¼ 0:

ð17Þ

Expressions for the x and y differentiation of B0; B1, and B3 are
easily obtained, such that the first equation in (14) can be differen-
tiated and derivatives of �0; j1, and j3 can be obtained. Next,
derivatives of the inplane stresses in an arbitrary position z within
each layer k are computed from

@r
@x
¼ Q k @�0

@x
þ z

@j1

@x
þ z3 @j

3

@x

� �
;

@r
@y
¼ Q k @�0

@y
þ z

@j1

@y
þ z3 @j

3

@y

� �
:

ð18Þ

The transverse shear stresses estimates are obtained by inte-
grating each one of the equations in (17), using the derivatives of
the inplane stresses in (18), and applying the boundary conditions
sxzðx; y; z ¼ �H=2Þ ¼ syzðx; y; z ¼ �H=2Þ ¼ 0. Therefore, the trans-
verse shear stresses in a coordinate z within a layer k, are given by

sk
xzðx; zÞ ¼ sk

xzðx; zk�1Þ �
Z z

z¼zk�1

rx;x þ sxy;y

 �

dz;

sk
yzðx; zÞ ¼ sk

yzðx; zk�1Þ �
Z z

z¼zk�1

sxy;x þ ry;y

 �

dz; ð19Þ

for zk�1 6 z 6 zk, where x ¼ ðx; yÞ; zk�1 and zk are the z coordinates
of the lower and upper surfaces of the layer k and, as is usually
the case, the layer numbering begins at the ‘‘lower’’ surface of the
laminate ðz0 ¼ �H=2Þ and ends at the top ðzN ¼ H=2Þ. The integra-
tion is performed layer by layer, starting from the first one,
and the following continuity conditions are applied at the
layer interfaces: sk

xzðx; y; zk�1Þ ¼ sk�1
xz ðx; y; zk�1Þ and sk

yzðx; y; zk�1Þ ¼
sk�1

yz ðx; y; zk�1Þ.

2.1. Scaling of the integrated shear stresses

The heuristic process of obtaining improved transverse shear
stresses by integration of the local equilibrium equations has been
complemented by the authors [27] with a second step, aiming to
gain a higher level of accuracy of the estimate. The procedure re-
quires that, at a given surface point ðx; yÞ, the shear forces Q x and
Q y are computed from the constitutive equations, and also that
the shear forces Qi

x and Qi
y are computed from the integration of

the integrated transverse shear stresses sk
xz and sk

yz obtained from
(19). Thus, both sets of shear forces are used to compute correction
factors at the point ðx; yÞ

Rx ¼
Q x

Q i
x

and Ry ¼
Q y

Q i
y

: ð20Þ

The last step of the procedure consists of applying the correc-
tion factors to scale the entire distribution of integrated shear
stresses at ðx; yÞ as

sc
xz ¼ Rxsk

xz and sc
yz ¼ Rysk

yz; ð21Þ

with sc
xz and sc

yz being the scaled transverse shear stresses.
This construction is based on the assumption that the variation

in the stresses across the thickness have a ‘‘good’’ level of quality,
which is inherited from the local character of the local equilibrium
equations. However, the processing of these stresses requires the
first derivatives of the in-plane stresses, which reduces the result-
ing accuracy of the shear stresses thus computed. However, the
shear forces computed directly from the constitutive equations
do not require any further differentiation of the stresses, which
means that they basically have the same level of accuracy as the
in-plane stresses, which is a direct consequence of the degree of
the approximation functions. The scaling performed in (21) aims
to introduce part of this accuracy of the constitutive shear forces
into the integrated shear stresses. The results obtained so far seem
to verify that this is indeed the case.

The procedure to compute the integrated shear forces is sum-
marized as follows. Firstly, it should be noted that the explicit inte-
gration in z in (19) is obtained from the integration of (18)Z z

zk�1

@r
@x

dz ¼ Q k z� zk�1ð Þ @�
0

@x
þ 1

2
z2 � z2

k�1


 � @j1

@x

�
þ1

4
z4 � z4

k�1


 � @j3

@x

�
;Z z

zk�1

@r
@y

dz ¼ Q k z� zk�1ð Þ @�
0

@y
þ 1

2
z2 � z2

k�1


 � @j1

@y

�
þ1

4
z4 � z4

k�1


 � @j3

@y

�
:

ð22Þ

This suggests that the integrated shear stresses have a polyno-
mial variation of quartic degree across the layer thickness for Red-
dy’s model, whereas it is easy to observe that this variation is
quadratic in Mindlin’s model. The shear force is obtained from a
second integration over the thickness of each layer, from
z0 ¼ �H=2 to zN ¼ H=2

Q i
xðzkÞ ¼ Q i

xðzk�1Þ þ hksk
xzðzk�1Þ �

Z zk

�z¼zk�1

Z �z

z¼zk�1

rx;x þ sxy;y

 �

dz

" #
d�z;

Q i
yðzkÞ ¼ Q i

yðzk�1Þ þ hksk
yzðzk�1Þ �

Z zk

�z¼zk�1

Z �z

z¼zk�1

sxy;x þ ry;y

 �

dz

" #
d�z;

ð23Þ

where Qi
xðz0Þ ¼ Qi

yðz0Þ ¼ 0; hk is the thickness of layer k and zk�1

and zk are the z coordinates of the lower and upper surface of layer
k. The terms under the integrands on the right-hand side can be ob-
tained fromZ zk

�z¼zk�1

Z �z

z¼zk�1

@r
@x

dzd�z ¼ Q k ak
@�0

@x
þ bk

@j1

@x
þ ck

@j3

@x

� �
;Z zk

�z¼zk�1

Z �z

z¼zk�1

@r
@y

dzd�z ¼ Q k ak
@�0

@y
þ bk

@j1

@y
þ ck

@j3

@y

� �
;

ð24Þ

where

ak ¼
1
2

z2
k � z2

k�1


 �
� zk�1hk;

bk ¼
1
2

1
3
ðz3

k � z3
k�1Þ � z2

k�1hk

� �
;

ck ¼
1
4

1
5

z5
k � z5

k�1


 �
� z4

k�1hk

� �
:

ð25Þ

From (19) it can be noted that, in order to obtain accurate trans-
verse shear stresses, it is essential to have not only accurate in-
plane stresses but also accurate estimates of their derivatives along
the x and y axes. It is also clear from (5) that the in-plane displace-
ments and the rotations fields require at least C0 continuity and the
transverse displacement, w0; C1 continuity in FEM approxima-
tions. If one is interested in evaluating the transverse shear stresses
along interelement boundaries, continuous stress fields need to be
used in (19). In this case, the displacement fields are required to
have an additional order of continuity which is not available in
conventional FEM and GFEM, which is one of the motivations be-
hind this study. The next section describes the generation of arbi-
trarily continuous approximation functions.
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3. GFEM Ck approximation functions

In this instance of the Generalized Finite Element Method,
GFEM, the aim is to use approximation functions with arbitrary
continuity, k, not only to meet the C1-continuity in arbitrary do-
main triangulations, as required by conforming elements under
Reddy’s assumption, but also to be able to describe continuous
stress fields. This is very useful in evaluating transverse shear
stresses by integrating local equilibrium equations everywhere.
Toward this goal and using the hp-Cloud strategy of enrichment,
approximation functions which approach zero need to be built, to-
gether with their k first normal derivatives, as the cloud boundary
is approached. This procedure is similar to that for Kirchhoff’s
model presented in [28].

In order to summarize this procedure, let us consider a conven-
tional finite element triangulation, fKegNE

e¼1 (NE being the number
of elements in Ke), defined by Nnodes with coordinates fxagN

a¼1,
in an open-bounded domain X � R2ðxÞ. For each of these nodes,
one denotes the interior of the union of the finite elements sharing
it as a cloud, xa; a ¼ 1; . . . ; N, as usually denoted in GFEM. Over
each cloud, Ck appropriate weighting functions are evaluated and
used in the Shepard’s Moving Least Square Method [29] scheme
for generating a Partition of Unity, as describe in the following.

3.1. Partition of unity

Let an open-bounded domain X � R2 xð Þ, here defined as the
plate mid-surface, and let IN be an open covering of this domain
built by the set of N clouds xa, associated with the nodes xa, that
is, the closure X of the domain is contained in the union of the
cloud closures xa:

X � [N
a¼1xa: ð26Þ

In addition, consider next a set of functions SN ¼ uaðxÞf gN
a¼1, each

having the corresponding cloud xa as its compact support. If this
set has the property that each one of these functions is such that
uaðxÞ 2 Ck

0 xað Þ; k P 0 and
PN

i¼1uaðxÞ ¼ 1; 8x 2 X, and every com-
pact subset of X intersects only a finite number of supports, then
the set uaðxÞf g; a ¼ 1; . . . ; N is said to be a Partition of Unity,
PoU, subordinated to the covering IN [30]. The first requirement
indicates that a function ua is non-zero only over its respective
cloud xa and is, at least, k times continuously differentiable.

There are several kinds of PoU used in computational mechanics
and the FEM shape functions are just one type, which is in C0

0ðxaÞ.
Additional examples can be found in several meshless methods,
such as the hp-Cloud method. Another example, the Shepard
scheme, makes use of weighting functions, Wa : R2 !R, with the
cloud xa as their compact support, such that Wa belongs to the
Fig. 1. Node a and its cloud formed by five elements. Normal coordinate nj of a
point P associated with edge j.
space Ck
0ðxaÞ. The Shepard PoU functions subordinated to the cov-

ering IN are defined as

uaðxÞ ¼
WaðxÞP
bðxÞWbðxÞ

; bðxÞ 2 cjWcðxÞ– 0
� 	

: ð27Þ

Therefore, the regularity of these PoU functions relies only on
the regularity of the weighting functions and, when using the Red-
dy plate model, functions belonging to at least C1ðXÞ are required.
In several meshless methods circular (in 2-D) or spherical (in 3-D)
neighborhoods are used as clouds, where one-dimensional func-
tions of the distance to the cloud node are used as weighting func-
tions. These functions are quite simple and decay to zero as the
distance from the node increases. This procedure has the disadvan-
tage of high computational cost, since one has to determine which
clouds cover each integration point. Aiming to reduce the compu-
tational time, the GFEM scheme uses element meshes to define the
clouds, but this reduces the continuity of the weighting functions,
defined as follows (see also [17], in the case of non-convex clouds).

Once the edge functions ea;jðnjÞ are defined (see details in [28]),
the weighting function for a convex cloud xa is then defined as the
product of all cloud edge functions as defined by

WaðxÞ :¼
YMa

j¼1

ea;jðnjÞ; ð28Þ

where Ma is the number of cloud edge functions associated with the
cloud xa. For illustration, suppose a node awhose polygonal cloud
is built by the union of five triangular elements as shown in Fig. 1
and is bounded by five edges. To define the edge functions, let us
consider an arbitrary point Pwith coordinates x whose distance to
an edge j is given by

njðxÞ ¼ na;j � x� ba;j

 �

; ð29Þ

where na;j is the edge normal vector pointing toward the cloud inte-
rior and ba;j is a point at the boundary j, e.g. its midpoint. Thus, the
cloud edge function is a function which vanishes, together with its k
derivatives, as this edge is approached and is strictly positive in the
interior of the cloud. Many functions meet these requirements and
in [28] polynomials and exponential functions were subjected to
numerical investigations. Herein, exponential edge functions are
used, which guarantee C1ðXÞ on convex clouds.

3.2. Enrichment and approximation functions

The PoU functions can be enriched by multiplying anyone of
them by a set of enrichment functions, Liaf gi2IðaÞ, where
IðaÞ; a ¼ 1; . . . ; N, is an index set of known functions, for in-
stance, polynomials, generalized harmonic functions, boundary
layer functions, particular solutions to similar problems, singular
solutions to the specific problem under consideration, and aniso-
tropic functions. Thus, the local approximation subspaces can be
denoted as vaðxaÞ ¼ spanfLiagi2IðaÞ which may also be enriched
according to an adaptive method.

