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Abstract This paper develops and analyzes two techniques
to extend the use of generalized finite element method
techniques to structural shell problems. The first one is a
procedure to define local domains for enrichment functions
based on the use of pseudo-tangent planes. The second one
is a procedure for imposing homogeneous essential bound-
ary conditions and treatment of boundary layer problems
by utilizing special functions. The main idea supporting the
pseudo-tangent proposition is the separation of the geomet-
ric description, with its intrinsical distortions with respect to
the physical domain, from the approximation space, which
is defined in a locally undistorted domain. The treatment of
essential boundary conditions allows an adequate enrichment
in the boundary vicinity, preserving the completeness of the
polynomials defining the basis functions. A set of numerical
cases are tested in order to show the behavior of the proposed
strategies, and a number of observations are drawn from the
results, as follows. First, the technique of constructing the
enrichment functions on a pseudo-tangent plane shows good
results, even with strongly curved shell surfaces. With respect
to the locking problem, the method behaves in a similar way
as the classical hierarchical finite element methods, avoiding
locking for appropriate levels of p-refinements. The proce-
dure considered to impose essential boundary conditions in
strong form appears to be more accurate than with the penalty
or Lagrange multiplier methods. The inclusion of exponential
modes for the treatment of boundary layers in shells provided
extremely good results, even with integration elements much
larger than the shell thickness.
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1 Introduction

Numerical modeling of complex problems in computational
mechanics points towards meshless methods as a promising
alternative in order to avoid excessive loss of accuracy due
to mesh distortion and to provide more flexibility for the
definition of the approximation spaces in comparison with
the classical finite element method (FEM). Its advantages
become more evident in problems involving singularities,
boundary layer phenomena, impact, damage and failure in
phase change situations.

Among the most known meshless methods one can men-
tion: multiquadric [25,26]; reproducing kernel particle
method (RKPM) [29]; element free Galerkin method
(EFGM) [8]. The latter has the characteristic of naturally
introducing a procedure to perform hp-adaptivity, avoiding
the construction of functions by sophisticated hierarchical
techniques in intrinsic coordinates. The advantages of these
procedures are, however, balanced by the computational cost
involved in the integration process, since each covering of
each point is arbitrary. In order to ameliorate the cost of
numerical integration and the implementation difficulties
of mesh free methods, Oden et al. [35], proposed that, instead
of using generalized spheres or rectangles for defining the
local supports, it would be more convenient to use finite ele-
ment meshes. Therefore, the support associated to a node
would be built by the union of the elements connected to that
node. In this way, the method becomes only partially mesh-
free: the mesh is utilized to define the partition of unity and to
perform integration, but the enrichment functions are defined
in global coordinates. This procedure led to the generalized
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finite element method (GFEM) [16]. Independent develop-
ments were conducted by Babuska and Melenk [4], named
as partition of unit finite element method (PUFEM) It also
led to the works of Belytschko and Black [6] and Moes [32],
named extended finite element method (XFEM).

For Peer Although excellent results are obtained by these
methods for plane and tridimensional problems, few develop-
ments have been made for shell problems, and some techni-
cal aspects are still open to improvements. Among them, the
imposition of essential boundary conditions, processing time
and an adequate approach for arbitrary curved shell prob-
lems. The first contribution in this aspect was presented by
Krysl and Belytschko [24], where the approximation space
is constructed on a parameterized domain obtained from a
moving least square (MLS) approximation of the real shell
geometry (with geometry and displacement fields are approx-
imated by the same functions). This technique shows a good
behavior, although it demands appreciable efforts in order
to generate the parameterized domain. Moreover, it does not
support p- or hp-enrichments.

A different approach for non-linear thin shell problem was
presented by Li et al. [28], where the authors use the 3-D
RKPM. In this case a solid-type approach of the shell was
used and the local shape functions have a spherical support.

Among the most recent works we should mention the
paper of Liu et al. [27], who approximate the stress field in
shear deformation model for shells utilizing a geometrically
exact formulation. The basis functions in the radial direction
utilized for the stresses are also utilized to approximate the
reference surface. However, differently from the MLS func-
tions utilized in EFGM, the radial basis of the conforming
radial point interpolation method shows the Kronecker delta
property.

Ferreira et al. [18], utilize a multiquadric basis function to
obtain the natural frequencies of the shallow shell problem
with laminated composite material and modeled by the first
order theory of Donnel. The reference surface is not param-
eterized and the space of approximation is built in a single
tangent plane.

In the present work, a GFEM procedure is proposed to deal
with moderately thick shells. The shell geometry is treated
following the degenerate solid strategy [1] while the approx-
imation space is created by a combination of the Partition
of Unity provided by the traditional element shape functions
and local enrichment functions defined in global coordinates.
This enrichment space is defined over specially constructed
pseudo-tangent planes, whose normals are oriented along the
thickness in the vertex of the associated solid elements.

The most used procedures to enforce essential boundary
conditions consist in incorporating the boundary condition
in weak form by means of Lagrange multipliers [8], penalty
method [42], Nitsche’s method [3,22] or by direct substitution
of the boundary functions [28]. These techniques show good

results, but present additional computational costs due to the
integration on the Dirichlet portion of the boundary, or due
to the matrix inversion needed to obtain the functions on the
boundary. Besides, except for the direct substitution method,
in general these methods are capable to impose the boundary
conditions in an approximate way. Taking advantage of the
GFEM characteristics, an alternative natural way to impose
essential conditions is used here, based on special boundary
functions for the PU and corresponding enrichments that
strongly satisfy the needed conditions at the boundary.
Another use of special functions is included in this work
to the capture boundary layer phenomena in shell problems.

