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Abstract This paper considers four types of error mea-
sures, each tailored to the generalized finite element method.
Particular attention is given to two-dimensional elasticity
problems with singular stress fields. The first error measure
is obtained using the equilibrated element residual method.
The other three estimators overcome the necessity of equi-
librating the residue by employing a subdomain strategy. In
this strategy, the partition of unity (PoU) property is used to
decompose the error problem into local contributions over
each patch of elements. The residual functional of the error
problem is the same for the subdomain estimators, but the
bi-linear form is different for each one of them. In the second
estimator, the bi-linear form is weighted by the PoU func-
tions associated with the patch over which the error problem
is stated. No weighting appears in the bi-linear form of the
third estimator. The fourth measure is proposed as an alter-
native strategy, in which the products of the PoU functions
and test functions are introduced as weights in the weighted
integral statement of the differential equation describing the
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error problem. The linear form of the local error problem
is then identical to that of the other subdomain techniques,
while the bi-linear form is stated differently, with the PoU
functions directly multiplying the test functions. The goal of
this study is to investigate the performance of the four estima-
tors in two-dimensional elasticity problems with geometries
that produce singularities in the stress field and concentration
of the error in the numerical solution.

Keywords Error estimator · Generalized finite element
method · Extended finite element method · Two-dimensional
singular elasticity singular fields · Subdomain-based residual
error estimators

1 Introduction

The generalized finite element method (GFEM) can be con-
sidered as a special case of the partition of unity method
(PUM) [2,4,19,46]. The approximation functions are con-
structed by extrinsically enriching the partition of unity
(PoU) [36], which is generally provided by Lagrangian finite
element shape functions. As a result, the approximation func-
tions become associated with nodal points, as in the majority
of the so-called meshfree methods. The supports of the PoU
functions are patches of elements that share a common node.
Such patches are referred to as clouds in the nomenclature of
the hp-Cloud method [17]. The extrinsic enrichment strategy
is similar to that used in the extended finite element method
(XFEM) introduced by [9,33]. In these studies, the XFEM
was applied to fracture mechanics problems. The method was
initially developed using analytical functions to describe dis-
continuous fields that enrich the PoU near a crack. Despite
their independent development, the GFEM and XFEM are
closely related and employ the same enrichment approach,
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based on the PoU. The two methods are in fact identical
according to [10].

The characteristics of the nodal enrichment in the GFEM/-
XFEM and other meshfree methods suggest a node-based
adaptive scheme to improve the quality of the approximate
solution. A good error estimation strategy is essential to
accomplish this goal. One of the first studies to address
this problem in the context of the GFEM was [47], where a
recovery-based error measure is used for h-adapted meshes.
The main idea is to find an error measure based on the dif-
ference between the computed and improved recovered gra-
dients of the approximation, as it was introduced by [53]
for the finite element method (FEM). For the GFEM, an
enhanced gradient field can be described using, for exam-
ple, a basis enriched with handbook functions. This strategy
is assessed in [48] using a patch-based indicator; it is shown
that the method can yield inaccurate effectivity indices for
large relative errors. As noted by [21], the recovery-based
error estimation procedure has been employed in the major-
ity of previous studies on the XFEM. Several strategies for
obtaining the recovered gradients of the solution field in the
XFEM can be found in [11,12,20,23,42,44,52], along with
their corresponding error measures. Good performance has
been achieved using these strategies in problems with enrich-
ment functions for discontinuities and high gradients.

The first investigation on implicit residual-based error
strategies in the GFEM approach was [7]. An error mea-
sure was presented along with an adaptive procedure that
was specially tailored for the GFEM, based on the element
residual method (ERM) [1,37]. In this procedure, an error
indicator associated with a patch of elements is calculated
from a weighted average of the error indicator of each ele-
ment belonging to the patch. The improvement in the solu-
tion is governed by these patch error indicators and achieved
by performing nodal polynomial enrichment. This proce-
dure is explored in [6] for two-dimensional problems, where
the non-linear response is modeled using continuum dam-
age mechanics. This method makes it possible to improve
the accuracy without excessively increasing the computa-
tional cost. However, two drawbacks can be identified. First,
the data composing the residual functionals must be equi-
librated. Several techniques are available for this equilibra-
tion, and in [7], the strategy of [27] is adapted to the GFEM
case. The cost of solving the equilibration problem cannot be
avoided in the computation of element residual-based error
indicators. The problem of equilibrating the residual data is
simplified (though not eliminated) in [8] by using a PoU with
high continuity. However, the requirement of a large number
of quadrature points in the integration of the PoU leads to
additional computational cost. The second drawback is that
the indicators proposed for the GFEM in [7] are not a nat-
ural choice as they are obtained through post-processing of
indicators originally evaluated for each element. Despite the

good performance, this technique requires improvement, so
that an indicator can be directly associated with each patch of
elements. [48] propose such an improvement for the GFEM,
following the ideas presented in [30,43]. In these papers,
the error indicator for the FEM is obtained by solving local
problems defined over subdomains, which can be defined as
patches of elements, after introducing the PoU concept. In
[48], this strategy is extensively evaluated for the GFEM,
using a Neumman problem for the Laplacian in a square
domain with voids for illustrative purposes. The strategy
can change depending on how the PoU function is incorpo-
rated into the formulation of the error problem. In the present
paper, the behavior of the strategies proposed in [30,43,48]
is investigated for the first time in a GFEM analysis of two-
dimensional elasticity problems. Polygonal domains present-
ing smooth and non-smooth solutions are considered. The
use of polynomial and non-polynomial enrichment strategies
to approximate the solution of the boundary value problem
(BVP) is assessed. The error is projected onto a space con-
structed from polynomial functions one degree higher than
that of the approximate solution. A variation on this approach
is also considered, in which the residual problem is weighted
by the product of the PoU functions and the test functions
in the weighted residual method. As a result, the linear form
of the local error problem is identical to the standard sub-
domain technique. However, the bi-linear form is stated in
a different way, with the PoU functions directly multiply-
ing the test functions. The consequences of these modifica-
tions are discussed and evaluated in several numerical exam-
ples.

The goal of this paper is to evaluate the performance of
these estimators in two-dimensional elasticity problems with
geometries that produce singularities in the stress field and
concentration of the error in the numerical solution. Prob-
lems of this type have been investigated extensively in the
XFEM context but with recovery-based errors, as discussed
previously. [42] extend the technique proposed by [53] to
represent the enhanced stress field near crack tips in gen-
erally inelastic materials. [45] compare the performance of
explicit and implicit residual error estimators applied to sin-
gular problems in fracture mechanics. The error measures
are based on the energy norm and the quantity of interest
in a goal-oriented approach but are calculated directly from
the element contributions. The explicit residual error estima-
tor is also investigated by [22] for XFEM, where a stable
upper bound, measured in the energy norm, is derived and
two variants of local error indicators, obtained from different
interelement boundary data treatment, are presented.

The remainder of the paper is organized as follows. In
Sects. 2 and 3, the GFEM is summarized. The ERM for
GFEM approach is reviewed in Sect. 4.1. The subdomain
strategy to evaluate the error indicator associated with each
patch of elements is described in Sect. 4.2. In the final two
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sections, numerical examples are presented, and some final
considerations are discussed.

2 The GFEM

As a special case of the PUM, the GFEM has its origins
in the following works:

– Babuška and co-workers, initially known as the special
FEM [4] and later referred to as the partition of unity
FEM [31,32];

– Duarte and Oden, referred to as a meshless formulation
of the hp-cloud method [16,18] and later as a hybrid
approach with the FEM [38].

