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AFt ,énc,teitlept;Cae á,CTL,i,te eZmnerü 6axmtlZaCÍan M.es ,Che UJadaCad ,eagimptg,ün app@ach
604 ,Che pxabZmó oá bem,s undügoZng Za/tge deáZec,üalü mlé;Ch urz,date/tat canto,C/taZrt,ü .
T/t,ü áaxlilícúaCCon w/úch appxtox,{ma,Cu ,Cke germe,C/ücae na l tea/t,éü M weee M ,Che
napa,CZn2a/L,é,ttM a/t,ü,éng áxom Che copüac,t ca M,C/c(ürl,ü , .[ó Jia/L,Üciaa/üzed áo Zhe
Eóóenbtl/(g beam {heo g whelte ,Che e6áec,C o l ,C4tüMve,uc hea de6c'mlaüan and ,C4LapuveMe
n04mae 4 C/laZn ü,pLC camlde,'ted, and {lo ,the cZm,s,Cc beam ,C/teaxg. Two ,Cyp,Cede pxíobZw.s
aá ban(üng alta buckZZng oá beatll ca C aZned bg Za,Ce/Lae waeZó (ue ,saLvecÍ M ntwne/accd
ziamp,eM .

INTRODUCTION THE INCREMENTAL PRINCIPLE OF VIRTUAL WORK

The problem of bending of beams with lateral
restrictions was first considered by Timoshenko [1],
ugi.ng the Euler-Bernoulli hypothesis, with the beam
being partially constrained by a rigid cylindrical
surface or by a rigid horizontal foundation. Similar
studies for the bending of circular plates, constrained
by horizontal foundations parallel to the undetformed
middle surface of the plate, vete perfo.rmed by Girkmann
[2] and Timoshenko and Woinowsky-Krieger [3] , using the

classic plate theory, motivated by problems in the
bottom plate of liquid containers.

The problem of buckling of straight beams with
[atera[ restrictions was first studied by Link [4] using
the classic beam theory assumptions. In his work, Link
examines the problem of a straight elastic simply
supported beam axially compressed and placed between two
rigid walls which are separated by a small distante.

The solution of contact problems in beams using
the classical theory had some limitations such as the
í.ncorrect prediction of the tractions at the periphery
of the contact region and the failure to predict the
regions of separation after correctly predicting the
increase in the contact region for a monotonically
increasing load. Trying to remove these difficulties,
Essenburg [5] introduced a higher ordem beam theory that
takes unto account the effect of the transverse normal
straí.n as well as i:he effect of the transversQ shear
deformation, and the regions of separation vete
satisfactory determired .

The numerical solution of uni.lateral contact
problema in continuum mechani.cs has been developed using
the penalty method and the regularity method to solve
the variational inequality that characterizes the
contact prob[em and Kikuchi and Oden [6] have presented
an extensive description of the contact problems í.n
el.tstostatics. Numerical analyses of beam bending
contact problems based on the classic beam theory
assumptions vete perfomied by KikuchiÍ7] and Ohtake et
a[. [8]. Stein and Wriggers [9] have presented afinite
element formulation for the stability of rods with
unilateral constraints, considering the transverse shear
deformat ion effect

This work presents an incremental rinite element
formulation for the problems of beams with local
unilateral constraints, undergoing large deflections.
The Essenburg beam theory is considered and the penalty
method is used to solve the variational inequality« A
comparison with the results obtained from the same
formulation considering the classical beam theory is
provided .

The global representation of the problem of
deformation of an elastic body ç2, caused by body foices
and by foices applied at the boundary I'., constrained
by a rigid surface I'., is obtained by wtiting the
Principie of Virtual'Work for a general referente

::':l;E':=:i==.'g;.''::.';ã.:=: lig:.:'l;:ã F": :=T-.".":
to I'FR.and. I'c.R) respectively,. pR betng the''density of
the body at the referente configuratíon, Si.i being the
components of the 2nd Pi.ola-Kirchhoff stress tensos,
defined at the referente configuration, and E:= being
the componente of the Green strain tensos. 'J

Let the body Q, at the current configuration Q.,
suffer an incremental displacement Au, caused by '
increments in the body foices Af and'in the applied
surface tractions Atem and .&t:, 'producing then an
increment Ag of the'"stress'" tensos. Neglecti.ng the
higher ordem termo, the incremental roem of the
principie of virtual work can be written similarly as
given by Ifashizu [ 10] .