The paper is organized as follows: Sect. 2 is a general brief
description of the GFEM method. Section 3 presents two
different uses of special functions: essential boundary con-
ditions and boundary layer representations. Section 4 devel-
ops approximation functions in curved surfaces and Sect. 5
applies the GFEM technique to a thick shell finite element
model. Finally, Sect. 6 presents several numerical examples
in which the following aspects are tested: the capacity of
the proposed approach to deal with locking with uniform
strategies of p-enrichment and the efficiency of this type of
enrichment to capture boundary layer behavior in Reissner–
Mindlin plates and shells.

2 Approximation space in GFEM

Formally, the GFEM approximation space is defined as fol-
lows. LetΩ be an open bounded domain and {Ωα}N

α=1 a cov-
ering of compact sets defined by a domain partition. Consider
also a Partition of Unity (PU) {ϕα}N

α=1 of the Lipschitz type
associated with this covering. At each setΩα of the covering
(referred to in the text as cloud), a space Qα is defined to
represent the local enrichment functions over the cloud Ωα .
The global approximation space is then given, symbolically,
by the expression:

Q =
N∑

α=1

ϕαQα (1)

where N is the number of clouds defining the support of the
problem. Equation (1) means that the global approximation
space is defined by functions obtained by the product of the
PU functions with a set of appropriate enrichment functions.
In this definition, the PU ensures the exact representation of
constant functions while the enrichment takes into account
higher order representations.

The global space Q built in this way inherits the approxi-
mation properties of the enrichment functions Qα (See [30,
Theorem 3.2]) which, in general, are built using polynomials
due to their well known approximation properties. The set Q
may also be redefined by the expression
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Fig. 1 Domain of the cloud Ωα

Q = span{F p
N } (2)

where F p
N represents the set of global approximation

functions. If the enrichment functions are obtained using the
tensor product of polynomials, one has:

F p
N = {{ϕα Q̄ p

α} : 1 ≤ α ≤ N } (3)

Q̄ p
α = {Li j (x̄) = x̄ i ȳ j : 0 ≤ i, j ≤ p, i, j ≥ 0, p ≥ 0} (4)

If complete polynomials are used instead (triangle of Pascal),

F p
N =

{{
ϕα Q̂ p

α

}
: 1 ≤ α ≤ N

}
(5)

Q̂ p
α =

{
Li j (x̄) = x̄ i ȳ j : 0 ≤ i, j ≤ p, 0 ≤ i + j ≤ p

}
(6)

The spaces thus obtained are such that P ⊂ Q, where P is
the set of polynomials of degree g ≤ p.

Consider the relative position vector x̄ = [R]T
α (x − xα),

where x represent the location of a point in global coordi-
nates, [R]α and xα are the rotation matrix and the position
vector of the center of cloud Ωα , respectively. Consider the
normalized coordinate ξ associated with a circle of radius hα
(Fig. 1), such that:

ξ = x̄
hα

�⇒ x̄ = hαξ (7)

Let [−1, 1] × [−1, 1] ∈ R2 be a normalized domain. The
local enrichment functions are defined by:

Li j (x̄) = L̂i j (ξ) �⇒ ∇x̄ Li j (x̄) = 1

hα
∇ξ L̂i j (ξ) (8)

where L̂i j (ξ) e ∇ξ L̂i j (ξ) are the enrichment functions and
their derivatives defined over the normalized domain.

This enrichment may also be performed along preferen-
tial directions in a straightforward way. A possible strategy
is presented in [17]. In this case, an orthotropic set Q̃ p

α , is
obtained from the enrichment polynomial basis Q̂ p

α and Q̄ p
α ,

defined in (6) and (4), such that the set of functions Q̃ p
α cor-

responding to a cloud α is defined by:

Q(
px̄ ,pȳ)
α = Q̂ p max

α ∩ Q̄(
px̄ ,pȳ)
α

where p max = max
{

px̄ , pȳ
}
.

The following important characteristics of this method
should be pointed out:

a) It provides limited cardinality because the number of
supports covering each integration point is known
beforehand;

b) It is possible to enforce essential boundary condition in
strong form;

c) It is possible to define directional anisotropic p -enrich-
ments easily;

d) It allows the combination of classical polynomial bases
with special built functions that belong to particular solu-
tions of the problem;

e) Semi-definite stiffness matrices may arise when the par-
tition of unity and the enrichment functions are both
polynomials.

A well known technical drawback that appears when both
the partition of unity and the enrichment functions are poly-
nomials is that the stiffness of the matrix becomes semi-def-
inite which causes difficulties in solving the linear system.
Fortunately, this inconvenience is tractable and in the present
study the procedure proposed in [16] is used.

3 Special functions

One of the main attractive features of meshless and GFEM
methods is their flexibility, allowing the incorporation of cus-
tomized functions for specific tasks. In this research two dif-
ferent special functions are proposed. The first group deals
with essential boundary conditions, while the second group
provides appropriate enrichment functions in order to capture
boundary layer phenomena.

3.1 Special functions for essential boundary conditions

The development of efficient and low cost methods to enforce
essential boundary conditions still constitutes a challenge
in relation to meshless methods. In general, they use radial
supports whose approximation functions do not possess the
selective property of Kronecker Delta. In these cases, essen-
tial boundary conditions are enforced by penalization or
Lagrange multiplier techniques. These procedures may gen-
erate small oscillations in the fields at the prescribed bound-
ary and therefore are, in general, not adequate to represent
problems of localization over these contours. Some alterna-
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tives have been presented like the use of singular weighting
functions [15] and the modification of the functions on the
Dirichlet boundary [28]. In the first case, the results are exact
for the clouds associated with the singular weighting func-
tions. However, the results oscillate at points at a distance of
the cloud, and the integration of these functions by quadra-
ture is still a delicate process. The second alternative gives
exact values at the prescribed boundary but with high com-
putational cost, comparable with that of the integration on
the boundary used in the Lagrange and penalty methods.