The basic idea of the GFEM consists of employing a set of
PoU functions to enforce interelement continuity. This strat-
egy creates conforming approximations that are improved
using an extrinsic nodal enrichment strategy [17]. To summa-
rize the procedure, let us consider, e.g., a conventional linear
finite element mesh, {KE }N E

e=1 (where N E is the number of
elements KE ), defined by N nodes,{x j }N

j=1, in a domain Ω

(see Fig. 1a). A generic patch of elements ω j ∈ Ω is obtained
from the union of the finite elements sharing the vertex node
x j . The aggregation of the Lagrangian interpolating func-
tions belonging to each element and associated with node x j

composes the function N j (x) defined over the support (patch
of elements) ω j . Since

∑N
j=1 N j (x) = 1 at every point x in

the domain Ω , the set of functions {N j (x)}N
j=1 constitutes a

PoU.
First, a set of n j linearly independent functions must be

defined for each patch ω j , as follows:

I j =
{

L p
jk(x̄)

}n p
j

k=1
∪
{

Ls
jl(x)

}ns
j

l=1
(1)

where
{

L p
jk(x̄)

}n p
j

k=1
represents a set of n p

j polynomial func-

tions, in which the unit polynomial is included (L p
j1(x̄) = 1),

{
Ls

jl(x)
}ns

j

l=1
is a set of ns

j non-polyonomial special func-

tions used to describe the singularity of the stress field when
present, and n p

j + ns
j = n j . The superscript p refers to the

degree of the complete polynomial space spanned by the
GFEM approximation functions after performing the follow-

ing enrichment strategy. The polynomials
{

L p
jk(x̄)

}n p
j

k=1
are

described in terms of non-dimensional coordinate x̄ = x−x j

h j
for each patch ω j , where h j is a characteristic size of ω j ,
[19]. Note that this transformation is linear, continuous and
robust to element distortions.

The generalized finite element approximation functions
are determined by the enrichment of the PoU functions. This

enrichment is obtained by multiplying such functions by each
of the components of (1) for the generic patch ω j :

{φ j i }n j
i=1 = N j (x) ×

{{
L p

jk(x̄)
}n p

j

k=1
∪
{

Ls
jl(x)

}ns
j

l=1

}

(2)

with no summation over j .
Figure 1 illustrates the construction of a generalized finite

element shape function in �2, for the specific case of the bi-
linear Lagrangean PoU functions. The enrichment scheme
is obtained by multiplying a PoU function of C0-continuity
and with compact support ω j (Fig. 1b) by the enrichment
polynomial function L p

jk(x̄) (Fig. 1c) provided in [46]. The
resulting approximation function φ jk(x) (Fig. 1d) inherits
characteristics of both functions, e.g., the compact support
and continuity of the PoU and the approximate character of
the enrichment function.

The generalized global approximation for a function,
denoted by ũ(x), can be described as a linear combination of
the approximation functions (2) associated with each node
x j :

ũ(x) =
N∑

j=1

N j (x)

⎧
⎪⎨

⎪⎩
u j +

n p
j∑

k=2

L p
jk(x̄)bp

jk

+
ns

j∑

l=1

Ls
jl(x)bs

jl

⎫
⎬

⎭
(3)

where u j , bp
jk and bs

jl are nodal parameters associated

with the approximation functions N j (x), N j (x)L p
jk(x̄) and

N j (x)Ls
jl(x), respectively. The continuity of ũ(x) is guar-

anteed by the compact support of the PoU (N j (x) = 0 on the
boundary of ω j ), which also allows the combination of dif-
ferent enrichment functions (L p

jk(x̄) and Ls
jl(x)) specifically

chosen for each patch ω j .

3 The model BVP—fundamental equations

In this section, the GFEM is used to solve the following two-
dimensional linear elasticity BVP:

Find u such that

⎧
⎨

⎩

∇ · σ (u) + b = 0 in Ω

u = û on ΓD

t(u) = t̂ on ΓN

(4)

where Ω ∈ R2 is the domain problem, uT def= [ux uy] is a
vector representing the displacement field, ΓD and ΓN denote
complementary parts of the boundary ∂Ω where the Dirich-
let and Neumann conditions hold, respectively, σ = Dε is
the stress tensor, ε is the strain tensor, D is the constitutive
rigidity tensor, b is the vector of body forces, t = σ · n is
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Fig. 1 Enrichment scheme for
a patch ω j , adopted from [8]

(a) (b)

(c) (d)

the traction vector, û and t̂ are prescribed displacement and
traction vectors, n is the unit normal on the boundary ∂Ω .

The corresponding variational form of this problem can
be stated as follows:

Find u ∈ U , such that

B(u, v) = F(v) ∀ v ∈ V (5)

where U and V ⊂ H1(Ω), are the set of kinematically admis-
sible functions and the space of admissible variations, respec-
tively, H1(Ω) is the Hilbert space of order 1, the following
variational operators are defined:

B(u, v) =
∫∫

Ω

εT (v)σ (u) dΩ

F(v) =
∫∫

Ω

vT b dΩ +
∫

ΓN

vT t̂ dΓ

vT def= [vxvy] is the transposed test function vector, ε(v) is
obtained from the symmetric part of the gradient of v.

Now let Ũ ⊂ U be the subset spanned by a set of kine-
matically admissible GFEM functions constructed as in (2),
and let Ṽ be the corresponding subspace of V . The Galerkin
approximation of (5) then proceeds as follows.

Find ũ ∈ Ũ , such that:

B(ũ, ṽ) = F(ṽ) ∀ ṽ ∈ Ṽ (6)

where ũ and ṽ are obtained from Expression (3) as follows:

ũ(x) =
N∑

j=1

N j (x)

⎧
⎪⎨

⎪⎩
u j +

n p
j∑

k=2

L p
jk(x̄)bp

jk

+
ns

j∑

l=1

Ls
jl(x)bs

jl

⎫
⎬

⎭
(7)

ṽ(x) =
N∑

j=1

N j (x)

⎧
⎪⎨

⎪⎩
v j +

n p
j∑

k=2

L p
jk(x̄)cp

jk

+
ns

j∑

l=1

Ls
jl(x)cs

jl

⎫
⎬

⎭
(8)

Here, v j , cp
jk and cs

jl are the nodal parameters of the test
functions associated with the approximation functions given
by N j (x), N j (x)L p

jk(x̄) and N j (x)Ls
jl(x), respectively.