In this study, due to the simple types of loading and geometry,
uniform polynomial enrichments are chosen such that

PpðxaÞ � vp
aðxaÞ;

where Pp stands for the space of polynomials of degree less than or
equal to p. The numerical experiments indicated that to improve the
condition number of the global stiffness matrix, a scaling of the ba-
sis at the cloud level can be carried out. Herein, this scaling is per-
formed considering a characteristic length ha of the cloud, which
can be taken as the largest distance from the node xa to each of
the cloud xa edges, or some approximation of it. Thus, one can de-
fine the intrinsic coordinate �x as �x ¼ ðx� xaÞ=ha, the origin of which
is at node xa and which attains a maximum value of unity at some
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cloud edge. Therefore, considering an arbitrary node xa, the approx-
imation functions defined in its cloud are /a

i ¼ uaðxÞLiað�xÞ, where
the enrichment sets considered in the results shown in this paper
are the following:

Enrichment : Cubic Lia ¼ ½1; �x; �y; �x2; �x�y; �y2; �x3; �x2�y; �x�y2; �y3�;
Quartic Lia ¼ ½1; �x; �y; �x2; �x�y; �y2; �x3; �x2�y; �x�y2; �y3; �x4;

�x3�y; �x2�y2; �x�y3; �y4�: ð30Þ

Thus, denoting by Uh � U1 the subspace spanned by a set of
kinematically admissible GFEM approximation functions and Vh

the respective subspace of admissible variations, the Galerkin
approximation is given by: find uðxÞ 2 UhðXÞ, such that
Bðu; ûÞ ¼ LðûÞ, for 8û 2 V1, where u and û are described by

uðxÞ ¼
XN

a¼1

uaðxÞ da þ
Xqj

i¼1

Liað�xÞbia

( )
¼ UD ð31Þ

ûðxÞ ¼
XN

a¼1

uaðxÞ va þ
Xqj

i¼1

Liað�xÞcia

( )
¼ UeV ð32Þ

da and va are nodal values, and bia and cia are generalized nodal
coefficients associated with the enrichment functions. D and V are
1-D arrays of nodal values and coefficients obtained from
da;va; bia and cia values, and Uðx; yÞ is an array formed by the basis
functions.

Remark 1. When the PoU is built from polynomial finite element
shape functions, as in conventional GFEM, the system of equations
resulting from Eqs. (31) and (32) is linearly dependent [31]. In the
present case, where the PoU is built as quotients of exponential
functions, the resulting global stiffness matrix is positive definite if
the boundary conditions imposed are sufficient to prevent rigid
body motions.
Remark 2. It should be observed that the usual structure of the
standard displacement-based FEM is preserved in the present for-
mulation, represented by the discrete form of the formulation
summarized in Section 2. The entire GFEM Ck formulation, summa-
rized in the present section, enters the program structure encapsu-
lated in a single routine, which computes the set of approximate
functions as in the case of the FEM functions, which is to be used
normally in the computation of the B matrices and the element
stiffness matrix.
4. Numerical results

The evaluation of the scheme is performed considering the
standard problem of a square simply-supported laminate under
sinusoidal load, which possesses an analytic solution for Reddy’s
kinematic model. The geometric characteristics of the plate are
a b

M = 2 M = 4

x

y

x

y

a a

a a

Fig. 2. Illustration of the meshes associated with mesh indices M ¼ 2 and M ¼ 4.
(Fig. 2): sides a, total thickness H such that a=H ¼ 4, which
means an extremely case of thick plate. There are three equal
layers oriented as [0�/90�/0�], with properties E1 = 175 GPa,
E2 = 7 GPa, G12 = G13 = 3.5 GPa, G23 = 1.4 GPa and m12 ¼ m13 ¼ m23 ¼
0:25. The distributed transverse load is given by qzðx; yÞ ¼
q sinðpx=aÞ sinðpy=aÞ. It shoud be noted that the formulation
described herein is adequate for arbitrary anisotropic laminates,
and the choice of a simply-supported square symmetric example
is due only to the availability of a complete analytic solution for
the same kinematic model. Four meshes were used, defined by a
mesh index M, the meaning of which is provided in Fig. 2.

As shown in Mendonça et al. [27], the continuous PoU is only
capable of reproducing a unitary constant function over the do-
main, while the discontinuous PoU of the standard GFEM is able
to generate a complete polynomial of one degree over the domain.
Therefore, when the GFEM Ck PoU is enriched with a polynomial
set of degree j, the approximation functions form a basis for poly-
nomials of degree b ¼ j. On the other hand, when a discontinuous
GFEM C0 PoU is enriched with a polynomial set of degree j, the
approximation functions form a basis for polynomials of degree
b ¼ jþ 1.

The results reported in this paper were obtained with enrich-
ment functions of degrees p ¼ 3 and 4, due to the emphasis on
the computation of transverse shear stresses, which requires sec-
ond derivatives of the displacements. Since only the transverse dis-
placement w0 requires at least C1 functions, whereas the normal
rotations wx and wy can be modeled with C0 functions, two possibil-
ities arise and were tested:

1. Formulation described as GFEM Ck=Ck p ¼ ðj; jÞ (or simply
GFEM Ck p ¼ j), where both transverse displacement and
rotations are modeled with C1 PoU and enriched with poly-
nomials up to degree j.

2. Formulation described as GFEM Ck=C0 p ¼ ðj; j� 1Þ, where
the transverse displacement is modeled with C1 PoU and
the rotations with standard C0 PoU with enrichment poly-
nomials up to j and j� 1 degrees, respectively. In this case,
in order to reduce the computational cost, the use of C1

PoU only for the variable that requires such continuity and
C0 PoU for the other variables is recommended. The stan-
dard C0 PoU is based on piecewise continuous functions that
are tent-like PoU inside each cloud, such as standard FEM
shape functions.