In the case of GFEM, the partition of unity functions
possess the Kronecker delta property which, at a first sight,
enables boundary conditions to be imposed in the same way
as in classical FEM. However, the basic concept of enforc-
ing a homogeneous Dirichlet boundary condition through
the elimination of the PoU functions (and their enrichments)
associated with the prescribed boundaries may provide incor-
rect results, since the space generated is precisely conforming
but not minimally conforming (see Szabó and Babuska [36]).
This phenomenon was registered by Schwebke and Holzer
[37] for the problem of plane elasticity with p-enrichment. In
the present case, the set of approximation functions has finite
deformation energy, but it is not complete. This limitation is
critical in bending problems approximated by p-refinement
with a small number of elements, as is shown in the following
example.

Consider the bending of a rectangular plate with soft
simple supports on two opposite sides, as in Fig. 2. The
plate has the following characteristics: length L = 10 mm,
width b = 2 mm, thickness t = 1 mm, elasticity modulus
E = 2.1 × 105 MPa and uniformly distributed load q =
0.1 MPa. The domain is modelled with two square Q8
Reissner–Mindlin type elements, as indicated in Fig. 2. The
Poisson coefficient is zero in order to use the Euler-
Bernoulli analytical solution of beams as the reference value.
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Fig. 2 Plate simply supported at opposite edges, modeled by 2×1 Q8
elements

Fig. 3 Trace of the functions associated with cloud α = 2, over the
boundary (x,−1)

The approximation space for transverse displacementw was
built according to Eqs. (5) and (6), for N = 6 and p = 4. In
order to satisfy the essential boundary conditions, the local
functions associated with the clouds over the restricted parts
of the boundary were eliminated. Therefore, the resulting
space is defined by:

F p=4
N=6 =

{{
ϕα Q̂ p

α

}
, 1 ≤ α ≤ N ,

ϕ1 Q̂ p
1 ≡ ϕ3 Q̂ p

3 ≡ ϕ4 Q̂ p
4 ≡ ϕ6 Q̂ p

6 ≡ 0

}
(9)

The traces of the approximation functions corresponding
to the cloud α = 2, for the points at coordinates (x,−1)
are shown in Fig. 3. The solution is symmetric with relation
to x = 5, such that only the even functions ϕ2, ϕ2x2 and
ϕ2x4 are useful in representing the transverse displacement
w. Therefore, the set lacks quadratic and quartic terms. Utiliz-
ing these functions, the solution obtained (shown in Fig. 4a)
is qualitatively different from the correct solution obtained
by the penalty method (Fig. 4b).

The procedure here proposed imposes boundary condi-
tions in strong form by substituting PU functions on the
boundary with special functions which vanish at this bound-
ary (Garcia [21]). These new functions, denominated bound-
ary functions, are obtained by a multiplicative restriction pro-
cedure, similar to that proposed by Schwebke and Holzer
[37]. These functions are obtained through the tensor product
of the PU functions associated with the prescribed degree of
freedom, and ramp functions defined in the element domain.
The ramp function has the same support as the clouds on
the prescribed boundary, and is defined for each degree of
freedom in the boundary. Consequently, the number of ramp
functions per element on the prescribed boundary is always
equal to the number of prescribed degrees of freedom in the
model. The construction of these functions is extremely sim-
ple and shown by the following example.
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Fig. 4 a Modes obtained considering incomplete space; b modes
obtained by the penalty method
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Fig. 5 Prescribed boundary segment and ramp function corresponding
to the prescribed degrees of freedom

Consider the domain Ω depicted in Fig. 5, with essential
homogeneous conditions on the boundaries ∂Ω1 and ∂Ω2 for
an arbitrary degree of freedom u. The ramp function Ru(ξ, η)

associated with u is defined as the summation of the PoU
functions at the clouds whose nodes are not situated on the
prescribed boundaries. Taking, for example, the elements e1

and e2 with sides on the prescribed boundaries, the ramp
function is constructed as indicated in Table 1.

With the ramp function already calculated, a set of bound-
ary functions is defined for those clouds whose central nodes
are located at the prescribed borders. The functions are obt-
ained from the product of the ramp function and the partition

Table 1 Ramp functions associated with elements with boundaries on
∂Ω1 ∪ ∂Ω2

Element 1 2 3 4 Ru (ξ, η)

1 1 1 0 1 ϕ3 (ξ, η)

2 1 1 0 0 ϕ3 (ξ, η)+ ϕ4 (ξ, η)

Table 2 Tensor product of ramp functions and the partition of unity
corresponding to the prescribed degrees of freedom

Element Node Ru(ξ, η) Bu(ξ, η)

1 1 ϕ3 ϕ1ϕ3

1 2 ϕ3 ϕ2ϕ3

2 1 ϕ3 + ϕ4 ϕ1 (ϕ3 + ϕ4)

2 2 ϕ3 + ϕ4 ϕ2 (ϕ3 + ϕ4)

Fig. 6 Boundary functions of element 1: a node 1; b node 2; c node
4. Boundary functions of element 2: d node 1; e node 2

of unity associated to the nodes at the Dirichlet border. The
boundary function is obtained easily at the element level as
exemplified in Table 2 for the elements e1 and e2 of Fig. 5.

Figure 6a–c show the boundary functions associated with
element e1 and Fig. 6d and e show the boundary functions of
element e2.

Finally, once the boundary functions are constructed for
the clouds with prescribed degrees of freedom, the PU asso-
ciated with the cloud is substituted by this function, together
with all its products with the enrichments.

It is verified that, applying the proposed technique to the
example of Fig. 2, the correct solution is recovered.

