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a b s t r a c t

Several constitutive models for fibrous soft tissues used in literature provide a completely isotropic
response when fibers are compressed. However, recent experimental investigations confirm the expecta-
tion that tendons behave anisotropically during compression tests. Motivated by these facts, the present
manuscript presents an appropriate choice of hyperelastic potentials able to predict the coupled mechan-
ical behaviors of tendons under both tensile and compressive loads with a relatively small number of
material parameters. The high stiffness of tendons under tensile tests is handled by a transversely isotro-
pic model while the coupled compressive response is modeled by means of a Fung-type potential in
terms of Seth-Hill’s generalized strain tensors. In present study the logarithm strain measure is used
instead of the usually employed Green-Lagrange strain. After a parameter identification procedure, the
resulting model showed ability to satisfactorily reproduce the experimental data. Details on the analyt-
ical material tangent modulus are provided. Present results will then enhance further researches related
to tendon dissipative effects and numerical multiscale investigations.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Tendons are living tissues that react to mechanical loads chang-
ing their structure and metabolism. These interactions are issues
addressed in mechanotransduction, a branch of mechanobiology
that studies the way cells convert mechanical forces into biochem-
ical signals leading to tissue adaptation (Wang, 2006; Lavagnino
et al., 2015). Knowing that tenocytes are surrounded by helical col-
lagen fibers (see Section 2), one can realize that even under the
usual macroscopic tensile loads along of the direction of the fibers,
tendon cells are subjected to complex states of microscopic com-
pressive stresses.

Aiming to the modeling of tendons, a recent experimental
investigation has been conducted by Böl et al. (2015) employing
semi-confined compression tests on samples at different orienta-
tions. The results pointed out quantitatively a behavior that was
qualitatively expected: tendons present anisotropy even under
compression. Moreover, experimental tests reveal significantly dis-
crepancies in mechanical responses under compressive and tensile
states. Volume reduction for both tension and compression has
been verified (Böl et al., 2015). In addition, the levels of stress
can reach an order of magnitude between compression and tension
(compare Figs. 3 and 4, for example). One can argue, under these
conditions, that compressive stresses could be disregarded. While
this statement is true for some practical purposes, the quantifica-
tion and proper prediction of these coupled mechanical behaviors
at the macroscale will certainly constitute valuable information for
a better understanding of the conservative and dissipative mecha-
nisms occurring in smaller scales.

Several constitutive models for fibrous soft tissues found in lit-
erature are based on a strain energy composed by two terms attrib-
uted to energies stored in the matrix and in the direction of the
fibers. While matrix energy contribution is usually described by
an isotropic function of strains, that of fibers is expressed by a
function of positive values of strains projected in the direction of
the fibers (among others, Holzapfel and Gasser, 2001; Chen et al.,
2014; Vassoler et al., 2012; Vassoler et al., 2016). Despite their sim-
plicity, these models provide a completely isotropic response when
fibers are compressed, which is in contrast to the mentioned
experimental evidences. Alternative models that preserve different
coupling levels are found in literature (Fung et al., 1979; Holzapfel
andWeizsäcker, 1998; Itskov and Aksel, 2004; Freed and Doehring,
2005; Helfenstein et al., 2010).

With this motivation in mind, this manuscript proposes a prac-
tical hyperelastic model arrangement and identifies corresponding
material parameters suitable to represent the coupled mechanical
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behavior of tendons even when submitted to compressive strains.
The coupled response is modeled by means of a Fung-type poten-
tial in terms of the Seth-Hill’s generalized strain tensors, which
broadens its well known application. In addition, taking into
account that tendons may be subjected to large compressive states,
the logarithm strain measure of the Seth-Hill’s family is used
instead of the usually employed Green-Lagrange strain. The model
is aimed to handle the following phenomena: (a) the coupled inter-
action between the matrix and fibers, experimentally visible in
compressive tests and (b) the stiffness in the direction of the fibers
(for positive strains) much greater than that found in the direction
orthogonal to the fibers. Present work should be considered as an
intermediate step for further researches in multiscale modeling
of these composite materials.