Therefore, in relation to the second formulation above, it should
be noted that when the rotations are enriched with polynomials of
degree p ¼ j� 1, the resulting functions span the space of polyno-
mial functions of degree b ¼ j, which is the same degree as that of
the continuous basis used for w0. Consequently, it is possible to
have less degrees of freedom while keeping the basis degree b.
The discontinuous GFEM basis functions are faster to compute than
the continuous ones, leading to an interest in testing their behavior
when associated with their continuous counterpart.

4.1. Performance assessment through strain energy: influence of
integration and discretization

The continuous basis functions generated by the procedure de-
scribed in Section 3 are highly oscillatory, requiring a large amount
of integration points for the stiffness matrix computation. Fig. 3
investigates the integrability of the stiffness matrix, computing a
normalized strain energy, as E=Eref , versus the number of integration
points NIP, where Eis the strain energy, defined as 1

2

R
V e : r dV , and

NIP is the square root of the total number of integration points used
in each element. The mesh used is that with index M ¼ 6 (according
to Fig. 2). The results are normalized with respect to a reference va-



Fig. 3. Normalized strain energy E=Eref versus number of integration points NIP.
Values normalized to Eref obtained with NIP = 13.2. Triangle integration rule. Edge
function: exponential. a=H ¼ 4. Mesh index M ¼ 6.

Fig. 4. Normalized strain energy E=E0 versus mesh index M, for enrichment degrees
p ¼ 2 and 3, and degree of the basis b ¼ 3. Triangle integration rule with NIP = 13.2.
Edge function exponential. a=H ¼ 4.

Fig. 5. Normalized strain energy E=E0 versus mesh index M, for enrichment degrees
p ¼ 3 and 4, and degree of the basis b ¼ 4. Triangle integration rule with NIP = 13.2.
Edge function exponential. a=H ¼ 4.
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lue Eref , computed with NIP = 13.2. All results shown in this text were
obtained with Wandzura’s triangle integration rule [32]. Fig. 3
shows the accuracy of the results with NIP for Ck=Ck p ¼ ð4;4Þ and
Ck=C0 p ¼ ð4;3Þ, which are associated with basis functions of degree
b ¼ 4, and Ck=Ck p ¼ ð3;3Þ and Ck=C0 p ¼ ð3;2Þ, which are associ-
ated with basis functions of degree b ¼ 3. The numerical data in Ta-
ble 1 show that, as expected, the higher degrees are more penalized
by sub integration. In general, the observations are similar to those
associated with the Kirchhoff problem [28], which also requires C1

functions. It should be noted that NIP ’ 9 is generally sufficient in
a routinely analysis with b ¼ 3.

Figs. 4 and 5 show the evolution of such normalized strain energy
with the mesh index M and the degree b of the basis, for both contin-
uous GFEM Ck and mixed GFEM Ck=C0. In this case, E0 is the analytic
value of the strain energy. For integration purposes the largest
amount of integration points was used, that is NIP = 13.2. From both
figures it can be seen that, even though the basis for both Ck/
Ck p ¼ ð3;3Þ and Ck=C0 p ¼ ð3;2Þ is degree b ¼ 3, the presence of
the discontinuous functions in the approximation of the rotations
reduces the accuracy obtained, mainly for coarse meshes. The same
effect is seen in Fig. 5 for b ¼ 4, although less pronounced.

4.2. Performance evaluation on point-wise values

In the following, the viability of the proposed Ck=C0 formulation
is discussed through the evaluation of point-wise values of in-
Table 1
Normalized strain energy E=Eref versus number of integration points NIP. Values
normalized to Eref obtained with NIP ¼ 13:2. Triangle integration rule. Edge function:
exponential. a=H ¼ 4.

NIP Ck=Ck Ck=C0 Ck=Ck Ck=C0

p ¼ ð4;4Þ p ¼ ð4;3Þ p ¼ ð3;3Þ p ¼ ð3;2Þ

5. 1.049271 1.040387 1.029366 1.019051
7.35 1.001432 1.001092 1.000972 1.000736
9.22 1.000322 1.000220 1.000199 0.999848

11.22 0.999982 0.999804 0.999920 0.999848
13.23 1. 0.999989 0.999942 0.999864
plane stresses as well as transverse shear stresses (constitutive,
integrated and integrated/scaled) and shear forces.

Fig. 6 shows the variation of the normalized in-plane stress
rxo ¼ rxH2=ðqa2Þ across the thickness, at the center plate point
ðx; yÞ ¼ ða=2; a=2Þ. The basis functions are of degree b ¼ 3 for both
continuous GFEM Ck and mixed GFEM Ck=C0 formulations, and the
results are excellent when compared with the analytical results.
The results for enrichments p ¼ ð4;4Þ and p ¼ ð4;3Þ, which gener-
ate basis functions of degree b ¼ 4 for Ck and Ck=C0 formulations,
respectively, are not displayed to avoid superposition of curves.

Figs. 7 and 8 show the normalized transverse shear stresses
sxzo ¼ sxzH=qa across the thickness, at a mid-side point
ðx; yÞ ¼ ða; a=2Þ. The results, were obtained using only continuous



Fig. 7. Normalized transverse shear stresses sxzo ¼ sxzH=qa across the thickness, at
point ðx; yÞ ¼ ða; a=2Þ, using only Ck basis. Triangle integration rule with NIP = 13.2.
M ¼ 6. Edge function: exponential. a=H ¼ 4; p ¼ 3; b ¼ 3.

Fig. 6. Normalized in-plane stress rxo ¼ rxH2=ðqa2Þ across the thickness, at point
ðx; yÞ ¼ ða=2; a=2Þ. Triangle integration rule with NIP = 11.2. Mesh index M ¼ 6.
Edge function: exponential. a=H ¼ 4.