Expressions (7) and (8) can be rewritten using the follow-
ing vectorial representation:

ũ(x) = ΦT · U (9)

ṽ(x) = ΦT · V (10)

where the vector ΦT =
[
φT

j

]N

j=1
consists of the following

elements associated with each of the N patches ω j :

φT
j =

[

N j (x)
[
N j (x) L p

jk(x̄)
]n p

j

k=2
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[
N j (x) Ls

jl(x)
]ns

j

l=1

]

(11)

and, analogously, the vectors of parameters UT =
[
uT

j

]N

j=1

and V T =
[
vT

j

]N

j=1
consist of the following elements:

uT
j =

[

u j

[
bp

jk

]ns
j

k=2

[
bs

jl

]n p
j

l=1

]

vT
j =

[

v j

[
cp

jk

]ns
j

k=2

[
cs

jl

]n p
j

l=1

]

4 Error estimator

In [7], a p-adaptive procedure is tailored to the nodal enrich-
ment approach of the GFEM. The ERM introduced in [5,14]
is used to estimate the energy norm of the local approxi-
mation of the error. The local measure is the error indicator
and can be evaluated at the element level by solving a local
BVP defined over each element. For each element, the data
comprising the local error problem are equilibrated using the
strategy proposed by [27]. To obtain a measure that can be
used in an adaptive strategy for the GFEM, it is necessary
to define another error indicator associated with each patch.
This indicator is obtained by considering a measure such
as the average value of the error indicators of the elements
that share each vertex node, weighted, for instance, by their
volume. This is certainly not a natural choice, but a post-
processing approach to the error problem, which can deteri-
orate the nodal indicators even when the element measures
provide good approximations of the energy norm of the local
error. A more suitable strategy is proposed for the GFEM
by [48], in the form of an extension of the subdomain error
estimator proposed by [43,30,39] for FEM. In this strategy,
the problem is defined over patches of elements, so that the
resulting indicators are directly related to the nodes associ-
ated with the patches rather than with the elements. In the next
two sections, these two approaches to error measures (based
on elements or subdomains) are summarized. First, a global
equation that represents the error problem is presented.

Let u ∈ U be the true solution of the BVP (5), and let
ũ ∈ Ũ be the approximate solution of problem (6). The error
of the approximate solution e ∈ U can be defined as:

e
def= u − ũ (12)

Considering the linearity of the bi-linear functional B(·, ·), it
can be shown that:

B(u, v) = B(e + ũ, v) = F(v) (13)

B(e, v) = F(v) − B(ũ, v) (14)

A global variational equation for the error can be recovered
as follows.

Find e ∈ U , such that

B(e, v) = R(v) ∀ v ∈ V (15)

where the residual functional is defined as

R(v) = F(v) − B(ũ, v) (16)

Here, it is assumed without loss of generality that the
essential boundary conditions are exactly satisfied.

To reduce the computational cost of solving (15) and com-
pute a local indicator for adaptive purposes, the global prob-
lem can be replaced by a set of local problems. New boundary
conditions must be imposed to ensure the solvability of the
problems and quality of the error estimation.

4.1 Implicit ERM

In the implicit ERM, problem (15) is decomposed into a set
of local problems defined over each element KE , as follows.

Find eKE ∈ U(KE ), such that

BKE (eKE , v) = RKE (v) ∀ v ∈ V(KE ) (17)

where U(KE ) and V(KE ) are spaces of restrictions from
U and V on KE respectively and the residual functional is
defined as

RKE (v) = FKE (v) − BKE (ũ, v) (18)

with

BKE (eKE , v) =
∫∫

KE

εT (v)σ (e) dΩ (19)

FKE (v) =
∫∫

KE

(v)T b dΩ +
∫

∂KE ∩ΓN

(v)T t̂ dΓ

+
∫

∂KE \∂Ω

(v)T [t − t(ũ)
]

dΓ (20)

BKE (ũ, v) =
∫∫

KE

εT (v)σ (ũ) dΩ (21)

The last term of (20) arises from the decomposition of
the global error problem into local ones. The term results
from a new boundary condition that must be imposed at the
edges between KE and its neighboring elements, (∂KE \∂Ω).
Clearly, the true traction t is unknown; this fact together
with the infinite-dimensional character of the solution space
U(KE ) preclude the computation of the error. To compute
an approximation to the error, [37] replaces the exact error e
with an approximation, ẽ, which lies in a finite dimensional
bubble-like function space for the finite elements. In [7], an
equivalent space is constructed from the set of polynomial
approximation functions used in the GFEM. In this case, the
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compact support of each function takes on a “patch-bubble-
like” character, following the concept illustrated in Figure 1.
Accounting for the previous considerations, the polynomial
error space X 0

p+q(KE ) can be defined in each element as
follows:

X 0
p+q(KE ) = {ṽ p+q ∈ Up+q(KE ); Πp(ṽ p+q) = 0;

ṽ p+q = 0 on ∂KE ∩ ΓD
} (22)

where Πp : Up+q(KE ) → Up(KE ) is a local interpolation
operator defined according to [37]. Up(KE ) and Up+q(KE )

denote spaces of polynomial order up to p and p +q respec-
tively. These spaces are spanned by the set of functions (2)

for all ω j covering the element KE . The set
{

L p
jk(x̄)

}n p
j

k=1
forms a basis for the polynomial space of order up to p or

p + q, and the set
{

Ls
jl(x)

}ns
j

l=1
= 0. The motivation for this

choice is the assumption that the error can be approximated
by the polynomial terms with degree q higher than that of
the approximate solution space Ũ ⊃ Up. The parameter q
can be chosen so that a better approximation to the error can
be found. However, when the true solution u is not smooth,
it may be not effective to increase q unless the special func-
tions (Ls

jl(x) in (1)) used to construct ũ are able to represent
the non-smooth behavior of the solution.

A new BVP can now be formulated for each element KE

of a patch and expressed in the following variational form.
Find ẽKE

p+q ∈ X 0
p+q(KE ), such that:

BKE (ẽKE
p+q , ṽ p+q) = RKE (ṽ p+q)

∀ ṽ p+q ∈ X 0
p+q(KE ) (23)

where the residual functional is defined as

RKE (ṽ p+q) = Fa
KE

(ṽ p+q) − BKE (ũ, ṽ p+q) (24)

and

BKE (ẽKE
p+q , ṽ p+q) =

∫∫

KE

εT (ṽ p+q)σ (ẽKE
p+q) dΩ (25)

Fa
KE

(ṽ p+q) =
∫∫

KE

(ṽ p+q)T b dΩ

+
∫

∂KE ∩ΓN

(ṽ p+q)T t̂ dΓ

+
∫

∂KE \∂Ω

(ṽ p+q)T [〈t(ũ)〉a

−t(ũ)
]

dΓ (26)

BKE (ũ, ṽ p+q) =
∫∫

KE

εT (ṽ p+q)σ (ũ) dΩ (27)

In the above formulation, ẽKE
p+q is the Galerkin approxima-

tion of the error function e, which defines the error indicator

function, and ṽ p+q is the test function of the problem. Both
are described by the GFEM functions as follows:

ẽKE
p+q = (Φ

KE
p+q)T IKE (28)

ṽ p+q = (Φ
KE
p+q)T VKE (29)

where the vector of polynomial approximation functions

Φ
KE
p+q =

[
(φ

KE
p+q)T

j

]NKE

j=1
is composed of the following vec-

tors associated with the NKE patches ω j that cover the ele-
ment KE :

(φ
KE
p+q)T

j =
[
N j (x) L p

jk(x̄)
]n p

j +nq
j

k=n p
j +1

(30)

and the vectors

(
IKE

)T =
[([

iKE
k

]n p
j +nq

j

k=n p
j +1

)T

j

]NKE

j=1

(
VKE

)T =
[([

v
KE
k

]n p
j +nq

j

k=n p
j +1

)T

j

]NKE

j=1

are nodal parameter vectors associated with each approxi-
mation function of (30). The vector IKE is called the vector
of error indicators. Here, n p

j + nq
j is the number of func-

tions L p
jk(x̄) necessary to obtain an approximation that can

represent a complete polynomial of degree p + q.
Note that in the last term of (26), the unknown true traction

is replaced by 〈t(ũ)〉a = 1/2{t(ũ) + t(ũ∗)}, which denotes
the average of the approximate tractions evaluated on ∂KE \
∂Ω from the values t(ũ) defined for KE and its neighboring
elements (t(ũ∗)). The superscript a of the operator Fa

KE
(·)

differentiates it from (20), where the true traction is used.
When KE is an inner element, the BVP (23) corresponds

to a Neumman problem as it involves only natural boundary
conditions. The problem being approximated may therefore
not have a unique solution. A strategy to solve this problem
by equilibrating the boundary data with the interior residuals
is presented in [7] for the GFEM, following the method pro-
posed by [27]. This strategy is used in the numerical examples
in this paper. A detailed discussion of this strategy is beyond
the scope of the present work and can be found in the cited
references.