This manuscript is organized as follows. Section 2 briefly
describes the main aspects of morphology and the hierarchical
structure of tendinous tissues. Section 3 presents a selected litera-
ture review regarding tensile tests, simple shear and semi-confined
compression tests on tendons. This experimental information will
be necessary to justify the theoretical background and phe-
nomenological modeling developed in Section 4. In order to iden-
tify the constitutive material parameters, an optimization
strategy is described in Section 5. A set of numerical results are
shown in Section 6 and discussed in Section 7, where the relevance
of the mechanical coupling is highlighted. Finally, appendices pro-
vide the analytical expressions for the stress and the material tan-
gent modulus.
2. Morphology and hierarchical structure of tendons

Tendons are classified as dense regular connective tissues con-
necting muscles to bones making movement possible. They are
capable of transmitting high tensile stresses as well as storing
and dissipating energy during mechanical actions (Kierszenbaum
and Tres, 2012; Kannus, 2000; Franchi et al., 2007; de Aro et al.,
2012; Screen, 2009; Böl et al., 2015). As seen in Fig. 1, tendons
are essentially multi-hierarchical structures. Collagen molecules
are cross-linked covalently to form collagen fibrils. A bundle of col-
lagen fibrils forms fibers, which in turn are three-dimensionally
arranged to form fascicles.

In a ‘‘top-down” approach, tendons are surrounded by a loose
connective tissue called paratenon, whose mechanical function is
to minimize friction forces between tendon and proximal tissues
(Franchi et al., 2007). Underneath the paratenon is located a thin
sheath of connective tissue referenced to as the epitenon. The epi-
tenon connects fascicles externally, molding the macroscopic
structure of tendon. Surrounding the fascicles, a connective tissue
called endotenon is found. Also referenced to as the interfascicular
matrix (Thorpe et al., 2012), the endotenon coats and binds the fas-
cicles together, where one can find vessels, capillaries and cells (de
Aro et al., 2012; Thorpe et al., 2015).

Optical or polarized light micrographs of the longitudinal sec-
tion of fascicles reveal a wavy or crimp pattern of collagen fibers
(Silver et al., 2003; Franchi et al., 2007; Thorpe et al., 2013). This
wavy form comes from the helical arrangement of bundles of fibrils
(collagen fibers) embedded in a cellular matrix, as can be verified
in the recent investigations of Starborg et al. (2013) and Kalson
et al. (2015). Moreover, Kalson et al. (2015) provide mean data
related to fibril volume fraction and spiral geometry, making it
possible to sketch a single collagen fiber, as shown in Fig. 1.

Collagen fibers are constituted by a thee-dimensional arrange-
ment of fibrils embedded in a hydrated proteoglycan-rich matrix,
frequently called the ground substance (Kannus, 2000;
Provenzano and Vanderby, 2006). It is known that proteoglycans
provide tissue hydration due to the hydrophilic properties of its
main molecules, the glycosaminoglycans (Yanagishita, 1993;
Mouw et al., 2014). In addition, proteoglycans are orthogonally-
oriented between fibrils and do not present intra-fibrillar
interactions.

Staggered arrays of cross-linked type I collagen molecules and
water form fibrils. Collagen fibrils can be considered as the basic
structural units of tendons, with an organized and periodic
arrangement of collagen molecules, namely D-periodicity (Silver
et al., 2003; Buehler, 2006; Franchi et al., 2007; Fratzl, 2008;
Svensson et al., 2013; Blanco et al., 2015).

3. Experimental mechanical behavior of tendons

3.1. Simple shear tests

Purslow (2009) investigated the shear behavior of tendons. To
assess this property, the initial shear modulus longitudinal and
transverse to the direction of the fascicles was measured in three
different bovine tendons: calcaneus, superficial digital flexor and
deep digital flexor. The results indicated low shear modulus, in
both longitudinal and transverse directions, ranging from
2.94 kPa up to 6.38 kPa with no significant differences between
longitudinal and transverse directions.

3.2. Semi-confined compression tests

Semi-confined compression tests were conducted by Böl et al.
(2015) in cubic samples (4 mm edges) of porcine tendons. The
experiments were performed in three distinct compression modes,
as illustrated in Fig. 2. In mode I, fascicles are axially compressed.
In mode II, fascicles are transversely compressed but allowed to
elongate in axial direction. Finally, in mode III, fascicles are trans-
versely compressed and constrained in fascicles (axial) direction.
The first Piola-Kirchhoff stress versus stretch curves (mean and
standard deviations) related to compression modes are plotted in
Fig. 3.