3.2 Special functions for boundary layers

In plates and shallow shells modeled by the Reissner–Mindlin
model, a boundary layer phenomenon is usually developed in
the form of an exponential response along a region between
the boundary and a distance of about the size of the thickness.
Denoting ω and φ the transverse displacement and rotation
fields of the Reissner–Mindlin model, respectively, and writ-
ing them by means of asymptotic expansions with respect to
the thickness t , one obtains the expressions [2]:

ω ∼ ω0 + tω1 + t2ω2 + · · · (10)

φ ∼
(
φ0 + tφ1 + t2φ2 + · · ·

)

+χ
(
Φ0 + tΦ1 + t2Φ2 + · · ·

)
(11)
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Fig. 7 Curvilinear coordinates for special functions

In expressions (10) and (11) the functions wi and φi ,
with i = 0, 1, 2, . . . , are smooth. The symbol χ repre-
sent an indicator operator whose value is zero for material
points far enough from the boundary, and is equal to one for
material points close enough to it. The functions Φi , with
i = 0, 1, 2, . . . , are exponential functions depending on the
variables (r, θ), for a given thickness t , with the form

Φi (r, θ) = e−βr/t Fi (r/t, θ) (12)

where k is the shear factor coefficient, r is the normal distance
of a point to the boundary and θ is the curvilinear coordinate,
as indicated in Fig. 7. The coefficient β = √

12k is character-
istic of the Mindlin plate model. Functions Fi (r) are smooth
for a given thickness t . When t → 0 it follows that w → w0

and φ → φ0 + χΦ0.
These particular functions can be used to enrich the spaces

at the boundaries. The proposition consists of approximating
w and the smooth parts of φ inΩ with polynomial functions
and approximating Φ(r, θ) in ∂Ω with functions of the type
(12). The set Q p

α of smooth functions may be obtained from
(4) or (6) while the set Vα that provides the local exponential
behavior is defined by

Vα = {e−βr/t Fα(r/t, θ), Fα ∈ P} (13)

In the present study the set P = {1, r, r2, . . . , rn−1
n }, along

with r and θ , are shown in Fig. 7. In this way, the global
approximation function Q is redefined as:

Q =
N∑

α=1

ϕαVα, with Vα ⊂ H1
(Ωα∩Ω) (14)

Vα = span
{

Q p
α ∪ χVα

}
, (15)

where χ indicates whether the center of the cloud xα belongs
to the enriched boundary

χ =
{

1 if xα ∈ ∂Ω,
0 if xα /∈ ∂Ω, (16)

Figure 8 shows a local orthotropic enrichment obtained
from the product of a smooth function F(ξ, η) and an
exponentially decaying function:
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Fig. 8 Function with exponential decay in direction η associated with
a cloud centered in (0,−1)

F(ξ, η) = 1

16
(1 + ξ)2(1 − η)2 (17)

B(ξ, η) = F(ξ, η)e−βr/t , r(ξ, η) = η (18)

Function B(ξ, η) is defined on the domain

Ωe =
{
ξ, η ∈ R2 | −1 ≤ ξ ≤ 1, − 1 ≤ η ≤ 1

}
(19)

and the cloud is centered at (0,−1). Figure 8 shows a typical
case where the behavior to be represented has a high gradi-
ent in the normal direction compared to that of the tangent
direction.

4 Approximation functions in curved surfaces

In the classical FEM approach, each element is attached to
a curvilinear coordinate system associated with its particu-
lar mapping. In the GFEM approach, a unique continuous
mapping for each cloud (in this case a patch of elements) is
necessary in order to define the approximation space on the
curved shell. A possible strategy consists of using an approx-
imation of the reference surface defined as in [24,27]. In the
present paper, however, this concept is substituted by a local
approximation based on pseudo-tangent planes. In order to
detail this concept, consider a cloud formed by a patch of
elements attached to a vertex point Xα . At this point define

an orthonormal basis [θ1
α

... θ2
α

... vα3] such that the vector vα3

is aligned with the vector normal (or pseudo-normal) to the
shell surface (see Fig. 9). The remaining vectors θ1

α , θ2
α define

a pseudo-tangent plane πα that is used to mediate the con-
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Fig. 9 Pseudo-tangent plane corresponding to the cloud Xα

struction of continuous enrichment functions over the cloud.
In this plane, a circle of radius hα and center Xα contains the
projection of all the points belonging to the cloud. The local
support of the enrichment functions is then defined as

ωα = {x̄(x̄, ȳ) ∈ R2 : ‖x̄‖R2 ≤ hα} (20)

x̄ = PαRT
α (X − Xα) (21)

The projection operator Pα is a defined by:

Pα=
⎡

⎣
1/hα 0 0

0 1/hα 0
0 0 0

⎤

⎦ (22)

and Rα = [θ1
α

... θ1
α

... vα3] is the rotation matrix associated
with the local basis of the cloud α in relation to the global
coordinates.

The enrichment functions Lα defined in (4), (6) or (15) are
dependent on the local coordinates x̄ on the pseudo-tangent
plane ass seen in (20). Therefore, for a point belonging to an
element attached to the vertex Xα at elementar intrinsic coor-
dinates (ξ, η), the enrichment functions and their gradients
at this point are defined by:

Lα(ξ, η) = Lα(x̄(ξ, η)) (23)

∇ξ Lα(ξ, η) = PαRαJ ∇x̄ Lα(x̄(ξ, η)) (24)

where ∇x̄ is the gradient operator related to the local coordi-
nates x̄ defined on the cloud α and J is the Jacobian matrix
of the element mapping containing the point. Once both sets
of functions for the enrichment are obtained in the elementar
domain, the local approximation space is generated, comput-
ing the functions ψαk (ξ, η) ∈ F p

N defined in (3) or (5).