After imposing the equilibrated data, problem (23) can be
solved locally. The local values of the energy norm of the
functions ẽp+q obtained for each element can be estimated
as follows:

EKE
1

def= ||ẽKE
p+q ||U (KE ) =

[
BKE (ẽKE

p+q , ẽKE
p+q)

]1/2
(31)

where EKE
1 defines the error indicator for the element KE .

The global error estimator is computed from the contribution
of the local indicators:
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E1 = ||ẽKE
p+q ||U =

√ ∑

KE ∈Ω

(EKE
1 )2 (32)

A simple way to define the error measure associated with
each patch ω j is using the weighted average of the error
indicators, given by (31), of the elements KE contained in
ω j . Therefore, a nodal error indicator can be defined as:

Eω j
1

def=
∑

KE ∈ω j

VKE ||ẽKE
p+q ||U (KE )

Vω j

(33)

where the volume of each element VKE is employed as the
weight and Vω j = ∑

KE ∈ω j
VKE is the total volume of the

patch ω j . The index 1 is used to differentiate this estimator
from those presented in the following sections.

4.2 Implicit subdomain residual method

In [30,39], problem (15) is decomposed into local contribu-
tions over a patch of elements, referred to by the authors as
stars, for a finite element problem. In the case of the GFEM,
this geometric entity shares the same meaning as the patch
ω j in this paper, that is, the support of a partition of unity
function N j associated with the node x j . [48] follows the
same approach for the GFEM, but refers to this entity as a
patch or even a subdomain. In the following, such nomen-
clature refers to the subdomain over which the local error
problem is stated.

Let problem (15) be rewritten using the partition of unity
concept and the linear property of the residual functional:

B(e, v) = R(v) = R
⎛

⎝v

N∑

j=1

N j

⎞

⎠ =
N∑

j=1

R(N jv) (34)

The linear Lagrangian functions N j are adopted here but they
could be replaced by any type of partition of unity.

Because R(N jv) = 0 when ω j ∩supp(v) = ∅, the residue
can be decomposed into local contributions, defined over
each patch. Using (34) and following [43], problem (15) can
be replaced by a set of local problems defined over each patch
ω j :

Find eω j ∈ U(ω j ), such that

Bζ j
ω j (eω j , v) = Rω j (N jv) ∀ v ∈ V(ω j ) (35)

where U(ω j ) and V(ω j ) are spaces of restrictions from U and
V on ω j , respectively, and the residual functional is defined
as

Rω j (N jv) = Fω j (N jv) − Bω j (ũ,N jv) (36)

and

Bζ j
ω j (eω j , v)=

∫∫

ω j

ζ jε
T (v)σ (eω j ) dΩ (37)

Fω j (N jv)=
∫∫

ω j

(N jv)T b dΩ+
∫

∂ω j ∩ΓN

(N jv)T t̂ dΓ (38)

Bω j (ũ,N jv)=
∫∫

ω j

εT (N jv)σ (ũ) dΩ (39)

In Expression (37), ζ j represents a weighting function. If
the approach proposed by [43] is adopted, then ζ j = N j ,
i.e., it is the PoU function associated with the patch ω j . In
contrast, ζ j = 1 in the strategy employed by [48].

According to [43,48], the following theoretical upper esti-
mator can be defined by summing the local measures asso-
ciated with each patch:

EU
k =√

M

√
√
√
√

N∑

j=1

||eω j ||2U (ω j )
=√

M

√
√
√
√

N∑

j=1

Bζ
ω j (eω j , eω j ) (40)

where the index k indicates the estimators associated with
the choice for ζ j in Expression (37):

for k = 2 ⇒ ζ j = N j and M = 1 (41)

for k = 3 ⇒ ζ j = 1 and M �= 1 (42)

Note that in the case k = 3, M is the overlap index of the
partition of unity (number of nodes of the finite element).

Definition (40) is different from that proposed by [39],
where the error estimator is obtained by summing the local
functions eω j for each element over which the contributions
of the norms are computed. The numerical examples pre-
sented by [48], in which the space U(ω j ) is replaced by
a finite but very refined approximate space, show that this
strategy provides a more accurate error measure when com-
pared with that of (40). However, [48] also show that for
the computed version of the error estimator described below,
both strategies (sum of the norms and norm of the sum of the
local errors) can underestimate the error.

Note that definition (38) is simpler than (20). The error
in the tractions, t(ũ), is not directly considered because the
support of the local problem is a patch of elements, which
implies that it includes the interelement faces. Therefore, the
effect of the jumps in the traction across the element faces is
implicitly accounted for, and there is no need to evaluate the
traction jumps in the approximate solution, as observed by
[15]. However, the presence of the function N j in the residue
expression nullifies any integration along the boundary of an
inner patch. As there is no need to compute the tractions
jumps along the element boundaries, no equilibration tech-
nique is necessary.
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Measure (40) provides a theoretical upper estimator, as
mentioned previously. The theoretical and computed error
measures used in [3] are adopted here to differentiate the
solution of (35) from that obtained with the Galerkin approx-
imation, stated as:

Find ẽ
ω j
p+q ∈ X 0

p+q(ω j ), such that

Bζ j
ω j (ẽ

ω j
p+q , ṽ p+q) = Rω j (N j ṽ p+q) ∀

ṽ p+q ∈ X 0
p+q(ω j ) (43)

where the residual functional is defined as

Rω j (N j ṽ p+q) = Fω j (N j ṽ p+q) − Bω j (ũ,N j ṽ p+q) (44)

and

Bζ j
ω j (ẽ

ω j
p+q , ṽ p+q) =

∫∫

ω j

ζ jε
T (ṽ p+q)σ (ẽ

ω j
p+q) dΩ (45)

Fω j (N j ṽ p+q) =
∫∫

ω j

(N j ṽ p+q)T b dΩ

+
∫

∂ω j ∩ΓN

(N j ṽ p+q)T t̂ dΓ (46)

Bω j (ũ,N j ṽ p+q) =
∫∫

ω j

εT (N j ṽ p+q)σ (ũ) dΩ (47)

for which

X 0
p+q(ω j ) = {ṽ p+q ∈ Up+q(ω j ); Πp(ṽ p+q) = 0;

ṽ p+q = 0 on ∂ω j ∩ ΓD
}

(48)

ẽ
ω j
p+q = (Φ

ω j
p+q)T Iω j (49)

ṽ p+q = (Φ
ω j
p+q)T Vω j (50)

Here, the space X 0
p+q(ω j ) and the functions ẽ

ω j
p+q and ṽ p+q

are defined analogously to (22), (28) and (28), respectively,
but are extended to the set of elements that belong to the

patch ω j . Each component of
(
Φ

ω j
p+q

)T =
[(

φ
ω j
p+q

)T

α

]Nω j

α=1
is given by:
(
φ

ω j
p+q

)T

α
= [Nα(x) L p

αk(x̄)
]n p

j +nq
j

k=n p
j +1

(51)

and the vectors of parameters are

(
Iω j
)T =

[(
[
iωα

k

]n p
j +nq

j

k=n p
j +1

)T

α

]Nω j

α=1

(
Vω j

)T =
[(
[
v

ωα

k

]n p
j +nq

j

k=n p
j +1

)T

α

]Nω j

α=1

The difference is that these functions are associated with
each one of the Nω j nodes xα covered by the patch ω j rather
than with those nodes belonging to a finite element KE . In
Fig. 1a, for example, the patch ω j cover Nω j = 9 nodes.