In view of the coordinate axis shown in Fig. 2 and taking into
account a homogeneous strain field, the deformation gradient at
the end of the tests is,

F ¼
k1 0 0
0 k2 0
0 0 k3

2
64

3
75; ð1Þ

where k2 ¼ 1:0 and k3 ¼ 0:7, needing to find k1 for each compres-
sion mode. Through the experiments, authors provide the volumet-
ric Jacobians at the end of the tests, i.e., JI ¼ JIII ¼ 0:88� 0:04 and
JII ¼ 0:84� 0:05. Considering Eq. (1), the volume change is given

by J ¼def det Fð Þ ¼ k1k2k3, resulting in mean values ð��Þ,

JI ¼ JIII ¼ 0:88 ) �kI1 ¼ �kIII1 ¼ 1:25714

JII ¼ 0:84 ) �kII1 ¼ 1:20

(
: ð2Þ

Despite this, it is reasonable to hypothesize that modes I and III
of Bol’s test generate a homogeneous strain field (in the sample
scale), the results of mode II deserve particular discussion. Due to
a compressive stress of just 350 kPa in X3 direction, the sample
reaches a stretch �kII1 ¼ 1:20, i.e., a positive strain of approximately
20% in the direction of the fibers. This is a huge value if compared
with that observed in tensile tests of similar tissues. Fig. 4 displays
different experimental stress-stretch curves where stress values of
14 MPa minimum are needed to obtain just 5% of axial strain.
Moreover, experimental tensile tests in single tendon fascicles
reveal failure at strains of 10% up to 20% (Yamamoto et al., 1999;
Robinson et al., 2004; Legerlotz et al., 2010; Svensson et al.,
2010; Thorpe et al., 2012). Due to this contrast, it is not clear if
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Fig. 1. Illustrative representation of tendons morphology. The inset box shows a sketch of a single collagen fiber in two scales. The data of the helical geometry of the fiber
was obtained from Kalson et al. (2015).

Fig. 2. Illustration of the semi-confined compression tests conducted by Böl et al. (2015).
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the homogeneous/mean value �kII1 ¼ 1:20 experimentally observed
in mode II can be equally attributed to both fibers and matrix. In
addition, low shear modulus found by Purslow (2009) enhance
the significant stiffness difference between collagen structures
(fascicles, fibers, fibrils) and their matrices (interfascicular matrix,
cellular matrix, ground substance). It is worth mentioning that
avoiding sliding among fibers and fascicles is a question of major
concern in tensile test protocols, motivating, for example, the use
of cryoclamps (Vergari et al., 2011; Thorpe et al., 2012). As a con-
clusion of these observations, it has been hypothesized that fibers
may not be submitted to the observed mean value �kII1 . Conse-
quently, one can critically question if mode II test yields a homoge-
neous strain field. Accordingly, the data provided in this mode will
not be used in present modeling and corresponding parameters
identification.

3.3. Uniaxial tensile tests

Due to the physiological characteristics of tendinous tissues,
monotonic tensile tests in the direction of the fibers are the most
comprehensive in literature. A short bibliographic survey is syn-
thesized in Table 1, and corresponding stress-stretch curves are
plotted in Fig. 4.
Large variations are noted in these curves. Besides technical
issues related to experiments, these differences can be assigned
to pathological conditions, aging, gender, hormonal disorders,
sedentarism, among others (Franchi et al., 2007; Riley, 2008;
Magnusson et al., 2010; Arya and Kulig, 2010; de Aro et al.,
2012; Nourissat et al., 2015; Couppe et al., 2015). However, regard-
less of the measurement techniques and protocols, type of tendons
and possible pathologies, the characteristic nonlinear shape of all
stress-stretch curves remains the same.
4. Phenomenological modeling of tendons

4.1. Proposed model

Following the same general idea of an additive decomposition
of the stored strain energy, the Helmholtz function has the form,

w Cð Þ ¼def wm=f Cð Þ þ wf I4ð Þ; ð3Þ

where wm=f models the energetic contribution of microstructural
interactions between collagen structures and its matrix, while the
scalar functional wf represents the strain energy in axial direction
of a family of fibers. It is important to state that, different from what
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Fig. 3. Comparison between numerical and experimental results obtained from the
identification procedure for the semi-confined compression tests conducted by Böl
et al. (2015).
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Fig. 4. Monotonic uniaxial tensile test of tendinous tissues. Tendon types and
measurement techniques are shown in Table 1. The model parameters and related
experimental curves are provided in Table 3.