Fig. 10 Geometric characteristics of the degenerate solid [1]

5 A Mindlin–Reissner GFEM model

Different shell models may be used in conjunction with the
method proposed above. In the following, a model based on
a degenerate solid element and the Mindlin–Reissner cine-
matic approach is tested.

The degenerate solid element was introduced by Ahmad
et al. [1] and since then it has been widely used in shell sim-
ulations using the FEM, different from to the formulations
based on shell theories. The concept of degeneration is devel-
oped enforcing indeformability in the normal direction and
allowing transverse shear deformation in the shell element.
In this study the serendipity solid element with 16 nodes
degenerates to an 8-node surface element, here denoted Q8,
as depicted in Fig. 10.

At each node on the surface element, the pseudo-normal
vector v3k is defined by the coordinates of the upper (ksup)
and lower (kin f ) points across the thickness (see Fig. 10):

V3k = xsup
k − xinf

k , v3k = V3k

‖V3k‖ and V3k = v3k tk (25)

where tk is the thickness measured along the edge. The other
vectors of the basis, θ1

k and θ2
k (Fig. 10), are obtained from the

tensor product of v3k and the unit vectors i, j,k of the carte-
sian global coordinate system. Formally (considering that j
is not parallel to v3k) one has:

θ1
k = j × v3k∥∥j × v3k

∥∥ and θ2
k = v3k × θ1

k∥∥v3k × θ1
k

∥∥

The geometric mapping function of the element is then def-
ined as:

x(ξ, η, ζ ) =
n∑

k=1

Nk(ξ, η)xk +
n∑

k=1

Nk(ξ, η)
tk
2

v3kζ (26)

where n corresponds to the number of nodes on the refer-
ence surface of the element, Nk(ξ, η) are the lagrangian or
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serendipty functions associated with nodes k on the reference
surface, and (ξ, η, ζ ) are the natural coordinates, such that
−1 ≤ (ξ, η, ζ ) ≤ 1.

Let active nodes denote the nodes associated with the
approximation functions. In the present case these nodes are
at the vertices of the elements. Let nn be the number of active
nodes and nα the number of approximation functions asso-
ciated with each node. The total number of approximation
functions is then (considering for simplicity the same num-
ber nα for all nodes) ns = nnnα . Thus, the Reissner–Mindlin
kinematic model provides the following decomposition of the
displacement vector u:

u(ξ, η, ζ ) =
ns∑

k=1

⎡

⎣ψk (ξ, η)

⎧
⎨

⎩

uk

vk

wk

⎫
⎬

⎭

+ ψk (ξ, η)
tk
2
ζ

⎡

⎣
θ1

kx −θ2
kx

θ1
ky −θ2

ky
θ1

kz −θ2
kz

⎤

⎦
{
αk

βk

}⎤

⎦ (27)

where (uk, vk, wk) are the displacement contributions of node
k at the reference surface (in global coordinates), ψk(ξ, η)
and αk, βk are rotation angles of the pseudo-normal about
the vectors θ1

k and θ2
k , respectively. Considering the kine-

matic model represented by (27), the displacement field can
be written in matrix form as uh(k) = NkUk, where

N =

⎡

⎢⎢⎣

.. ψk 0 0 ψk (ξ, η)
tk
2 ζθ

1
kx −ψk (ξ, η)

tk
2 ζθ

2
kx ..

.. 0 ψk 0 ψk (ξ, η)
tk
2 ζθ

1
ky −ψk (ξ, η)

tk
2 ζθ

2
ky ..

.. 0 0 ψk ψk (ξ, η)
tk
2 ζθ

1
kz −ψk (ξ, η)

tk
2 ζθ

2
kz ..

⎤

⎥⎥⎦

is the kinematic matrix and

UT = { · · · uk vk wk αk βk · · · } (28)

is the vector containing the displacement parameters and T
denotes the matrix transpose. The gradient of displacements
may be reorganized in the array Dξ :

DT
ξ =

{
∂u

∂ξ

∂u

∂η

∂u

∂ζ

∂v

∂ξ

∂v

∂η

∂v

∂ζ

∂w

∂ξ

∂w

∂η

∂w

∂ζ

}

(29)

which can be calculated by the matrix operation Dξ (u) =
GU = ∂ξNU, where G = ∂ξN is the gradient matrix and ∂ξ
a differential operator:

∂T
ξ =

⎡

⎣
(·),ξ (·),η (·),ζ 0 0 0 0 0 0

0 0 0 (·),ξ (·),η (·),ζ 0 0 0
0 0 0 0 0 0 (·),ξ (·),η (·),ζ

⎤

⎦

(30)

Therefore, the gradient with respect to global coordinates
is obtained by DX = J̄ Dξ (u) = J̄GU, where the Jacobian
operator J is defined by:

J̄ =
⎡

⎣
J−1 0 0

0 J−1 0
0 0 J−1

⎤

⎦ and J =
⎡

⎣
X,ξ Y,ξ Z ,ξ
X,η Y,η Z ,η
X,ζ Y,ζ Z ,ζ

⎤

⎦

(31)

Since the numerical integration is performed within the
element domain, it is convenient to define an orthogonal
coordinate system X̂ associated with each integration point.
Therefore the gradient with respect to this local system is
calculated as follows:

DX̂(u) = RDX(u) i.e., DX̂(u) = RJ̄GU (32)

The rotation operator R, with 9 × 9 components, is calcu-
lated at the integration point using the rotation matrix R =
[t1
... t2
...n], (Fig. 9):

Ri =
⎡

⎣
t1x RT t1yRT t1zRT

t2x RT t2yRT t2zRT

nx RT nyRT nzRT

⎤

⎦ (33)

With the displacement derivatives calculated, the deforma-
tion components in coordinates X̂ are given by ε̂ = HRJ̄GU
= B̂U, where B̂ = HRJ̄G and H is an adequate boolean
matrix. Finally, the stiffness matrix used in the numerical
quadrature is computed in the standard way as:

Ke =
Ni∑

i=1

B̂T
i CB̂i det Ji WξWηWζ (34)

where Ni is the number of quadrature points in the element,
C is the material constitutive matrix; Wξ ,Wη and Wζ are the
weights at the curvilinear coordinates ξ, η and ζ.