THE CONTACT CONDITIONS

Consider the body Q as a beam. The problem
of a beam placed between two rigid surfaces and
subjected to a defonnatí.on process, as shown by Figure
1, characterizes the Signorini's problem (Duvaut and
Lions [11] ) .

: +2(X)

+. (x)

Figure 1 Beam undergoing a constrainod dd:ormation procees

A point on the top or bottom surface of the beam has the
çoordinates (x, y(x)) and under the deformation process
moves to a new position (x + u.(x, y(x)), y(x) + u (x,
y(x)) where u., and u. are the êomponents of the
displacement õf the $oint on the surface. The beam has
its upper and lower surfaces not allowed to move further
than the rigíd surfaces, i.d. ,
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+l(x) + uz(x, +l(x)) .Z QI (x + ux(x, +l(x))) (1)' '': ' (ÂUN - AgN) on I'c (11)

+2(x) + uz(x, q)2(x)) áP2(x + ux(x, ©(x)))(2) where H is the penalty factor. The existence of the
.g91ut.ion and the convergente to the origi.nal problem as

'U -+-+'Date given by Kikuchi and Sono [14]. The
.4resultinR equality' is'1'15::.S* t:! . 11:: ' .1i. 'gJ.;==. fl!; . !g.l*:Z.i: :!.::. .

Consider the beam in the current Configuration
being displaced by small incrementa Au. . These

i:1111:;il:.1111:ll: :ill:il=:1111 :ini:iiiil' E=1«l: :
incremental contact conditions are written in the form
of the Signorini's boundary condition as [11]

Equations
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where AuNcl : Na' Au with Ncl being the inward normal to
the rigid surface z = tPa(x), having the componente

where the relations AJ = .JAu. :, .âF'l = - F'.IÂu. and
1 , 1 ' ' ik''k, j

N.,: @: : ü-;àlliá:fã;jíí--:72 (5) THE UPDATED LAGRANGIAN FORMULATION

\: @ :;T:i-i'"(ãlilã7ãly7T@ (6) Consider the case when the current configuration
Qt is taken as the reference configuration Q.. The
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incremental pri.nciple of virtual work is written as

. (ASjiâeij + ajiAuk,i6uk,l) dí2 +' l I' ninKAuk6uidl' :

: J biâuidn l At:â«:dr --i-J niAg~6uidr-- R (ID
U

where y = x + u (x, ;h/2) and AgNa are the incremental
gap functions 'given by '''

(7)

qÃgN2
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[ l + (a@Z/ay)2 ] 1 2
(8) Q

where c:ij.are the components of the infiníte.sinal
strain ''tensos. With the consideration of the

incremental constitutive law AS. . : Ci.jk.t Ac:k2,) where
CijkR,..are tne components of theijelastzctty tensos,
[he discretization procedure of (13) is dono by consíder
ing the beam being divide lato E elements, and ínsíde
of each element the incremental and virtual
displacements are interpolated in terras of the
incremental and virtual modal displacements. Taking

considerãtion the arbí.trará.ness of (Sy, one canfrite for each element

Then, the stress contact conditions at the boundaríes
I' l and c2 can be established as

tNI (= + Â:) = 0

tNI (! + Ay) 0

if
AuNI

AuN l 'AgN l

'AgNI ' O
if (9)

tN2 (! + A:) = 0

'N2(Z+Ay)=0 Íf AuN2-AgN2;0(lO)
with y = x + u and

:==::,:~-:{.:; >!':::: ::=.'::=;t;:==:::::': .=:.::=' ;
are tTa : OP lince the rigid surfaces are frictionless.

if
and

N2'AgN2 < O
0 Ü '6"N:'":N2

[KatÍIJ] {AuB.l} : {Afal} (14)

xfhere [K(UBJ] : [KÜ6u + ]HIBJ]'being tKâ?BJI the
incremental stiffness matrix, similar to the stiffness