Fig. 8. Normalized transverse shear stresses sxzo ¼ sxzH=qa across the thickness, at
point ðx; yÞ ¼ ða; a=2Þ, using only Ck basis. Triangle integration rule with NIP = 13.2.
M ¼ 6. Edge function: exponential. a=H ¼ 4; p ¼ 4; b ¼ 4.

Fig. 9. Normalized transverse shear stresses sxzo ¼ sxzH=qa across the thickness, at
point ðx; yÞ ¼ ða; a=2Þ, using Ck=C0 formulation. Triangle integration rule with
NIP = 13.2. M ¼ 6. Edge function: exponential. a=H ¼ 4; p ¼ ð3;2Þ; b ¼ 3.
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basis functions for w0; wx and wy, with enrichment polynomials of
degree p ¼ 3 and 4 and, consequently, basis functions of degrees
b ¼ 3 and 4, respectively, and mesh index M ¼ 6. Five types of re-
sults are shown for the transverse shear stresses:

1. Analytic solution obtained from the constitutive equations;
2. Analytic solution obtained integrating the analytic solutions of

in-plane stresses, according to Eq. (19);
3. GFEM approximations obtained from constitutive equations;
4. GFEM approximations obtained from integration of the GFEM

approximations of in-plane stresses, according to Eq. (19); and
5. GFEM approximations obtained post-processing the inte-

grated results using the scaling procedure, as described in
Section 2.1.
Firstly, it can be noted that the GFEM approximations for the
transverse shear stresses at the point are in excellent agreement
with the analytic solutions obtained from constitutive equations.
This is the same type of accuracy expected for the in-plane stresses.
However, the constitutive analytic solution to the kinematic model
itself is not physically realistic (it lacks interlayer continuity of the
transverse shear stresses), and traditionally these stresses are ob-
tained by integration of the local equilibrium equations. Since
the integration procedure involves differentiation of the in-plane
stresses, it requires the third derivatives of the transverse displace-
ment w0, as can be seen from Eqs. (2), (3), (6) and (19). Thus, the
finite element formulations must be of high enough order such
that their basis functions have meaningful third derivatives in or-



Fig. 10. Normalized transverse shear stresses sxzo ¼ sxzH=qa across the thickness, at
point ðx; yÞ ¼ ða; a=2Þ, using Ck=C0 formulation. Triangle integration rule with
NIP = 13.2. M ¼ 6. Edge function: exponential. a=H ¼ 4; p ¼ ð4;3Þ; b ¼ 4.

Fig. 11. Normalized transverse shear stresses sxzo ¼ sxzH=qa along the edge
ðx; yÞ ¼ ða; yÞ, using only Ck basis. Triangle integration rule with NIP = 13.2. M ¼ 6.
Edge function: exponential. a=H ¼ 4; p ¼ 3; b ¼ 3.

Fig. 12. Normalized transverse shear stresses sxzo ¼ sxzH=qa along the edge
ðx; yÞ ¼ ða; yÞ, using only Ck basis. Triangle integration rule with NIP = 13.2. M ¼ 6.
Edge function: exponential. a=H ¼ 4; p ¼ 4; b ¼ 4.

Fig. 13. Normalized transverse shear stresses sxzo ¼ sxzH=qa along the edge
ðx; yÞ ¼ ða; yÞ, using Ck=C0 basis. Triangle integration rule with NIP = 13.2. M ¼ 6.
Edge function: exponential. a=H ¼ 4; p ¼ ð3;2Þ; b ¼ 3.
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der to adequately estimate the transverse shear stresses. The re-
sults in Figs. 7 and 8 reveal that the GFEM Ck p ¼ 3 provides
acceptable estimates of the integrated transverse shear stress
across the thickness. This is surprising, considering that the basis
only spans polynomial spaces with a degree of at most b ¼ 3, and
the procedure involves three derivatives of the basis functions.
As expected, the GFEM Ck p ¼ 4 shows better results. This scenario
effect was identified by Ramesh et al. [33], who used standard tri-
angular elements of degree 8, with 45 nodes, to approximate the
Mindlin bending plate model. In this case, the higher degree was
shown to be essential to capture the effects of natural (force)
boundary conditions on the transverse shear forces and twisting
moments.
Even though the integration procedure (19) is well known and
used, Fig. 7 shows that the scaling procedure can improve dramat-
ically the quality of the approximation. An initial comparison be-
tween the scaled results in Figs. 7 and 8, for degrees b ¼ 3 and 4,
respectively, suggests that the scaling procedure was less efficient
for b ¼ 3 than for b ¼ 4. However, these figures show only the re-
sponse at a single point, at the mid-side position, at
ðx; yÞ ¼ ða; a=2Þ.

In an attempt to further investigate the performance of the pro-
posed Ck=C0 formulation, the normalized transverse shear stresses
sxzo ¼ sxzH=qa across the thickness, at a mid-side point
ðx; yÞ ¼ ða; a=2Þ, using a continuous basis for w0 and discontinuous



Fig. 14. Normalized transverse shear stresses sxzo ¼ sxzH=qa along the edge
ðx; yÞ ¼ ða; yÞ, using Ck=C0 basis. Triangle integration rule with NIP = 13.2. M ¼ 6.
Edge function: exponential. a=H ¼ 4; p ¼ ð4;3Þ; b ¼ 4.

Fig. 15. Normalized shear force Qxo ¼ Qxz=qa along the edge ðx; yÞ ¼ ða; yÞ, using Ck

basis. Triangle integration rule with NIP = 13.2. M ¼ 6. Edge function: exponential.
a=H ¼ 4; p ¼ 3; b ¼ 3.

Fig. 17. Normalized shear force Qxo ¼ Qxz=qa along the edge ðx; yÞ ¼ ða; yÞ, using
Ck=C0 basis. Triangle integration rule with NIP = 13.2. M ¼ 6. Edge function:
exponential. a=H ¼ 4; p ¼ ð3;2Þ; b ¼ 3.