6 Numerical results

The numerical results presented in this section focus on two
main aspects. The first one is concerned with the perfor-
mance of the proposed model in dealing with shear locking.
The second aspect is related to its ability to adequately rep-
resent boundary layers in plates and shells by using special
functions.

6.1 Locking test

The locking phenomenon is a consequence of the inabil-
ity of the approximation space to satisfy the natural restric-
tions for shear and membrane deformation as the thickness
of the structural member goes to zero. Although more fre-
quent in first order models, locking may appear in higher
order models in the presence of deteriorated approximation
spaces (severely distorted meshes, ill conditioned stiffness
matrix, etc.). The symptom of this numerical pathology is an
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(a)
(c)

(b)

Fig. 11 a Simply supported square plate; b uniform mesh with four
Q8 elements; c distorted mesh with four Q8 elements

increase in the overall stiffness of the structure as the thick-
ness goes to zero. Classical ways to circumvent this problem
in conventional FEM are the selective sub-integration, as uti-
lized, e.g., by Huang and Hinton [23] to avoid the membrane
locking in the Scordelis–Lo cylindrical roof, and also by
Belytschko et al. [7] in cylindrical shells under pinching
loads. Other procedures have been used in conventional MEF:
use of higher order elements [11] and p-adaptivity proce-
dures [33], among others. In the case of meshless techniques,
locking has been dealt with using nodal integration [9]; poly-
nomials of different orders to approximate transverse
displacements and rotations [13]; increasing the polynomial
degree of the approximation functions [20]; using mixed for-
mulation [12]; and, recently, constructing the approximation
fields based on the reproduction of the Kirchhoff assumption
as the shell thickness goes to zero [40].

In this example, the behavior of the GFEM with regard
to the plate locking is evaluated considering the degree of
the enrichment function as a variable. The Reissner–Mindlin
kinematic model (27) is tested with a polynomial enrich-
ment of the approximation space. The sensitivity to locking
is evaluated with regard to mesh distortion considering two
examples, both constituted by a square plate with simple
hard supports, under uniformly distributed load, as shown
in Fig. 11. The data is the following: length L = 16 mm,
Young modulus E = 2.1 × 105 MPa; thickness t variable,
transverse load q [MPa] adjusted in such a way as to gener-
ate a maximum transverse displacement unchanged with the
relation L/t = 100. Due to the symmetry of the problem,
only a quarter of it is modeled. Two rough meshes are used,
one uniform and one distorted, Fig. 11b and c, both modeled
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Fig. 12 Maximum transverse displacement, normalized by w/wa , as
a function of L/t , for uniform mesh
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Fig. 13 Maximum transverse displacement, normalized by w/wa , as
a function of L/t , for distorted mesh

by four quadrangular elements, with the geometry mapped
with 8 nodes (quadratic serendipity), referred to here as Q8.

Figures 12 and 13 show the transverse displacements nor-
malized by the thin plate solution [38]. The results show the
presence of locking, for the spaces built with polynomials
p = 3 and p = 4, in the range L/t ≥ 104. On the other hand,
one observe that mesh distortion (Fig. 13) does not produce
a deterioration of the approximation space severe enough to
result in a large discrepancy with the results obtained with
the uniform mesh.

6.2 Boundary layer phenomenon

The boundary layer phenomenon is characterized by a per-
turbation of the global solution in a narrow region close to
the boundary. In plate and shell problems it is characterized
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by an exponential decay of a physical field, like transverse
shear, within a distance from the boundary of the order of the
thickness of the shell.

For the specific case of Reissner–Mindlin models, the
boundary layer effects are not associated with the trans-
verse displacements, but with the rotations [2]. During the
last decade, several proposals have appeared to approximate
the behavior in the boundary layer. Babuska et al. [5] used
p-hierarchic models; Xenophontos [41] utilize p- and hp-
adaptivity to deal with the phenomenon; Cho and Oden [10]
present a study about mesh optimization to capture the bound-
ary layer utilizing a hierarchical model with a p-refinement
of the mesh. The advances in localized problems have been
notable due to the introduction of the meshless methods,
which enable the incorporation of modes of the solution into
the approximation spaces as studied by Duarte and Oden [14],
Duarte [15], Duarte et al. [16], Duarte and Babuska [17] and
Mendonça [34], among others. In all cases, as expected, the
results are more accurate than those obtained with a polyno-
mial basis only.

In the example shown next, the procedure outlined in
Sect. 3.2 is applied to build local spaces that incorporate
exponential-type functions along the considered boundary.
These functions use modes of the analytical solutions given
by Arnold and Falk [2] for these kinds of problems.

It is important to remark, however, that the strategy does
not use the solution of a specific problem as the approxi-
mation space; instead, it uses characteristic modes, which
are applicable to a given range of practical situations. To
this aim, the local spaces are built using orthotropic enrich-
ment as indicated in Eqs. (13)–(16). The high gradients of
the solution along the normal direction of the boundary are
represented with the aid of polynomial- and exponential-type
functions (Fig. 8), while the solution along the tangent direc-
tion is treated by conventional polynomial approximations.
This procedure aims to avoid the need for strong h-refinement
of the mesh and to reduce considerably the number of degrees
of freedom of the problem when compared with the uniform
isotropic p-refinement.