:lil:'i:::?:,::::.;: :::.}l;-'-.::::«.::, -' tq:.,l :;
!in yARIATloNAL iWEQUAtITY AND TnE PENALTY FORMUIATloN

APPLICATIONS ESSENBURG AND CLASSIC BEAM THEORIES

In the í.ncremental principie of virtual work the
contact temas are represented by quantities referred to
the reference configuration, whereas the contact condi-
tions are given in the current configuration. The prop
er consideration of the contact terras in the incremental
lagrangian formulation is dome in a procedure similar to
the one presented by Kikuchi and Oden [12], yie]ding to
a variational inequa]ity [15].

The formulation presented can be used for any type
of.beam theory. The use of higher ordem theoríes would
produce a greater number of degrees of freedom in the
rinite element equati.ons. Consider the Essenburg beam
theory, which includes the effects of transverse shear
deformation and transverse normal strain with its
displacement field being

Tais inequality can be solved by using the exterior
penalty method which includes the contact constraints in
an equality that approximates the mentioned inequality.
Tais i-dea was first introduced by Courant [13] and is
equivalent to replace the rigid surfaces that produce
the contact conditions bv sets of very staff springs,
i.e., the incremental contact pressure can be written
as

u.Cx,z) 4 u(x) + z 0.,(x)

u,(x,z) ê w(x) + z 0,(x) + zzC(x) (15)

=:::i,:ã=JE =y't,:9VZ=t..:l ". .Íl;' ... -:,:
displacement and w is the vertical displacement of a
point on the neutral axis of the beam, O., is the measun
of the rotation of the cross section, anã O, and e, are
kinematic measures related to the deformation along the
thickness .



The discretization procedure of the expression of
the principie of virtual work for the Essenburg beam
theory is done by interpolating the incremental and
virtual displacements for two-Rode elements of lenght L
by

L=2 cm, b =0,2 cm, h=0.2 cmandd=0.08cm. The
values of the displacement of the middle point of the
beam as well as the corresponding values of M. are
presented in Table 1. The notations (C+) and (E+)
highligh.t the values of Mn when the initial contact
between the lower surface of the beam and the rigíd
foundation ocurred, for the classe.c and the Essenburg
beam theories, respectively. It should be noted that,
according to analyti.cal solutions provided by Essenburg
[5], the expecLed values of Mo when the initial contact
occurs are, for the classic beam theory Mo = 0.4480
kN cmand for the Essenburg beam theory Mo = 0.4493 kN.

The notation (E++) highlight the value of Mo for
the beginning of the separation between the lower
surface of the beam and the rigid foundation, inside the
contact region. Theoretically, the classic beam theory
fails to predict this region of separation and thí.s fact
was confirmed by the numerical simulatioB.. The analytic
solution that the Essenburg beam theory ISJ gives for
the value of Mo to start developing the region of
separation is Mo = 3.4874 kN.cm. The deformation
behavior of the beam is illustrated in the sequentes
shows in F:igures 3 and 4. The sequences vete composed
by simples taken form the several incremental steps
applied .

Au = Ni (x)Aua' ' a
Aw = NZ (x)Aw

âO = N? (x)AOx a' ' xa
ÃO = Nl: (x)AOz (x' ' z(X
A = Ns(x)Ae

'z (I' ' 'z(l

6u = Ut (x)âua ' ' a
6w = N' (x)Õwa ' a
ÕO = N3 (x)60x a xa
ÕO = N"(x)60z a' za
6€ = Ns (x)Õe'z a' 'zCI (16)

where lna(x)
gíven by

n 1,5 are the linear shape functions

~li(*) :-Ê n;(*) : ÍI (17)

leading to a rinite element equation for each element
s imolar to (1 4) .