Fig. 16. Normalized shearforce Qxo ¼ Qxz=qa along the edge ðx; yÞ ¼ ða; yÞ, using Ck

basis. Triangle integration rule with NIP = 13.2. M ¼ 6. Edge function: exponential.
a=H ¼ 4; p ¼ 4; b ¼ 4.
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ones for wx and wy, are displayed in Figs. 9 and 10. The results were
obtained with enrichment polynomials of degree p ¼ 3 and 4,
respectively, in such a way that the resulting basis have degrees
of b ¼ 3 and 4. It should be noted that the integrated and scaled
transverse shear stresses using the Ck=C0 strategy are as good as
those shown in Figs. 7 and 8, which verifies the applicability of
the mixed Ck=C0 procedure.

Figs. 11 and 12 show a more general view, where the normal-
ized transverse shear stresses sxzo ¼ sxzH=qa along the edge
ðx; yÞ ¼ ða; yÞ and at the reference surface z ¼ 0 are displayed. It
can be seen that the cubic basis generates an oscillatory response
to the integrated stresses, even when using only Ck functions,
which is greatly improved by the scaling procedure. The quality
of both approximations is better, as expected, with the basis of de-
gree b ¼ 4 seen in Fig. 12. Figs. 11–22 were produced from data
computed on a uniform grid of five points along the side of each
element. This results in sharp peaks in the integration results for
b ¼ 3, as seen in Fig. 11.

The normalized transverse shear stresses sxzo ¼ sxzH=qa, along
the edge ðx; yÞ ¼ ða; yÞ and at the reference surface z ¼ 0, when
using the mixed Ck=C0 formulation is shown in Figs. 13 and 14. It
can be seen that the constitutive transverse shear stresses are con-
tinuous along the edge since their calculation involves in-plane
derivatives only of w0, which is modeled with the Ck basis (see
(5)). Nevertheless, the integrated transverse shear stresses, which



Fig. 18. Normalized shear force Qxo ¼ Qxz=qa along the edge ðx; yÞ ¼ ða; yÞ, using
Ck=C0 basis. Triangle integration rule with NIP = 13.2. M ¼ 6. Edge function:
exponential. a=H ¼ 4;p ¼ ð4;3Þ; b ¼ 4.
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Fig. 19. Results for Ck=C0 p ¼ ð3; 2Þ formulation. (a) Normalized in-plane stress
rxo ¼ rxH2=ðqa2Þ at the outer surface z ¼ t=2; (b) and (c) Normalized transverse
shear stresses sxzo ¼ sxzH=qa at the mean surface z ¼ 0 obtained by integration of
equilibrium equations and integrated and scaled, respectively. Triangle integration
rule with NIP = 11.2. M ¼ 3. Edge function: exponential. a=H ¼ 4.
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require derivatives of in-plane stress components, are discontinu-
ous as a consequence of the C0 functions used for wx and wy, in con-
trast to Figs. 11 and 12. However, in the scaled values discontinuity
is greatly reduced, and the overall results are in agreement with
the analytic results.

The shear forces were then verified at the boundary and Figs. 15
and 16 show the results for the normalized shear forces
Qxo ¼ Q x=qa along the edge ðx; yÞ ¼ ða; yÞ when using only the Ck

basis, for p ¼ b ¼ 3 and p ¼ b ¼ 4, respectively. It can be noted that
the constitutive shear force obtained numerically matches very
well the analytic solution, as a direct consequence of the guaran-
teed continuity for w0 (see Eq. (5)) and the polynomial degree cho-
sen for the basis. On the other hand, the shear forces obtained from
the integration of the transverse shear stresses obtained from inte-
gration of the equilibrium Eq. (19), even though continuous, exhi-
bit oscillations, due to the higher-order differentiations involved.
Notably, the oscillations are less pronounced for b ¼ 4 than for
b ¼ 3.

Figs. 17 and 18 show the normalized shear forces for the Ck=C0

formulation using p ¼ ð3;2Þ and p ¼ ð4;3Þ, respectively. In these
cases, since wx and wy are modeled with the discontinuous basis,
the shear forces obtained from integrated transverse shear stresses
are discontinuous along the edge. The constitutive counterpart
matches very well the analytic solution, as seen in Figs. 15 and 16.

It was noted that the scaling process corrects well the trans-
verse shear stress distribution even in cases where the shear forces
are discontinuous and oscillatory along the edges, which supports
the motivation and hypothesis cited in Section 2.1.

While Figs. 6–18 show quantitative information, Figs. 19–22
give an overall qualitative view of the responses that can be ex-
pected from each of the procedures. These figures show the follow-
ing responses:

1. Results for mixed GFEM Ck=C0 p ¼ ð3; 2Þ and GFEM
Ck=C0 p ¼ ð4; 3Þ, and continuous GFEM, with p ¼ 3 and 4;

2. For each of the above formulations, the following results are
shown:
(a) Normalized in-plane stress rxo ¼ rxH2=ðqa2Þ at the outer

surface z ¼ H=2;
(b) Normalized transverse shear stresses sxzo ¼ sxzH=qa at the
reference surface z ¼ 0 obtained by integration of equilib-
rium equations; and

(c) Integrated normalized (as above) and scaled stresses.
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In all four figures, the results for continuous or mixed GFEM, for
both enrichment degrees, show qualitatively reasonable estimates
for the in-plane stresses, as expected. The approximations for the
simply integrated transverse shear stresses obtained from the
discontinuous GFEM C0 formulations (Figs. 19b and 20b) show,
on average, some resemblance of the corresponding exact smooth
distribution, but are still crude, particularly the approximation
using the b ¼ 3 basis. However, even in these discontinuous formu-
lations, the response estimated with the scaling procedure shows a
good behavior, even for b ¼ 3 (Fig. 19c) with mild interelement
discontinuities.

The approximations for the simply integrated transverse shear
stresses from the continuous formulations (Figs. 21b and 22b)
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are continuous, but seem to require a more accurate analysis with
a basis of higher degree. However, the response estimated with the
scaling procedure shows a good and almost smooth behavior, even
for b ¼ 3 (Fig. 21c).