In order to verify the performance of this proposition,
some tests with plates and shells are described below. Numer-
ical results in the cases of isotropic plates are compared with
the analytical solutions presented by Arnold [2].

6.2.1 Plate with a free border, self-equilibrated load

The objective in this example is to test the accuracy of the
computed shear force Qy in a square plate made of elastic
isotropic material (see Fig. 14). The plate is subjected to a
transverse load varying sinusoidally in direction Y and con-
stant in direction X . The data used is the following: length
L = π m; thickness t = 0.02 m; elastic modulus E =
2.1 × 1011 Pa and Poisson coefficient ν = 0.02. Due to the

Fig. 14 Square plate with a free border (X = 0), subject to sinusoidal
self-balanced load p(X, Y ) = q cos(Y )

symmetries, only the hatched part indicated in the figure is
modeled with 2×16 quadrangular elements, integrated with
6×6 Gauss points in the interior elements and 31×31 points
in the elements attached to the free border (X = 0.0). Finally,
once the boundary functions are constructed for the clouds
with prescribed degrees of freedom, the PU associated with
the cloud is substituted by this function, together with all its
products with the enrichments. It is verified that, applying
the proposed technique to the example of Fig. 2, the cor-
rect solution is recovered.The results shown in Fig. 15 are
graphs of the shear force Qy evaluated along the dashed line
(see Fig. 14) within a distance of 0.4 m from the border in
comparison with the analytical solution of Arnold [2].

Three different cases are tested:

Case A: Homogeneous isotropic refinement with polyno-
mials of degree p = 4 for all clouds;

Case B: Orthotropic refinement with polynomials of deg-
rees px = 8 and py = 4 (in directions x and y,
respectively), for clouds 1, 2 and 3 (Fig. 14). The
remaining clouds are enriched with p = 4;

Case C: Orthotropic refinement of type (eβx , py) with
py = 4, β = √

12k and k = 5/6.

Table 3 Shear force Qy at point A

Refinement Qy (N/m) Error (%)

Case A 360.49106 34.5

Case B 541.94249 1.53

Case C 550.01692 0.063

Analytical 550.36329
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Fig. 15 Shear force Qy (N/m) along axis X for cases A, B and C

The values of Qy at point A, X = 0.0, for the three cases
and the analytical case is given in Table 3.

Results in Fig. 15 show oscillations when the enrichment
is performed using polynomial functions only. Moreover,
oscillations are more severe for Case A (homogeneous refine-
ment) than for Case B (selective directional refinement). This
is to be expected because the exact solution, although regular,
presents steep gradients normal to the free border, making
the homogeneous p-refinements less efficient (see Szabó and
Babuska [36]). The strategy of Case B shows better accuracy
at X = 0.0, although the quality is still poor because of the
use of a polynomial basis and uniform mesh with element size
one order larger than the plate thickness. The Case C, con-
sidering orthotropic enrichment with exponential functions
shows excellent behavior compared with the other cases. The
use of a local space adequate to this type of problem avoids
oscillations near the boundary (Fig. 15) and gives very accu-
rate local results close to the free end of the plate (Table 3).

6.2.2 Shallow parabolic shell

This example deals with a roof formed by a shallow par-
abolic shell (Fig. 16) subject to a vertical distributed load
of 104 Pa. The material is homogeneous and isotropic with
elasticity modulus E = 2.1 × 1011 Pa and Poisson coeffi-
cient ν = 0.3. The geometric data is: length L = 20 m; width
L = 10 m; height h = 2.5 m; thickness t = 0.1 m; Due to the
symmetry, only the quarter ABCD is modeled. The accuracy
of the shear force Qy along the line CD is compared with a
reference solution obtained by a hp-adaptive refinement. The
adapted mesh is constituted by 6×12 elements with element
size decreasing in geometric progression with rate r = 1.2 in
direction Y from the border AB (Fig. 16b). The mesh used in
the reference solution is isotropic, with polynomial functions
with degree p = 4 for all clouds except those corresponding

Fig. 16 a Shallow shell with vertical load uniformly distributed and
boundary conditions; b adaptive mesh with 6 × 12 Q8 elements in
decreasing geometric progression in direction AB, r = 1.5; c regular
mesh with 6 × 10 Q8 elements

Table 4 Shear force Qy at point A at the border AB

Refinement Qy (kN/m) Error (%)

Case A 3939.88 35.8

Case B 5926.58 3.45

Case C 6265.03 −2.06

Reference 6138.35

to nodes 1 to 7 (Fig. 16c), where the polynomial order is
p = 7.

The results shown in Fig. 17 were calculated using the
uniform mesh shown in Fig. 16c. The local values for shear
force at point A of border AB are shown in Table 4. Three
strategies of p-adaptivity are tested with the following char-
acteristics:

Case A: Homogeneous isotropic refinement with p = 4;
Case B: Orthotropic refinement with px = 4 and py = 7

for clouds 1–7. All the remaining clouds are iso-
tropically enriched with p = 4.

Case C: Orthotropic refinement (eβ x̄/t , py), with py = 4,
for clouds corresponding to points 1-7 (Fig. 16c).
The remaining clouds are enriched with p = 4;
β = √

12k and k = 5/6.