Consider now the classic beam theory, where the
Euler - Bernoullí. hypothesis is adopted, i.e., the
normais perpendicular to the centroidal axis before the
deformation remam straight and perpendicular to the
neutral axis after the deformation and do not suffer
changes in their lenght. The displacement field is
given by

u,.(x,z) ê u(x) - z ]: (x)

u (x,z) é w (x) (18) Q ©
where again ux is the axial displacement and uz is the
transversal displacement of any point of the beam, u i.s
the axial displacement and w is the vertical
displacement of a point on the neutral axis, while
dw/dx is the measure of the rotationof üe cross section

The well-known discretization procedure for the
classic beam theory is done by interpolating the
incremental and the virtual displacements for two-node
elemento of lenght L by

âu = Ni(x)Au 6u = NI(x)6u

Aw N:(x)aw +N3(x)ÂO Õw=N:(x)6w +N;(x)60 (19)a aa' a a aa' a '

where N=(x) representa the well-known shape functions
N}(x) = 1 x/L N:(x) = x/L

L - 3xz/Lz +2x3/L3 N2(x) - 3xz/L2- 2x3/L3

2.x/l. + x/l. N:(x) = -x'/l.+x3/LZ (20)l 2

r
©

N;(x) ; l x/L

N: (x)

ái:i$a ini sii ,, H.H$1=iHciU,
The appearance of the region of separation is well

described by usí.ng the formulation based on the
Essenburg beam theory, while the formulation based on the
classic beam theory does not show it, as expected.
Compartng the values of Mo obtat.ngd numerically with the
analyti.cal values predicted em [5] , one can see a good
agreement of the results obtained wi.th the rinite
element formulations and the analytical results.

N'(x) - x

and again a similar expression to (14) is obtained for
each element

The detailed finite element equations, similar to
(14), for the two particular cases described above can
be found in [ 15 ] .

EXAb@LES AND DISCUSSION OF RESULTS

Two typical problems of bending and buckling of
beams with unilateral constraints fere solved using the
ab ove formulati.ons .

A simply supported beam subjected to concentrated
moments Mo, as shown in Figure 2, is bent against a
rigid foundation located at the positíon z = @(x) = -d.
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Figure 2 Beam bending against a rigid f«ndation

Tais problem was solved numeriçally, with the followÍng
characteristics: E = 2.1 x IO4 kN/cm2, V= 0.29,

Table 1: Displacement of Table 2: Displacement of
the middle point of the the mí.ddle point of the
beam (Concentrated moment Mo) beam (Axial load Po)

.h,
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A simply supported beam subjected to axial loads
Po , as shown in Figure 5, buckles at its critical load:
this phenomenon í.s siinulated by the introduction of a
small imperfection in a way that the beam is deforming
in the transversal direction sínce the begínní.ng of the
application of the axial load. The usual deformation
bode of the beam for such loading conditions is not
achieved because of the presente of the two walls. At
z = Ü](x) = -d/2 and z = IP2(x) = d/2

similarity between the solutíons obtai:ned using the two
theories, leads to the question of the necessity of
considering of not the higher ordem terras for this class
of problems. All the results inda.bate that the
consideration of the h:ílgher order tetas is not a
fundamentally important factor i.n determining the
deformation behavior of the beam axially loaded
constrained in a channel .

Po

CONCLUSIONS

An i.ncremental lagrangian formulation for local
unilateral contact problems of beams was presented
leading to incremental rinite element formulations for
the classíc and the Essenburg beam theories. Theresults obtained have shows that the deformation
behavior of beams in bending or buckling with unilateral
constraints can be represented by the incremental fini&!
element formulations presented.

Figure 5 Beam oxially loadod constrained by lateral wall&

This problem was solved numeriçally wlth the following
characteristics: E = 2.1 x 104 kN/cm2. v - 0.29.
L=2 cm, b =0.1 cm, h=0.1 cmandd=0.3 cm. The
values of the displacement of the middle point of the
beam as well as the corresponding values of the axial
load P are presented in Table 2. The notations (C#)
and E+) highlight the values of the axi-al load P. when
the iní.tial contact between the upper surface of the
beam and the rigid lateral hall ocurred, for the classic
and the Essenburg beam theories, respectively. The value
of the Euler critical load for the fí.rst mode of the
unconstrained beam, using the classic beam theory, is
Po : 0.4318 kN. In the analytical solutíons proposed by
Link l41 , the expected value of Po when the ini.tial
contact occurs, is the Euler critical load. The
continously increasing axial load Po produces the
increase in the lenght of the part of the beam leaní.ng
against the rigid hall until tais part of the beam snaps
pack. The notations (C+A) and (E++) highlight the
valuesp for the classic and the Essenburg beam theories,
respectively, of Po for the snap-through of the part of
the beam laying against the lateral rigiS[ wa]]. ]n the
analytícal solutions proposed by Link l41 , using the
classe.c beam theory, the expected value of Po for the
snap'through of the middle part of the beam is Po =
6.9087 kN. The deformatí.on behavior of the beam is
illustrated in the sequentes shown in Figures 6 and 7.