Following definitions (40), (41) and (41), the computed
error estimators are obtained by summing the local contri-
butions of each patch and can underestimate the norm of the
exact error:

Ek = √
M

√
√
√
√

N∑

j=1

||ẽω j
p+q ||2U (ω j )

= √
M

√
√
√
√

N∑

j=1

Bζ
ω j (ẽ

ω j
p+q , ẽ

ω j
p+q) (52)

The error indicators associated with the patches, with k =
2 or k = 3 can be defined as follows:

Eω j
k =

√
M ||ẽω j

p+q ||2U (ω j )
(53)

In [39], the test functions used in the residual expression
(44) are subtracted from the projection onto the finite element
solution space to ensure the solvability of the error problem.
This is imposed to verify the compatibility condition for the
test functions with respect to the bilinear operator Bω j (·, ·).
In this paper, this condition is guaranteed by using the “patch-
bubble” space X 0

p+q(ω j ) defined in (48).
According to [43], a lower estimator associated with each

subdomain error measure can be obtained by recovering con-
tinuous estimates of the error functions. For the error estima-
tors discussed here, the lower estimator is given by:

E L
k = (Ek)

2

M‖z(x)‖U
(54)

where z(x) is the continuous function given by:

z(x) =
N∑

j=1

N j (x)ẽ
ω j
p+q(x) (55)

and

‖z‖2
U = B(z, z) =

∫∫

Ω

εT (z)σ (z) dΩ (56)

is the energy norm calculated over the entire domain Ω .
Note that the function z(x) is continuous because the PoU
N j (x) vanishes at the boundaries of all patches and ẽ

ω j
p+q(x),

the solution of (43), is continuous within the patch ω j .

4.3 Implicit subdomain residual method—an alternative
strategy

In the implicit subdomain residual method presented in the
previous section, the global equation (15) for the error is
decomposed into patch contributions by introducing the PoU
functions into the residual functional (34). In this section, an
alternative strategy is proposed, in which the products of the
PoU functions and test functions are introduced as weights in
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the weighted-integral statement of the differential equation
of the error problem, as follows.

Consider the following integral form given by the weigh-
ted residual method:

Find e ∈ U(Ω), such that

∫

Ω

⎛

⎝
N∑

j=1

N jv

⎞

⎠ {∇ · σ (e) + rΩ } dΩ = 0 ∀ v ∈ U(Ω) (57)

where rΩ is the residue of differential equation (4) if the
solution u is replaced by its GFEM approximation, ũ:

rΩ = ∇ · σ (ũ) + b (58)

Using the PoU properties, this problem can be decom-
posed into more restrictive local problems:

Find eω j ∈ U(ω j ), such that
∫

ω j

(N jv
) {∇ · σ (eω j ) + rΩ

}
dΩ = 0 ∀ v ∈ V(ω j ) (59)

which results, after applying the Gauss Theorem, in the final
form of the local problem:

Find eω j ∈ U(ω j ), such that:

Bω j (eω j ,N jv) = Rω j (N jv) ∀ v ∈ V(ω j ) (60)

where the residual functional is the same of (36) and

Bω j (eω j ,N jv) =
∫

ω j

εT (N jv
)
σ (eω j ) dΩ (61)

As in the previous sections, the computed version of
this problem can be obtained using the following Galerkin
approximation:

Find ẽ
ω j
p+q ∈ X 0

p+q(ω j ), such that

Bω j (ẽ
ω j
p+q ,N j ṽ p+q) = Rω j (N j ṽ p+q)

∀ ṽ p+q ∈ X 0
p+q(ω j ) (62)

and

Bω j (ẽ
ω j
p+q ,N j ṽ p+q) =

∫

ω j

εT (N j ṽ p+q
)
σ (ẽ

ω j
p+q)dΩ (63)

Here, the residual function is given by (44) and the space
X 0

p+q(ω j ) and the functions ẽ
ω j
p+q and ṽ p+q have the same

definitions (48), (49) and (50), respectively. Differently from
(45), the bi-linear form (63) is not symmetric, due to the pres-
ence of the PoU directly multiplying the test functions. The
computed versions of the error estimator and error indicator
are given by:

E4 =
√
√
√
√

N∑

j=1

∣
∣
∣Bω j (ẽ

ω j
p+q ,N j ẽ

ω j
p+q)

∣
∣
∣ (64)

Eω j
4 =

√∣
∣
∣Bω j (ẽ

ω j
p+q ,N j ẽ

ω j
p+q)

∣
∣
∣ (65)

A strategy similar to the one given in Sect. 4.2, is used here
to propose a lower estimator, i.e., using in (54) and (55) and
the function obtained with the solution of the problem (62).

5 Numerical examples

Numerical examples are used to evaluate the performance of
the four types of error estimators—E1 of Eq. (32), E2 and
E3 of Eq. (52) and E4 of Eq. (64), summarized in Table 1.
Two-dimensional elasticity problems with smooth and non-
smooth solutions are solved using h and p-refinement strate-
gies. The h-refinement adopted employs a uniform division
of the mesh. The p-refinement is also uniform and is achieved
using the enrichment strategy described in Sect. 2 by replac-

ing the functions
{

L p
jk(x̄)

}n p
j

k=1
of the set I j defined in (1) by

the polynomials required to construct the polynomial basis of
the approximation. Particular attention is given to the last two
examples, with singular points located on the boundary of the
solution domain. These are the points at which the stress field
is singular, e.g., the concave of the boundary and the crack
tip. In these problems, functions that can reproduce this sin-
gular stress field are also added to the set of functions I j ,

corresponding to
{

Ls
jl(x)

}ns
j

l=1
. These functions are referred

to here as special, and the enrichment strategies are referred
to as special-enrichment. Even when special-enrichment is
used to construct the approximate solution together with of
p-enrichment, the approximate error is still polynomial and
it is described by functions of the spaces X 0

p+q(KE ), with
q = 1, 2, for estimator E1 and X 0

p+q(ω j ), with q = 1, 2 for
the other three estimators as well.

A Gauss quadrature rule is used to perform, when pos-
sible, a precise numerical integration of the solution and
error problems. Different numbers of integration points are
adopted for each problem and type of enrichment strategy.
In problems with non-smooth solutions, the numerical inte-
grations are performed with 100 × 100 points for patches
of elements enriched by special functions (with singular
derivatives). This procedure should not be adopted in practi-
cal analysis, but it minimizes the numerical integration error
here.

The error estimators are evaluated based on two indices:

– the effectivity index, θ , that is, the ratio between the error
measure and the analytical or reference error in the energy
norm ‖e‖U .