The results observed in Fig. 17 highlight the quality of the
local spaces corresponding to Case C. The local effect of the
exponential function in the orthotropic refinement results in
values close to the reference solution, without the oscillations
characteristic of the spaces based only on polynomials (Cases
A and B). Although the orthotropic refinement of strategy B
results in smaller amplitudes and values closer to the refer-
ence solution than those obtained with strategy A, this family
of functions is not able to avoid the oscillatory phenomenon
close to the border.
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Fig. 17 Shear force Qy (N/m) along corner AD for the first five
elements

6.2.3 Parabolic shell with large curvature

This example shows a parabolic roof with a large curvature
subject to a uniformly distributed vertical load of 1.0×104 Pa
(Fig. 15). The geometric and material properties are: length
and width have the same value L = 20 m; height H = 10 m;
thickness t = 0.10 m; elastic modulus E = 3.1906872 ×
1010 Pa; coefficient of Poisson ν = 0.33. Due to the sym-
metry only the quarter ABCD is modeled. Similarly to the
previous case, this problem also presents a boundary layer
in the shear forces near point A, within a distance of the
order of the thickness from the border. Three strategies of
p-enrichment are tested for a regular mesh of 10×10 elements:

Case A: Isotropic homogeneous refinement with p = 4.
Case B: Orthotropic refinement with px = 7 and py = 4,

for clouds corresponding to points 1-11. For all
the remaining clouds the refinement is isotropic
with p = 4.

Case C: Orthotropic p-refinement of type (eβ x̄/t , py), with
py = 4, for clouds corresponding to points 1-11
(Fig. 18c). For all the remaining clouds, the refine-
ment is isotropic with p = 4.

Since there is no known analytic solution to the problem,
the comparisons are made with a reference solution obtained
by hp-adaptive refinement. In this case, the mesh is consti-
tuted by 12×10 elements in geometric progression with rate
r = 1.3 in direction AB. The p-refinement is the same used
in Case A. The shear force at point A is shown for all cases
in Table 5.

The behavior of the results in Fig. 19 is analogous to that of
the previous example. The strong oscillations corresponding

Fig. 18 Parabolic shell with high curvature, under vertical load uni-
formly distributed

Table 5 Shear force Qy (N/m) at point A

Refinement Qy (N/m) Error (%)

Case A 49512.01 40.8

Case B 71235.82 14.9

Case C 75042.05 10.3

Reference 83700.83
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Fig. 19 Shear force Qy (N/m) along the first three elements on the
corner DA adjacent to node A

to the polynomial refinements in strategies A and B empha-
size the difficulty of this family of functions to adequately
represent the behavior of the solution within the boundary
layer. However, one can note that an adequate enrichment,
with exponential decay, is sufficient to avoid the oscillations.
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7 Conclusions

In this paper, two main contributions were presented in order
to extend the use of GFEM techniques to shell problems.
The first one is a way of defining local domains for func-
tion enrichments based on the use of pseudo-tangent planes.
The second one is the inclusion of special functions for the
treatment of homogeneous essential boundary conditions and
local behaviors, commonly named boundary layer problems.
A set of examples were selected in order to show the behav-
ior of the proposed strategies, whose results were commented
along the text. A group of final remarks sum up important
observations obtained from this work:

– The technique of constructing the enrichment functions
on a pseudo-tangent plane showed good results. It is clear
that the larger the shell curvature, the more distorted the
enrichment functions become due to the coordinate trans-
formations. However, all studied cases show good results
even in most curved cases.

– Although no specific strategies to deal with locking were
included, the method behaves in a similar way as observed
in classical hierarchical FEM methods, i.e., avoiding lock-
ing for appropriate p-refinement values and within thick-
ness ranges of practical interest.

– Essential boundary conditions were imposed in strong
form more efficiently than with penalty or Lagrange mul-
tiplier methods, avoiding significative extra calculations.
Moreover, it appear to be a convenient choice to capture
perturbed values along these boundaries.

– One of the claimed characteristics of the GFEM
technique is the easiness to include special customized
functions. The inclusion of exponential modes for the
treatment of boundary layers in shells provided extremely
good results. Accurate and non oscillating solutions were
obtained even with elements many times larger than the
thickness of the shell. It should be noted, however, that
not every boundary layer shell phenomenon will be ade-
quately treated with the exponential mode used here, and
other specialized modes should be included in the set of
functions available.

– As in every p enrichment method, the number of inte-
gration points is associated with the complexity of the
enrichment function. When polynomials are used, these
integration points are conveniently distributed along the
element following appropriate quadrature rules. On the
other hand, if special functions for boundary layer cases
are included, most of the function information is con-
centrated in a region close to the boundary. Thus, the
quadrature rule for them should follow this characteris-
tic and coordinate changes for quadrature rules like that
proposed by Telles [39] may be used.

– It is important to note that the pseudo-tangent plane and
the strategies proposed based on special functions are
neither related to the particular cinematic model used in
this work (Mindlin–Reissner) nor to the geometric shell
representation. The main idea behind the pseudo-tangent
plane proposition is to separate the geometry description
and its intrinsical distortions with respect to the physi-
cal domain, from the approximation space. Although in
present computations the shell geometry is defined by
classical element mappings, other geometry intrinsical
descriptions may be used in a totally independent way.

– The imposition of essential boundary conditions deserves
some further comments. The Lagrange multipliers met-
hod, the penalty method and the Nitsche’s method impose
approximations to the prescribed value on the boundary.
Stability in the Nitsche’s method requires the choice of a
stabilization parameter (see [19]) and an incorrect choice
for this factor can lead to precision loss in the imposed
values on the boundary. However, the most important
restriction on this method is that the necessary modifi-
cation of the weak form is different for each particular
problem [31]. In the boundary layer problems, where the
high gradients occur near the boundaries with prescribed
displacements, it is considered important to be able to
impose these values in a very precise way. The proposed
procedure fulfill this requirement, with good accuracy in
the stresses, and without oscillations in the response in
all cases analyzed. This is obtained with a minor cost
increase: the process of generating the approximation
functions on the boundary by multiplication of the par-
tition of unity functions by ramp functions, increases
the polynomial degree of the resulting functions. This
requires a larger number of Gauss points in the integra-
tion of the border functions in relation of the interior func-
tions. However, this is restricted to the elements attached
to the boundary and not to the whole mesh.
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