REFE RENCES

[1]

[2]

[3]

Timoshenko, S.P., Strenght of Materiais, Part ll,
2nd Edition, Van Nos

G:irkmann, K. , Formanderung eines kreisformigen, auf
ebener Unterlage aufruhenden Behalterbodens durch
Flussigkeitsdruck, Der Stahlbau. 4. 205-209. 1931.
TÍ.moshenko, S.P. and Woí.nowsky - Krieger, S
Theorv oí Plates and Shells, 2nd Edítion,
McGraw-Hall, New York, 1959 .

[4]

[5]

Link, H., Uber den geraden Knickstab mit begrenzter
Durchbiegung (On the Straight Beam with Limited
Deflection), Ing.-Arch., 22, 237-250. 1954.

Essenburg, F., On the Significante of the Inclusion
of the Effect of Transverse Normal Strain in
Problems Involving Beams with Surface Constraints.
J. Appl. Mech., 42, N9 1. 127-132. 1975.

[6]

[7]

[8]

Kikuchi, N. and Odes, J.T. , Contact Problems in
Elasticity, SIAM, Philadelphia, 1986.

Kikuchi, N. , Beam Contact Problema Using
Vara.ational Inequalities, Trans. of JSCE
316-318 , 1980 .

12

Ohtake, K., éden, J.T. and Kikuchi, N., Analysis of
Certain Unilateral Problema in von Karman Plate
Theory by a Penalty Method, Part l & 11, Comput.
Meths. Appl. Mech. Eng., 24, 187-213, 317-337, 1980.

[9] Stein, E. and Wriggers, P., Stability of Roda with
Unilateral Constraints. a Finite Element Solution,
Comput. Structures, 19, N9 1-2, 205-211, 1984.

[10]

[11]

Washizu. K.. Variational Methods in Elasticity and
Plasticity, 3rd Éiiition, Pergamon Press, Oxford,
1982

Duvaut. G. and Lions, J.L., Inequalí.nes in
Mechanics and Physics, Springéi=Verlag, Berlin,
197

Kikuchi, N. and Oden, J.T., Con'cact Problema in
Elastostatics, in Fim.te Elements: Special
Problems in Solid Mechanics. vol. V, J.T. Odes

r 4, Prentice-Hall, New
Jersey, 1984.

FigKe 6 : Ddormation procen for .
tbi buckling ot a beam constrained
by lateral úalls (Clo leal theory)

Figure 7: Deformation process for
tlte buckling of a beam constrained
by lateral walls. ( Euenburg thnry)

[13]

[14]

Courant. R. . Variational Methods for the Solutions
of Problema of Equilibrium and Vibration, Bull
Amei. Math. Soc., 49, 1--23, 1943.
Kikuchi, N. and Sono, Y.J. , Penalty/Finite-Element
Approxímations of a Class of Unilateral Problems
in Linear Elasticity, Q. Appl. Mata., vol. XXXIX,
1-22, 1981 .

Agaín, the sequences vete composed by samples taken
annng the several incremental steps applied. The
ocourence of the secondary bifurcation, due to a límit
poial or snap'through instability, predicted by LinkE4]
was detected and confirms the .capability of the
presented numerical formulations in represent such
phenomenon. After this load is reached, the beam
reaches the other hall, with the load kept constant. Uae

[15] Selke, C.A.C., Local Unilateral Contact Problems
of Beams and Plates Undergoing Large Deflections
Ph. D. Dissertation, The University of Michigan,
Ann Arbor, 1986 .