Table 1
A short bibliographic survey on experimental tensile test of tendons. The related
stress-stretch curves are plotted in Fig. 4.

References Tendon Strain measurement
technique

Johnson et al. (1994) Human Patellar DIC
Carroll et al. (2008) Human Patellar US
Goh et al. (2008) Rat Tail LVDT
Csapo et al. (2010) Human Achilles US
Vergari et al. (2011) Equine Digital

Flexor
DIC

Thorpe et al. (2012) Equine Digital
Flexor

DIC

Lavagnino et al.
(2013)

Rat Tail LVDT

Kösters et al. (2014) Human Patellar US
Couppe et al. (2015) Human Achilles US

DIC – Digital Image Correlation.
US – Ultrasonography.
LVDT – Linear Variable Differential Transformer.
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it seems, this model does not intend to represent a material phase
(matrix versus fiber) separation. Both terms of Helmholtz function
(3), account for energy accumulated in the fibers and the matrix.
However, the additive form was kept because it was observed that
this arrangement is a practical way to account for the phenomena
herein discussed: (a) the coupled interaction between the matrix
and fibers, experimentally visible in compressive tests (controlled
by wm=f ), and (b) the stiffness in the direction of the fibers (for pos-
itive strains) much greater than that found in the direction orthog-
onal to the fibers (controlled by wf ).

The arguments of Eq. (3) are the right Cauchy-Green strain ten-

sor C ¼def FTF and the invariant,
I4 ¼def C : MX ¼ k2f ; ð4Þ

in which MX ¼def mX �mX is the so called structural tensor, mX is a
vector representing the directions of the fibers in the reference con-
figuration and kf is the stretch in the direction of the fibers.

4.1.1. Transversely isotropic coupled model
Based on the experimental investigations conducted by Purslow

(2009) and Böl et al. (2015) (whose results were discussed in Sec-
tion 3), the free energy wm=f is defined as,

wm=f Cð Þ ¼def wNH Ĉ
� �

þ wFung E nð Þ
� �

: ð5Þ

Since Purslow’s results show that shear behavior of tendons
does not change considerably in axial and transverse fiber direc-
tions, the strain energy wNH is chosen to capture this shear energy
by means of an isotropic Neo-Hookean expression:

wNH Ĉ
� �

¼def l
2

tr Ĉ
� �

� 3
h i

: ð6Þ

In Eq. (6), l > 0 is a material parameter and Ĉ ¼def J�2=3C is the iso-
choric part of the right Cauchy-Green strain tensor. However, as
already pointed out, this isotropic energy would be unable to repro-
duce the semi-confined compression tests of Section 3, and an addi-
tional Helmholtz free energy wFung is defined as,

wFung E nð Þ
� � ¼def C

2
eQ � 1
� �

; ð7Þ

which represents a coupled orthotropic model based on the
pioneering work of Fung et al. (1979). In Eq. (7), the exponent is

given by Q ¼def E nð Þ : A : E nð Þ and C > 0 is a material parameter with
unit of stress. The fourth order tensor A contains the orthotropic
parameters and can be mapped in the Voigt notation (underlined
tensor variable) as,

A ¼def

Að Þ1111 Að Þ1122 Að Þ1133 0 0 0
Að Þ2222 Að Þ2233 0 0 0

Að Þ3333 0 0 0
Að Þ1212 0 0

sym Að Þ2323 0
Að Þ3113

2
666666664

3
777777775
:

ð8Þ
The second order tensor E nð Þ represents a family of Lagrangian

strain measures defined by Souza Neto et al. (2009) as,
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E nð Þ ¼def
1
n Un � Ið Þ n – 0
ln Uð Þ n ¼ 0

(
; ð9Þ

where n is a real number, U is the right stretch tensor and I is the
second order identity tensor. As it can be seen from Fig. 1, collagen
fibers can be considered straight from the point of view of a macro-
scopic observer and have a preferential direction into fascicles.
Accordingly to this and considering X1 the direction of fibers and
fascicles (see mode II of Fig. 2), it is proposed that the material
behavior possesses the following coupling,

Að Þ1111 ¼ ca
Að Þ2222 ¼ Að Þ3333 ¼ ct
Að Þ1122 ¼ Að Þ1133 ¼ cat
Að Þ2233 ¼ ctt
Að Þ1212 ¼ Að Þ2323 ¼ Að Þ3113 ¼ 0

8>>>>>><
>>>>>>:

; ð10Þ

where ca; ct; cat; cttf gare dimensionless material parameters related
to the directions of the fibers, i.e., axial, transverse, axial-transverse
and transverse-transverse, respectively. It should be noted that shear
terms are null, since the corresponding energy is already accounted
by wNH in (6). Substitution of Eq. (10) into Eq. (8) results in,

A ¼

ca cat cat 0 0 0
ct ctt 0 0 0

ct 0 0 0
0 0 0

sym 0 0
0

2
666666664

3
777777775
; A� ¼def

ca cat cat
ct ctt

sym ct

2
64

3
75; ð11Þ

in which is introduced the submatrix A� ¼def Að1 . . .3;1 . . .3Þ. One
can note from Eq. (11) that the orthotropic model reduces to a
transversely isotropic one, consistent with the experimental data
presented in Section 3.

It is easy to prove that Fung’s model (7) is a convex function of
E nð Þ, since it is a non-decreasing, strictly convex function of Q, being
that this argument is a quadratic, strictly convex function of E nð Þ,
once the positive semi-definiteness of the fully symmetric tensor
A is guaranteed (Rockafellar, 1970). It should be noted that this
property is valid for any symmetric second order strain tensor E nð Þ.
In the present proposition, the positive semi-definiteness of A is
guaranteed if matrix A� is positive definite, i.e., all its eigenvalues
are strictly positive. After some analytical manipulation these
requirements yield the following constraints on the material
parameters:

g ¼def
ct � ctt

1=2 ca þ ct þ cttð Þ þ B

1=2 ca þ ct þ cttð Þ � B

2
64

3
75 > 0; ð12Þ

with B ¼ 1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2a þ c2t þ 2 ctctt � cact � cacttð Þ þ 8c2at

p
. Guaranteed the

convexity of wFungðE nð ÞÞ, the physical consequences of choosing a
specific member of the E nð Þ family rely on the ability of the resulting
hyperelastic potential to represent the observed physical material
behavior. In the material modeling of soft tissues some authors

employ the Green-Lagrange strain measure, E ¼def E 2ð Þ (Holzapfel
and Weizsäcker, 1998; Holzapfel, 2006; Duong et al., 2015), or even
the engineering strain (Rosen et al., 2008) to represent the strain
energy (7). However, in the present work, the logarithmic strain
measure of Eq. (9) is instead used:

e ¼def E 0ð Þ ¼ ln Uð Þ ¼ 1
2
ln Cð Þ: ð13Þ

The rationale behind this choice is twofold. Firstly, it is well
known that for strong compressive stretching states, i.e., for
k ! 0, engineering and Green’s strain converge to finite values (-
1.0 and �0.5, respectively) while the logarithmic strain consis-
tently tends to negative infinity. Therefore, this last measure seems
to be best suited to soft fibrous tissues, eventually subject to high
directional compressive values. Secondly, the logarithmic strain
measure provided better results than those of Green’s for the
parameters identification procedure, as detailed in Section 6.

4.1.2. Unidirectional model
As pointed out in Section 3, the stiffness of tendons under ten-

sile tests is quite high if compared to the stiffness under compres-
sion (compare Figs. 3 and 4). Due to this experimental fact, it is
proposed that part of the stiffness in the direction of the fibers,
i.e., in addition to the component Að Þ1111 of Eq. (8), is activated
under tension by means of function wf in Eq. (3). This function is
defined as,

wf I4ð Þ ¼def 0 if 0 < kf < 1

k1 I4 � 1ð Þ2 þ k2 I4 � 1ð Þ3 if kf P 1

(
; ð14Þ

where k1 > 0 and k2 > 0 are material parameters.
Throughout the numerical optimization procedures used to

identify the constitutive parameters (Section 5), it has been experi-
enced that the polynomial form defined in Eq. (14) provided quite
stable behavior and good representation of experimental data.
However, other forms for the strain energy wf , based on the invari-
ant I4, may be employed, referring to works of Schröder and Neff
(2003), Merodio and Ogden (2005), Ehret and Itskov (2007),
Holzapfel and Ogden (2009), Helfenstein et al. (2010) and
Cheviakov et al. (2015) for further details. The closed forms for
the stress and thematerial tangentmodulus are provided in Appen-
dix A.