θk = Ek

‖e(x)‖U

θ L
k = E L

k

‖e(x)‖U
(66)
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Table 1 Analytical expressions adopted for the error measures—with
z(x) = ∑N

j=1 N j (x)ẽ
ω j
p+q (x) from (55), and M = 4 for quadrilateral

elements

Error measure Expression

E1

√ ∑

KE ∈Ω

[
BKE (ẽKE

p+q , ẽKE
p+q )

]

E2

√
√
√
√

N∑

j=1

Bζ=N j
ω j (ẽ

ω j
p+q , ẽ

ω j
p+q )

E l
2

(E2)
2

B(z, z)

E3

√
√
√
√M

N∑

j=1

Bζ=1
ω j (ẽ

ω j
p+q , ẽ

ω j
p+q )

E l
3

(E3)
2

MB(z, z)

E4

√
∑N

j=1

∣
∣
∣Bω j (ẽ

ω j
p+q , N j ẽ

ω j
p+q )

∣
∣
∣

E l
4

(E4)
2

B(z, z)

– the robustness index, ρ, corresponding to the ratio
between the error measure and the lower error estima-
tor, if available.

ρk = Ek

E L
k

(67)

The orthogonality property of the Galerkin approximation
makes it possible to use the following expression to calculate
the energy norm of the error:

‖e(x)‖2
U = ‖u(x)‖2

U − ‖ũ(x)‖2
U (68)

In problems where the analytical solution is unknown, the
norm ‖u(x)‖U is replaced by the energy norm of a so-called
reference solution. This reference solution is obtained using
a highly refined mesh and p extrapolation, following [50].
The analytical or reference solution is also used to calculate
the relative error, given by:

η = ‖e(x)‖U

‖u(x)‖U
(69)

The effectivity and robustness indices are associated with
the number of degrees of freedom (NDOF) or the polyno-
mial degree p of the approximation in the case of h- or p-
refinement, respectively.

5.1 Linear bending problem

In Fig. 2a, the description and data of a two-dimensional
plane stress problem are presented, where the loading is
described by the following equations:

qx = 240y

c
− 120 (70)

qy = 120y

L
− 120y2

cL
(71)

The exact analytical solution to this classical elasticity
problem can be found in [28], and the exact strain energy
is 0.080624. The problem is solved using meshes of quad-
rangular elements with linear (p = 1) approximations. The
enrichment strategy is not intended to be used here for the
approximate solution, but only for constructing the error indi-
cators.

To evaluate the convergence of the global effectivity index
as the approximation is improved, three meshes were con-
sidered, as illustrated in Fig. 2b–d. The effectivity indices
are shown in Table 2, along with the exact relative errors
in the energy norm. Plots of the effectivity and robustness
indices are shown in Fig. 3. The error function is projected
onto X 0

p+1(KE ) for estimator E1 and X 0
p+1(ω j ) for the other

three estimators.
All four types of estimators tend to fall near unity for

both the effectivity and robustness indices, when available.
Only the estimators E2 and E3 tend to be upper bounds as the
relative error decreases.

5.2 Plate with a circular hole

The problem of an infinite plate with a circular hole, in the
plane strain state and subjected to a unidirectional tension
σ∞, is illustrated in Fig. 4a. A mesh with twelve quadrangu-
lar elements is used to construct the PoU linear functions,
as shown in Fig. 4b. The analysis is performed over the
domain ABCDEA of Fig. 4a. The p-refinement is performed
using the enrichment strategy of Sect. 2. Symmetry condi-
tions are imposed on edges AB and DE. To represent the
curved boundary EA, the linear blending function method
proposed in [24] was adopted. The following stress distribu-
tion, obtained from the elastic solution of [51] (which leads
to a strain energy of 7.6936442), is imposed on edges BC
and CD:

σx = σ∞
[

1 − a2

r2

(
3

2
cos 2θ + cos 4θ

)

+3a4

2r4 cos 4θ

]

(72)

σy = σ∞
[

−a2

r2

(
1

2
cos 2θ − cos 4θ

)

− 3a4

2r4 cos 4θ

]

(73)

τxy = σ∞
[

−a2

r2

(
1

2
sen 2θ + cos 4θ

)

+ 3a4

2r4 cos 4θ

]

(74)

The effectivity indices for the four estimators are pre-
sented in Table 3. Plots of the effectivity and robustness
indices are shown in Fig. 5. The error function is projected

123



Comput Mech (2013) 52:1395–1415 1405

Fig. 2 Geometry and
discretization. Young’s modulus
E = 1 × 107, Poisson
coefficient ν = 0.3, thickness
1.0, L = 100 and c = 10

(a)

(b)

(c)

(d)

Table 2 Global effectivity
indices and relative error Mesh NDOF E1 E2 E l

2 E3 E l
3 E4 E l

4 η (%)

I 51 0.814 0.867 0.758 0.843 0.772 0.793 0.792 62.09

II 167 0.944 1.003 0.905 0.967 0.909 0.938 0.814 36.71

III 584 0.987 1.049 0.963 1.009 0.963 0.982 0.954 19.38

(a) (b)

(c)

Fig. 3 Effectivity and robustness indices
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(a)

(b)

Fig. 4 Geometry and discretization. a = 1.0, b = h = 4.0, Young’s
modulus E = 1.0, Poisson coefficient ν = 0.3, thickness t = 1.0 and
σ∞ = 1.0

onto X 0
p+1(KE ) for the estimator E1 and X 0

p+1(ω j ) for the
other three estimators.

The computed estimators E1, E2 and E3 exhibit good per-
formance, and the effectivity and robustness indices (in the
case of the latter two) are close to unity. The third estima-

Table 3 Global effectivity indices

p E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

1 0.868 1.219 0.571 1.125 0.705 0.804 0.391 14.51

2 0.971 1.046 0.729 1.136 0.826 1.393 0.218 6.20

3 0.973 0.978 0.868 1.112 0.819 1.225 0.100 2.47

4 0.948 0.920 0.819 0.905 0.740 1.112 0.060 0.87

tor displays an upper bound behavior, except for the analysis
with p = 4. In this analysis, the relative error is lower than
one percent, and the error measure is most likely polluted by
round-off errors, iteration error of the linear system solver
and/or error caused by the numerical integration. Despite
converging to an upper bound, the estimator E4 has a lower
bound that severely underestimates the error.

5.3 L-shape plate

Consider the following problem, described by [50] and
depicted in Fig. 6. A plate in the plane strain state is subjected
to the following stress field along edges AB, BC, E F and
F A corresponding to the Mode 1 term of the asymptotic
expansion of the displacement field around the vertex D:

σx = A1λ1rλ1−1 {[2 − Q1 (λ1 + 1)] cos (λ1 − 1) θ

− (λ1 − 1) cos (λ1 − 3) θ} (75)

σy = A1λ1rλ1−1 {[2 + Q1 (λ1 + 1)] cos (λ1 − 1) θ

+ (λ1 − 1) cos (λ1 − 3) θ} (76)

τxy = A1λ1rλ1−1 {(λ1 − 1) sen (λ1 − 3) θ

(a) (b)

(c)

Fig. 5 Global effectivity and robustness indices
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Fig. 7 Discretization

(a) (b)

(c) (d)

+ Q1 (λ1 + 1) sen (λ1 − 1) θ} (77)

which corresponds to a displacement field given by the
components ux and uy , as follows:

ux = A1

2G
rλ1 {[κ − Q1 (λ1 + 1)] cos λ1θ

− λ1 cos (λ1 − 2) θ} (78)