Remark 3. Mesh distortion and locking effects. This paper is the
third in a sequence, where the continuous basis was tested in
relation to a C1 problem (anisotropic laminated Kirchhoff’s model
[28] ) and then to a C0 problem (anisotropic laminated Mindlin’s
model [27]). Since the present formulation, based on Reddy’s
assumptions, is a mixed one, in which the C0 and C1 displacement
fields are modeled, only some aspects were considered to deserve
numerical evaluation. Other aspects, such as integrability, sensi-
tivity to mesh distortion and response under thickness variation,
were investigated in detail in the previous papers. In particular, the
GFEM Ck shows extreme robustness with regard to mesh distor-
tion, being able to withstand elements much more distorted than
the elements produced by any commercial codes. Also, several
aspects contribute to the reduced sensitivity of the method with
increasing plate thickness. Both behaviors are related to the
characteristics of the method, being enriched with functions
defined in global coordinates, and the PoU is defined without the
use of intrinsic coordinates. Thus, the ability of the basis to model
the polynomial degree associated with its enrichment is main-
tained, with little loss under extreme mesh distortion. Also, as
known for the framework of FEM, a higher degree basis is naturally
more resistant to any type of locking. With GFEM Ck it is possible to
see that even enrichment degrees of p ¼ 3 and 4 are sufficient to
reduce the sensitivity to thickness of the response.
5. Concluding remarks

An extension of the Generalized Finite Element Method, GFEM,
which generates approximation functions with an arbitrary Ck con-
tinuity over meshes of triangular elements was used to model the
bending problem of arbitrary anisotropic laminated composite
plates, under the kinematic hypothesis of the Third-order Plate
Theory proposed by Reddy. This model only involves the same five
generalized displacement components ðuo; vo;wo;wx;wyÞ as in the
first order models (like Mindlin’s) and, at the same time, its third
degree variation of in-plane displacements across the thickness en-
ables it to provide improved displacements and layer-wise stress
estimates in relation to the first-order models. However, it shows
two main limitations: (a) its FEM implementation is somewhat
hindered by the need to use a C1ðXÞ continuous basis for the trans-
verse displacement wo and (b) it is an equivalent single-layer the-
ory, and thus its approximations for the transverse shear stresses
are discontinuous at the interlaminar interfaces, and are non-zero
at the laminate surfaces, which is in contrast to the physical
requirements.

It was observed that limitation (a) was perfectly met by the
characteristics of the Ck GFEM and the second limitation was al-
most completely overcome. The formulation is based on a Shepard
Partition of Unity (POU) with at least Ck continuity, subordinated to
clouds defined as patches of elements, and enriched with the same
scheme as the hp-Cloud Method.

The resultant basis functions naturally exhibit inter-element
continuity and can be easily enriched to generate arbitrary p-en-
riched basis. As a consequence, all of the estimated strain and
stress fields are naturally interelement continuous, without the
need for any heuristic averaging or smoothing operation. The
method was implemented with three-node triangular elements,
although its fundamental characteristics enable it to be also ap-
plied to meshes of arbitrarily shaped quadrangular elements. The
computational programming of the continuous functions is encap-
sulated such that the overall structure of the program is the same
as that of the standard displacement FEM, and even more similar to
the structure of the standard GFEM formulation.

Two variations in the procedure were tested: (a) in the first, all
generalized displacement functions were modeled with a Ck con-
tinuous basis and (b) in the second, a mixed Ck=C0 formulation
was tested, where the Ck continuous functions were used only
for that variable which required such continuity, the transverse
displacement, in order to reduce the computational cost. The
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remaining generalized displacements, in-plane displacements and
rotations were modeled by the C0 continuous conventional GFEM
formulation. The mixed configuration lacks continuity but showed
lower computational cost than that of the continuous form.

The performance of both formulations was illustrated through
comparisons with analytic solutions, with special emphasis on
the computation of the transverse stress field and shear forces
for thick laminates.

The tests showed excellent approximations for the layer-wise
stresses. In particular, the possibility of generating basis with a
high degree, combined with continuity, enables approximations
of the transverse shear stresses to be obtained from integration
of the local equilibrium equations which show the correct qualita-
tive response, with zero values at one of the laminate surfaces and
inter-element continuity. Additionally, the shear forces obtained
were well behaved.

These two characteristics enable a second level of post-process-
ing, generating transverse shear stresses from a scaling procedure
applied to the integrated shear stresses. The shear forces obtained
from integration of the integrated transverse shear stresses were
oscillatory or even discontinuous along the edges depending on
whether the complete Ck or mixed Ck=C0 formulation was used.
Nevertheless, the scaled distribution of shear stresses matched
the respective analytic results very well, both qualitatively and
quantitatively, across the thickness and along the laminate surface.
This feature becomes more notable along the edges of the
laminate.

Overall, the GFEM continuous formulation tested appears to
produce reliable responses in terms of the displacements and in-
plane and transverse shear stresses, and preserves the standard
FEM program structure, presenting a formal structure that permits
easy p-enrichment and produces reliable transverse stress resul-
tants even with low order basis (third and fourth). As tested else-
where in the context of C0 problems [27], the formulation can
work exceptionally well with highly distorted meshes, and thus
the analysis can be carried out with the better-behaved meshes
generated from standard commercial mesh generators. The GFEM
Ck=C0 procedure shows robustness and deserves investigation with
regard to its application in approximating solutions for other high-
er-order differential operators where only some variables require
higher-order derivatives.

Acknowledgments

The authors gratefully acknowledges the Brazilian government
agency CNPq (National Council for Scientific and Technological
Development) for its support through the Research Projects
N.309.640/2006-7, N.140.713/2008-5, N.303.315/2009-1 and
N.303.575/2010-7.

References

[1] Reddy JN. On laminated composite plates with integrated sensors and
actuators. Eng Struct 1999;21:568–93.