5. Identification of constitutive parameters

In order to verify if the proposed model is able to represent the
observed mechanical responses, an optimization strategy is
employed to identify the constitutive parameters. The identifica-
tion procedure is performed by fitting the results provided by the
numerical model to experimental data previously presented in
Section 3.

Its important to state that the coupled model (10) was written
for a material (tendon) point whose associated local coordinate
axis X1 is aligned with the direction of the fibers. In finite element
simulations each integration point must have a local coordinate
system aligned with the direction of the fibers, as always required
for transversely isotropic materials. Although the knowledge of the
direction of the fibers can become a difficult task, the literature
points out some experimental and numerical techniques that make
this prediction possible and usable in numerical models (Inouye
et al., 2015).

5.1. Numerical experiments

The semi-confined tests illustrated in Fig. 2 are assumed to sat-
isfy a homogeneous deformation gradient given by (1). While
stretch values ðk2; k3Þ are a priori defined by the experiment, the
axial stretch k1 must take a value that satisfies null normal stress
on the free faces, i.e., component Pð Þ11 of the first Piola-Kirchhoff
stress,

Pð Þ11 k1; k2; k3ð Þ ¼ 0: ð15Þ
Since k2 ¼ 1:0 throughout the tests, stretch k3 is incremented lin-
early from 1.0 to 0.7 and k1 resulting from the solution of (15) at
each time increment.
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Uniaxial tensile tests, on the other hand, are set to be controlled
by stretch k1. Transverse stretches ðk2; k3Þ must satisfy null values
for the transverse first Piola-Kirchhoff stresses:

Pð Þ22 k1; k2; k3ð Þ ¼ 0
Pð Þ33 k1; k2; k3ð Þ ¼ 0

�
: ð16Þ
5.2. Optimization strategies

Identification of material parameters is an inverse problem usu-
ally solved based on a minimization of a cost function defined as
the least squared difference between experimental and numerical
data:

Minimize f pð Þ
p 2 R
p 6 p 6 p;

ð17Þ

where f pð Þ is the objective function, p is the design vector contain-
ing the constitutive parameters, p and p are the lower and upper
bounds of the design variables (side constraints) and

R ¼def pjg pð Þ > 0f grepresents the admissible search space con-
strained by Eqs. (12). It is widely known that the more complex
the model, the higher number of experiments are needed to identify
the growing number of controlling parameters. Aware that the
available experimental data may yield to non-unique parameters
corresponding to different local minima, a non-local heuristic algo-
rithm based on Particle Swarm Optimization (PSO) was used to seek
for the best global optimizers. Details of this algorithm and its
applications in material parameter identification problems are
found in Vaz et al. (2013).

Concerning present identification procedure, the strategy pro-
posed is based on two optimization problems. The first one consid-
ers the semi-confined compression tests and the second one takes
into account the tensile tests. Due to the discussion presented in
Section 3.2, only modes I and III are considered throughout the
identification procedure for the semi-confined compression tests.
For these modes, the energy wf is null (inactive). Moreover, the
experimental range of shear modulus, presented in Section 3.1,
are set as the lower and upper bounds to shear parameter l.
According to this, only the parameters of model wm=f are suscepti-
ble to the kinematics imposed by semi-confined compression tests.
Therefore, for the first optimization problem, the following objec-
tive function is proposed,

f ¼ x1f P Pð ÞMode I
33

h i
þx2f P Pð ÞMode III

33

h i
þx3f k kMode I

1

� �
þx4f k kMode III

1

� �
; ð18Þ

where the scalar error function f k �ð Þ ¼ �ð ÞExp � �ð ÞModel
��� ��� and the root

mean squared error f P �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
i¼1 �ð ÞExpi � �ð ÞModel

i

h i2r
are intro-

duced, and N is the number of points of the stress-stretch curve.
The variables xi; i ¼ 1 . . .4, are weighting factors chosen heuristi-
cally in order to prevent one function prevails upon others in the

objective function f. The notation �ð ÞExp represents the mean value
of the experimental data. It is important to notice that through
the objective function (18), the optimization algorithm searches
for the best set of parameters that minimize, simultaneously, the
error of the stress-stretch curves and also the stretch k1 at the
end of the tests, for both modes I and III.

Once the material parameters l;C; ca; ct ; cat ; cttf g of wm=f are
found, theyarefixedand the remainingparameters k1; k2f gofwf seek
to reproduce uniaxial tensile stress-stretch curves. This task is per-
formed in the second optimization problem, where the objective
function isdefinedas the rootmeansquarederrorof theuniaxialfirst

Piola-Kirchhoff stress curve, i.e., f ¼ f P Pð ÞTensile11

h i
.