Fig. 6 Geometry. a = 0.5, Young’s modulus E = 1.0, Poisson coef-
ficient ν = 0.3, thickness 1.0

uy = A1

2G
rλ1 {[κ + Q1 (λ1 + 1)] sen λ1θ

+ λ1sen (λ1 − 2) θ} (79)

with λ1 = 0.544483737, Q1 = 0.543075579, κ =
3 − 4ν, A1 = 1.0, G = E

2(1 + ν)
. The exact strain is

1.95301842.
In this problem, the stress field is singular at point D in

Fig. 6. The strength of the singularity is described by the
parameter λ1. The effect of this singularity on the error mea-
sures is evaluated here for both h- and p-refinements. The
h-refinement is performed using a sequence of meshes of
quadrangular elements with linear (p = 1) approximations,
represented in Fig. 7. In contrast, the p-refinement is con-
ducted on mesh II of Fig. 7b, and the enrichment strategy is
as described in Sect. 2. The corresponding effectivity indices
of the four error estimators are shown in Tables 4 and 5. The
plot in Fig. 8 also includes the robustness indices. The error
functions are projected onto a larger space than those of Sects.
5.1 and 5.2 – X 0

p+2(KE ) for estimator E1 and X 0
p+2(ω j ) for

the other three estimators. Projecting the error in X 0
p+1(KE )

and X 0
p+1(ω j ) as in the previous sections produced poor

results for the effectivity indices; these results are not
shown here.
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Table 4 Global effectivity indices—h refinement

Mesh NDOF E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

I 39 1.120 1.111 0.751 1.314 0.735 0.957 0.296 30.38

II 127 1.152 1.143 0.781 1.359 0.765 0.978 0.313 22.26

III 447 1.170 1.164 0.800 1.387 0.784 0.986 0.332 15.81

IV 1663 1.150 1.145 0.790 1.366 0.774 0.979 0.324 11.05

Table 5 Global effectivity indices—p-refinement

p E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

1 1.152 1.143 0.781 1.359 0.765 0.978 0.313 22.26

2 1.428 1.058 0.857 1.308 0.836 1.758 0.252 15.44

3 1.338 0.960 0.840 1.273 0.793 0.852 0.319 12.39

4 1.350 0.899 0.788 1.205 0.758 0.659 0.110 10.43

5.3.1 Space enriched with exact solution

The same sequence of h- and p-refinements is performed
with the solution space enriched with the solutions ux (78)

and uy (79) (taken as special-enrichment). In this case, the
set I j defined in (1) is improved as proposed by [7] by adding:

{
x Ls

jl(x)
}

l=1
=
{

1 − ux (x)

ux (x j )

}

(80)

{
y Ls

jl(x)
}

l=1
=
{

1 − uy(x)

uy(x j )

}

(81)

where j is the index of the node x j whose patch has the
PoU multiplied by the functions of I j . Figure 9 shows the
sequence of meshes used in the h-refinement. The superscript
x and y refer to the set of functions used to enrich components
ux and uy , respectively. Note that Expressions (80) and (81)
are normalized to become null at x = x j enabling the direct
imposition of the essential boundary conditions.

For each mesh, the enriched region using special-enri-
chment is illustrated in Fig. 9. Only those patches that are
completely immersed in the shaded regions have their PoUs
multiplied by the sets (80) and (81) in the x and y direction,
respectively. In mesh II, for example, only the node at which
the stress field is singular is enriched. Note that together with

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Global effectivity (θ) and robustness (ρ) indices
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Fig. 9 Region with
special-enrichment

(a) (b)

(c)

the h-refinement, a so-called geometric special-enrichment
is performed. The p-refinement is executed on mesh II
of Fig. 9a. Tables 6 and 7 and Fig. 10 show the effec-
tivity and robustness indices obtained for the four error
estimators.

For the E2 and E3 measures, there is significant improve-
ment in the effectivity and robustness indices when special-
enrichment is employed. When the special-enrichment is
used, the effectivity indices are closer to the upper bound,
and the robustness indices are closer to unity. This behavior
is expected as the special-enrichment can describe the sin-
gular stress field, improving the approximate solution. Then,
only the smooth part of the solution must be approximated by
the h- or p-refinements. It is this smooth part that is estimated
when the error is projected onto the space X 0

p+q(ω j ) of prob-
lem (43). As X 0

p+q(ω j ) is a polynomial space, the resulting
estimators are closer to the exact error than in the case without
special-enrichment. When only h- or p-refinement is per-
formed, the non-smooth portion of the error cannot be ade-
quately approximated by the functions in space X 0

p+q(ω j ).
For the same reason, the estimator E1 achieves more pre-
cise values and an upper bound behavior. The estimator E4

also exhibits an improvement in the indices when special-
enrichment is added. However, very small values are obtained
for its lower bound version, which explains the poor results
for the robustness indices.

Table 6 Global effectivity indices—h-refinement and special-
enrichment

Mesh NDOF E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

II 143 1.010 1.153 0.882 1.255 0.845 1.066 0.164 10.38

III 489 1.012 1.152 0.915 1.285 0.869 0.993 0.155 6.24

IV 1793 1.015 1.156 0.940 1.311 0.887 0.962 0.157 3.51

Table 7 Global effectivity indices—p-refinement and special-
enrichment

p E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

1 1.010 1.153 0.882 1.255 0.845 1.066 0.164 10.50

2 1.065 1.112 0.955 1.419 0.922 1.971 0.300 1.40

3 1.131 1.072 0.958 1.444 0.914 0.917 0.224 0.71

4 1.447 1.043 0.953 1.448 0.931 1.149 0.086 0.21

5.3.2 Performance of error indicators

To evaluate how the special-enrichment affects the quality
of the local error estimates, the corresponding error indica-
tors are analyzed. Note that, in general, all of the estimators
exhibit similar relative performance when comparing refine-
ments with and without special-enrichment. Slightly better
results for both types of refinement are observed with the esti-
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(a) (b)

(c) (d)

(e) (f)

Fig. 10 Global effectivity (θ) and robustness (ρ) indices—solution space with special-enrichment

mator E3. The E3 estimator was therefore chosen to illustrate
the error indicator behavior. Figure 11 shows the distribution
of the local effectivity indices. The local effectivity index
refers to the ratio between the error indicator, given by Eq.
(53), and the corresponding norm using the analytical error.
The local index is calculated for each patch, and its value is
interpolated over the elements. The analysis performed with
Mesh II was selected. First, the error indicators are compared
when the solution is constructed using p = 4-enrichment,
with or without special-enrichment, as shown in Fig. 11a,
b, respectively. Note that the range of the local effectivity
index is narrower when special-enrichment is included in
the approximate solution space. The overall behavior of the
error is illustrated in Fig. 12, which shows the distribution of
the energy norm of the exact error. In addition to the decrease
in the error, a wider distribution is observed in the region of
special-enrichment. To compare problems with equivalent
relative errors, the problem of Fig. 11a can be used together
with that of Fig. 11c, with p = 1 and special-enrichment.

In this case, the local effectivity index distribution does not
exhibit the same uniformity as in Fig. 11b but still has a
narrower range of variation when compared to Fig. 11a.