[2] Garção JES, Soares CMM, Soares CAM, Reddy JN. Analysis of laminated adaptive
plate structures using layerwise finite element models. Comput Struct
2004;82:1939–59.
[3] Liew KM, He XQ, Tan MJ, Lim HK. Dynamic analysis of laminated composite
plates with piezoelectric sensor/actuator patches using the FSDT mesh-free
method. Int J Mech Sci 2004;46:411–31.

[4] Liew KM, He XQ, Tan MJ, Lim HK. Dynamic analysis of laminated composite
plates with piezoelectric sensor/actuator patches using the FSDT mesh-free
method. Int J Mech Sci 2004;46:411–31.

[5] Mindllin RD. Influence of rotatory inertia and shear on flexural motions of
isotropic, elastic plates. J Appl Mech 1951;18:31–8.

[6] Reddy JN. A simple higher-order theory for laminated plates. J Appl Mech
1984;51:745–52.

[7] Lee KH, Senthilnathan NR, Lim SP, Chow ST. An improved zig–zag model for the
bending laminated composite plates. Compos Struct 1990;15:137–48.

[8] Demasi L. Refined multilayered plate elements based on Murakami zig–zag
functions. Compos Struct 2005;70:308–16.

[9] Zhen W, Wanji C. An efficient higher-order theory and finite element for
laminated plates subjected to thermal loading. Compos Struct
2006;73:99–109.

[10] Simkins Jr DC, Li S, Lu H, Liu WK. Reproducing kernel element method. Part IV:
Globally compatible Cn (n11) triangular hierarchy. Comput Methods Appl
Mech Eng 2004;193:1013–34.

[11] Beirão da Veiga L, Niiranen J, Stenberg R. A family of C0 finite elements for
Kirchhoff plates I: error analysis. SIAM J Numer Anal 2007;45:2047–71.

[12] Djeukou A, von Estorff O. Assessment of different RPIM parameters for statics
analyses of shear deformable laminated composite plates. Comput Mech
2009;44:423–31.

[13] Tang Z, Shen S, Atluri SN. Analysis of materials with strain-gradient effects: a
meshless local Petrov–Galerkin (MLPG) approach, with nodal displacements
only. Comput Model Eng Sci 2003;4:177–96.

[14] Long S, Atluri SN. A meshless local Petrov–Galerkin method for solving the
plate bending problem of a thin plate. Comput Model Eng Sci 2002;3:53–63.

[15] Shiah YC, Hwang W-S, Shiah G-C. BEM stress analysis for thin multilayered
composites subjected to inertial loads. J Compos Mater 2009;43:349–66.

[16] Garcia OA, Fancello EA, de Barcellos CS, Duarte CA. Hp-clouds in Mindlin’s
plate model. Int J Numer Methods Eng 2000;47:1381–400.

[17] Duarte CA, Kim D-J, Quaresma DM. Arbitrarily smooth generalized finite
element approximations. Comput Methods Appl Mech Eng 2006;196:33–56.

[18] Edwards HC. C1 finite element basis functions. Technical report, TICAM report
96-45, The University of Texas at Austin; 1996.

[19] Shapiro V. Theory of R-functions and applications: a primer. Technical report
91-1219, Ithaca (NY): Computer Science Department, Cornell University;
1991.

[20] Babuška I, Melenk JM. The partition of unity finite element method: basic
theory and applications. Comput Methods Appl Mech Eng 1996;139:289–314.

[21] Melenk JM. On generalized finite element methods. Ph.D. Thesis. College Park:
University of Maryland; 1995

[22] Oden JT, Duarte CA, Zienkiewicz OC. A new cloud-based hp finite element
method. Comput Methods Appl Mech Eng 1998;153:117–26.

[23] Belytschko T, Black T. Elastic crack growth in finite elements with minimal
remeshing. Int J Numer Methods Eng 1999;45:601–20.

[24] Moës N, Dolbow J, Belytschko T. A finite element method for crack growth
without remeshing. Int J Numer Methods Eng 1999;46:131–50.

[25] Rvachev VL, Sheiko TI. R-functions in boundary value problems in mechanics.
Appl Mech Rev 1995;48:151–88.

[26] Torres DAF, Mendonça PTR, de Barcellos CS. Evaluation and verification of an
HSDT-Layerwise generalized finite element formulation for adaptive
piezoelectric laminated plates. Comput Methods Appl Mech Eng
2011;200:675–91.

[27] Mendonça PTR, de Barcellos CS, Torres DAF. Analysis of anisotropic Mindlin
plate model by continuous and non-continuous GFEM. Finite Elements Anal
Des 2011;47:698–717.

[28] de Barcellos CS, Mendonça PTR, Duarte CA. A Ck continuous generalized finite
element formulations applied to laminated Kirchhoff plate model. Comput
Mech 2009;44:337–93.

[29] Shepard D. A two-dimensional interpolation function for irregularly-spaced
data. In: Proceedings of the 23rd ACM national conference; 1968. p. 517–24.

[30] Oden JT, Reddy JN. An introduction to the mathematical theory of finite
elements. New York: Wiley; 1976.

[31] Duarte CA, Babuška I, Oden JT. Generalized finite element method for three-
dimensional structural mechanics problems. Comput Struct 2000;77:215–32.

[32] Wandzura S, Xiao H. Symmetric quadrature rules on a triangle. Comput Math
Appl 2003;45:1829–40.

[33] Ramesh SS, Wang CM, Reddy JN, Ang KK. Computation of stress resultants in
plate bending problems using higher-order triangular elements. Eng Struct
2008;30:2687–706.


	Robust ? generalized FEM approximations for higher-order conformity requirements: Application to Reddy’s HSDT model for anisotropic laminated plates
	1 Introduction
	2 Reddy’s kinematic plate model
	2.1 Scaling of the integrated shear stresses

	3 GFEM ? approximation functions
	3.1 Partition of unity
	3.2 Enrichment and approximation functions

	4 Numerical results
	4.1 Performance assessment through strain energy: influence of integration and discretization
	4.2 Performance evaluation on point-wise values

	5 Concluding remarks
	Acknowledgments
	References