6. Results

The first identification procedure was run considering the
experimental data of modes I and III simultaneously. This provided
the single set of material parameters shown in Table 2. Using these
parameters both modes were simulated and the stress-stretch
curves were plotted in Fig. 3. It can then be seen that the model
wm=f ¼ wNH þ wFung satisfactorily reproduced the compression
curves as well as the stretch values k1 (inset bar graph) at the
end of the corresponding tests.

It is worth mentioning that the same procedure described above
was also performed using the conventional Green’s strain measure
in the Fung-type model. It was verified that, despite it reproduced
equally well the stress-stretch curves, the Green’s strain measure
was not able to predict transverse k1 stretches inside the experi-
mental variations shown in Fig. 3 (convergence to 1.17 and 1.11
for modes I and III, respectively). Moreover, the resulting objective
function (18) was approximately 8% larger than that obtained with
the logarithmic measure.

Concerning tensile tests, four representative experimental
curves were chosen and individually reproduced by the model:
lower and upper bounds and two intermediate curves. Correspond-
ing tensile curves are plotted in Fig. 4 and identified parameters
sets listed in Table 3. Transverse stretches in all cases were
(approximately) k2 ¼ k3 ¼ 0:982 , for a given ultimate axial stretch
k1 ¼ 1:05. Taking these results into account and defining uniaxial

engineering strain as eeng �ð Þ ¼
def

k �ð Þ � 1, one can compute the ratio,

� eeng2
eeng1

¼ � eeng3
eeng1

� 0:35: ð19Þ

Relation (19) is usually named Poisson’s ratio in biomechanical
literature. It is worth emphasizing, however, that Poisson is a con-
stant ratio that only applies to isotropic elasticity under linearized
kinematics (Böl et al., 2015); once the sample is subject to finite
strains, Poisson’s ratio loses its strict original physical meaning.

7. Discussions and final remarks

Accordingly to numerical results obtained in compression tests,
two points are significant. The first one is related to the fact that
mode I is clearly stiffer than mode III (Fig. 3) in spite of the small
difference between axial and transverse stiffness parameters ca
and ct (approximately 1.4%). This different mechanical response
should then be attributed to relevant coupling terms cat and ctt .
The second remark focuses the transverse-transverse stiffness ctt
16.6% higher than the axial-transverse term cat . This difference
points out that significant micromechanisms are activated cou-
pling transverse directions under compressive modes I and III.

As already mentioned, numerical results in tensile tests show
the final ratio (19) of � 0:35, which indicates volume augmenta-
tion. On the other hand, experimental works of tendon tensile tests
in literature frequently report the ratio (19) ranging from 0.55 up
to 3 (Lynch et al., 2003; Vergari et al., 2011; Chernak and Thelen,
2012) indicating volume reduction. In this particular case, the
model fails to predict the large transverse deformations under ten-
sile tests, since this behavior is modeled by the potential wFung ,
where corresponding material parameters were firstly identified
to reproduce the semi-confined compression tests (see the inset
bar graph in Fig. 3).

Some studies refer that these large transverse strains under ten-
sile tests are due to the loss of water during the experiment (Lynch



Table 2
Constitutive parameters related to the numerical curves shown in Fig. 3.

Material model Parameter Value Unit

wFung C 9.98 kPa
ca 14.92
ct 14.70
cat 9.64
ctt 11.24

wNH l 3.76 kPa

Table 3
Material parameters of the unidirectional model wf related to the numerical curves
shown in Fig. 4.

Reference Parameter

k1 MPa½ � k2 MPa½ �
Csapo et al. (2010) 0.010 197.340
Vergari et al. (2011) 92.779 305.870
Thorpe et al. (2012) 2.893 357.230
Couppe et al. (2015) 42.217 411.360
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et al., 2003; Ahmadzadeh et al., 2014; Böl et al., 2015) and biphasic
models have been used to account for this observation
(Ahmadzadeh et al., 2014; Swedberg et al., 2014). However, under-
standing in which ways water couples micro-macro behaviors, is
still subject to further investigations. Therefore, the formulation
of a simple phenomenological model based on continuummechan-
ics, that is capable to predict these huge differences in the mechan-
ical response of tendons under compression and tension, is a
challenge issue in this research field.