5.4 Plate with a crack

Consider a cracked plate in the plane stress state, subjected
to a tensile stress such that the opening mode predominates,
as shown in Fig. 13(a). The presence of the crack produces
a stress field with a stronger singularity than that observed
in the problem of Sect. 5.3. The effects of this singularity on
the estimators E1, E2, E3 and E4 are evaluated using solu-
tion spaces analogous to those defined in (80) and (81) in
Sect. 5.3. The functions used in the special-enrichment are
given by Eqs. (78) and (79), with λ1 = 0.5 and Q1 = 1/3.
Those functions are referred to by [40] as OD branch func-
tions, from [35], and compared to the BB branch functions
of [9]. In contrast to the calculations in Sect. 5.3, here these
sets of functions multiply only the PoU associated with the
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(a) (b)

(c)

Fig. 11 Local effectivity indices distribution—estimator E3-Mesh II (graphical representation using [13])

(a) (b)

Fig. 12 Exact error—Energy norm distribution—Mesh II—(graphical representation using [13])

node at the crack tip. The adopted mesh has 25 elements
and is depicted in Fig. 13b.The reference strain energy of
5.49163373 is obtained for a mesh with 12,087 elements and
(p = 1, 2, 3)-extrapolation, resulting in 24,624, 73,422 and
122,240 degrees of freedom respectively.

Tables 8 and 9 and Fig. 14 show the relative errors,
effectivity and robustness indices for the two p-refinement
strategies: with and without special-enrichment. The error
function is projected onto X 0

p+1(KE ) for estimator E1 and

X 0
p+1(ω j ) for the other three estimators. Note that the esti-

mators E1, E2 and E3 exhibit good performance primarily
for p-refinement and special-enrichment. In these cases, E1

overestimates the error while E2 and E3 underestimate it;
however, all of the estimators yield effectivity and robust-
ness indices (for the E2 and E3) close to one. The expla-
nation given in Sect. 5.3 can also be used here to explain
the influence of the special-enrichement on the error esti-
mators. The E4 estimator exhibits reasonable performance,
but poor values are again obtained by its lower bound
version.
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(a) (b)

Fig. 13 Problem description and discretization—σ = 1.0, a =
2.0, L = 10.0, H = 20.0, Young’s modulus E = 1.0, Poisson ratio
ν = 0.3, thickness t = 0.1

Table 8 Global effectivity indices—p-refinement and no special-
enrichment

p E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

1 1.224 0.852 0.687 0.873 0.641 0.755 0.320 19.52

2 1.273 0.679 0.672 0.690 0.600 0.608 0.410 14.43

3 1.352 0.664 0.651 0.712 0.592 0.631 0.516 13.46

4 1.379 0.611 0.630 0.716 0.544 0.592 0.431 11.45

Table 9 Global effectivity indices—p-refinement and special-
enrichment

p E1 E2 E l
2 E3 E l

3 E4 E l
4 η (%)

1 1.053 0.940 0.410 1.013 0.771 0.995 0.538 11.41

2 1.007 0.907 0.434 1.108 0.811 1.137 0.388 3.35

3 1.021 0.724 0.728 0.799 0.623 0.647 0.433 2.06

4 1.158 0.781 0.808 0.917 0.718 0.873 0.702 1.33

6 Final considerations

In this work, three versions of the subdomain-based residual
method for a posteriori error estimators were investigated
for the first time in the framework of the GFEM and for
two-dimensional elasticity problems with smooth and non-
smooth behavior. The non-smooth problems are described
using both polynomial and non-polynomial functions to eval-
uate the error estimators. These estimators (E2, E3 and E4)
were compared to an estimator based on an element resid-
ual approach, referred to as E1. The methods differ in the
construction of the bi-linear form of the local error problem.

The second and the third methods are based on [39,43,48].
The estimator E4 is first proposed in this paper and uses the
product of the PoU functions and test functions as weights
in the integral equation describing the error problem. The
local problems obtained with these three subdomain-error
techniques do not require the computation of traction jumps
at element interfaces for the calculation of the residual data.
Another advantage of the subdomain techniques is the direct
determination of the error indicators associated with each
node, which fits very well into the GFEM p-adaptive strategy.

Four numerical problems were presented, and the effec-
tivity and robustness indices were evaluated. Two of these
problems have smooth solutions and the other two have dif-
ferent levels of non-smooth solutions. These two types of
problems were specifically chosen to identify how the degree
of smoothness of the solution can affect the estimator behav-
ior. In addition, special functions chosen to reproduce the
singularity of the solution derivatives were used to enrich the
GFEM approximation, and the impact of this technique on
the estimators was also evaluated.

Based on the results obtained from the problems with
non-smooth solutions, the presence of a singularity on the
derivative field penalizes all four error estimators. The worst
performance was observed for estimator E4. The inclusion
of special functions that are capable of reproducing the sin-
gular character of the solution in the enrichment strategy
significantly improves the quality of all four estimators eval-
uated in this paper. This improvement was observed when
h- and p-refinements were performed with and without the
special functions. In one of the examples, geometric enrich-
ments are performed on an L-shaped plate (always keeping
at least one element covered by patches enriched with the
special functions). The local error distributions were also
evaluated, and it was shown that the inclusion of the special
functions not only provides a better solution but also mini-
mizes the portion of the error that the residual method, based
on a polynomial space, cannot estimate. In the last example,
a plate with a crack, only the patch associated with the crack
tip is enriched by the special functions, and p-enrichment
is performed over the entire domain. In this strategy, the ele-
ments that share the node with the crack tip are enriched
with a blend of polynomial and non-polynomial functions
(the special functions). The approximation functions con-
structed over these elements form a basis for a space that is
larger than that of the polynomial functions; however, it can-
not exactly reproduce the special functions used to multiply
the PoU. Nevertheless, good results for the error estimators
were achieved, especially for the third type of error estimator
(E3).

In some examples, the estimator E4 fails to produce a good
lower estimate to the approximate error. In addition, note that
the non-symmetric form of the problem resulting from Eq.
(62) can negatively impact the code implementation. The
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(a) (b)

(c) (d)

(e) (f)

Fig. 14 Global effectivity (θ) and robustness (ρ) indices

different approach of this estimator indicates the need for an
alternative formulation of the lower estimator given by Eqs.
(54) and (55). Note that the sum of (55) may be underesti-
mated by the cancellation of some terms. Further mathemati-
cal research should to be performed about this issue. Finally,
the error indicators obtained from this approach have a dif-
ferent interpretation from the other two error estimates. The
PoU functions are introduced in (57) not only to decompose
the error problems into subdomains, but also to change the
description of the error function. In this new description, the
portion of the error approximation that arises from the node
and its neighborhood plays a more important role than those
arising from the element domain.

Regardless of the version of the subdomain error estima-
tor (E2, E3 or E4), its extension to 3D problems appears to
be not difficult. In the 3D case, the patch of elements is
a solid formed by those elements sharing the same node.

As in the 2D case, the PoU function is zero on the sur-
face boundary (for internal patches), which means that there
is no need to compute tractions along the element bound-
aries. The number of elements in each 3-dimensional patch
is much higher than that for the 2-dimensional analysis.
The size of the local problem therefore depends substan-
tially on the type of mesh used. In 3D problems, a complex
implementation of the equilibrium strategies demanded by
E1 can lead to prohibitive computational costs. The flux-free
characteristic of the subdomain error estimators avoids this
handicap, which strongly offsets the burden arising from an
increase in the size of the local problems, as observed by
[30] when the subdomain strategy is discussed for the 3D
analysis with the FEM. Care should be taken when the solu-
tion presents singular stress fields. In the case of cracks,
for example, their complex geometry may not be planar,
and an adequate analytical function therefore may not be
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available to enrich the PoU. The standard Gauss quadra-
ture may also fail. These are key issues of several studies
on the GFEM/XFEM [19,25,26,29,34,41,49], which may
have an important impact on the conclusions drawn in this
paper regarding the subdomain error strategies. Additionally,
comparisons with explicit approaches of error estimators, as
those presented by [22] deserve to be pursued as a topic for
further research.
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