Experimental evidences strongly support the theory that tensile
loads are mediated mainly by fibrils (Provenzano and Vanderby,
2006; Screen, 2009; Svensson et al., 2011). Although these struc-
tures are recognized to present viscous behavior (Shen et al.,
2011; Yang et al., 2012), cells and others components of the extra-
cellular matrix, as proteoglycans and water, are pointed out as the
main sources of dissipation (Provenzano and Vanderby, 2006; Shen
et al., 2011; Connizzo et al., 2013; Kösters et al., 2014). As com-
mented in Section 2, proteoglycans do not present strong interac-
tions with fibrils and are orthogonally-oriented to them.
Furthermore, the interstitial fluid flow seems to be directionally
dependent (Screen et al., 2011; Ahmadzadeh et al., 2014; Böl
et al., 2015). Therefore, due to these micromechanisms and mor-
phologies, viscous effects may have preferential directions
throughout tendon hierarchies, which could be reflected macro-
scopically as anisotropic viscoelastic behavior. Accordingly, the
hyperelastic model proposed herein may help future developments
in the modeling of dissipative behaviors of tendinous tissues.
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Appendix A. Stress expressions

From the hyperelastic formalism (Holzapfel, 2000; Bonet and
Wood, 2008; Gurtin et al., 2010), the second Piola–Kirchhoff stress
tensor is defined as,
S ¼def 2 @w
@C

; ðA:1Þ

and the first Piola–Kirchhoff stress tensor can be retrieved by

P ¼def FS. In view of (A.1), the derivatives of the Helmholtz free energy
(3) result in,

S ¼ Sm=f þ Sf ; Sm=f ¼def SNH þ SFung ; ðA:2Þ
where,

SNH ¼ J�2=3devX lIð Þ; ðA:3Þ

SFung ¼ T : H; Sf ¼ 2
@wf

@I4
MX: ðA:4Þ

In Eq. (A.3) is introduced the deviatoric operator in the referen-

tial configuration devX �ð Þ ¼def �ð Þ � 1=3 �ð Þ : C½ �C�1 (Simo, 1998). In
view of Eq. (A.4), one can define the derivatives,

T ¼def @wFung

@e
¼ CeQA : e; H ¼def 2 @e

@C
; ðA:5Þ

and,

@wf

@I4
¼ 0 if 0 < kf < 1

2k1 I4 � 1ð Þ þ 3k2 I4 � 1ð Þ2 if kf P 1

(
: ðA:6Þ

The fourth order tensor H is evaluated through the derivative of
spectral decomposition of e in relation to C, whose closed form
can be found in Miehe and Lambrecht (2001).
Appendix B. Material tangent modulus

Within the framework of a conventional nonlinear finite ele-
ment code, the consistent tangent modulus must be provided
(Simo and Taylor, 1985). Taking into account a total Lagrangian for-
mulation (Belytschko et al., 2000), the linearization of the equilib-
rium equations results in the material tangent modulus,

CX ¼def 2 @S
@C

: ðB:1Þ

The directional derivatives of (A.2), result in the fourth order
operators,

CX ¼ CXm=f
þ CXf

; CXm=f
¼def CXNH þ CXFung ; ðB:2Þ

where,

CXNH ¼def 2 @SNH
@C

; ðB:3Þ

CXFung ¼def H : E : Hþ T : L; ðB:4Þ

CXf
¼def 4

@2wf

@I24

 !
MX �MXð Þ: ðB:5Þ

The contribution of the Neo-Hookean model (B.3) in the mate-
rial tangent modulus is well established in literature, and further
details can be found in Holzapfel (2000) and Bonet and Wood
(2008). Taking into account the operator (B.4), one can define the
fourth order tensor,

E¼def @
2wFung

@e@e
¼ CeQAþ 2CeQ A : eð Þ � A : eð Þ½ �; ðB:6Þ

and the sixth order tensor L as,

L ¼def 4 @2e
@C@C

:
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Due to the computational costs associated with the calculus of L,
the contracted tensor T : L is used instead. A closed form for this
operation can be found in Miehe and Lambrecht (2001). Finally,
the contribution of the unidirectional strain energy wf in the mate-
rial tangent modulus is expressed as,

@2wf

@I24
¼ 0 if 0 < kf < 1

2k1 þ 6k2 I4 � 1ð Þ if kf P 1

�
: ðB:7Þ
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