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SUMMARY

An incremental ginite element formutation uses

the updated Lagrangian approach

fon the probLems of beams undergoing Large deglections with unilateral consthoints.
This gommulation which approximates the geometrical nonlinearities as well as the
nonlinearities arnising from the contact constrnaints, L8 particularized fon the
Essenbung beam theory where the effects of transverse shearn deformation and transverse

noamal sthain ane consddered, and fon the classic beam theonry.

Two typical problems

04 bending and buckling of beams constrained by Lateral walls are sckved as rnunerical

examples.
INTRODUCTION

The problem of bending of beams with lateral
restrictions was first considered by Timoshenko [1],
using the Euler-Bernoulli hypothesis, with the beam
being partially constrained by a rigid cylindrical
surface or by a rigid horizontal foundation. Similar
studies for the bending of circular plates, constrained
by horizontal foundations parallel to the underformed
middle surface of the plate, were performed by Girkmann
[2] and Timoshenko and Woinowsky-Krieger [3], using the
classic plate theory, motivated by problems in the
bottom plate of liquid containers.

The problem of buckling of straight beams with
lateral restrictions was first studied by Link [4] using
the classic beam theory assumptions. In his work, Link
examines the problem of a straight elastic simply
supported beam axially compressed and placed between two
rigid walls which are separated by a small distance.

The solution of contact problems in beams using
the classical theory had some limitations such as the
incorrect prediction of the tractions at the periphery
of the contact region and the failure to predict the
regions of separation after correctly predicting the
increase in the contact region for a monotonically
increasing load. Trying to remove these difficulties,
Essenburg [5] introduced a higher order beam theory that
takes into account the effect of the transverse normal
strain as well as the effect of the transverse shear
deformation, and the regions of separation were
satisfactory determired.

The numerical solution of unilateral contact
problems in continuum mechanics has been developed using
the penalty method and the regularity method to solve
the variational inequality that characterizes the
contact problem and Kikuchi and Oden [6] have presented
an extensive description of the contact problems in
elastostatics. Numerical analyses of beam bending
contact problems based on the classic beam theory
assumptions were performed by Kikuchi [7] and Ohtake et
al. [8]. Stein and Wriggers [9] have presented a finite
element formulation for the stability of rods with
unilateral constraints, considering the transverse shear
deformation effect.

This work presents an incremental finite element
formulation for the problems of beams with local
unilateral constraints, undergoing large deflections.
The Essenburg beam theory is considered and the penalty
method is used to solve the variational inequality. A
comparison with the results obtained from the same
formulation considering the classical beam theory is
provided.
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THE INCREMENTAL PRINCIPLE OF VIRTUAL WORK

The global representation of the problem of
deformation of an elastic body §, caused by body forces
and by forces applied at the boundary I'_, constrained
by a rigid surface I' , is obtained by writing the
Principle of Virtual Work for a general reference
configuration 2, with tE. and tC. being the components
of the surface Eraction vector aglf and T , referred
to I'pp and [ g, respectively, Pr belng the density of
the body at the reference configuration, S;: being the
components of the 2nd Piola-Kirchhoff stres3 tensor,
defined at the reference configuration, and E.. being
the components of the Green strain tensor. E

Let the body Q, at the current configuration Q_,

: 2 t
suffer an incremental displacement Au, caused by
increments in the body forces Af and in the applied
surface tractions AtF and AtS, “producing then an
increment AS of the” 'stress”  tensor. Neglecting the
higher order terms, the incremental form of the
principle of virtual work can be written similarly as
given by Washizu [10].

THE CONTACT CONDITIONS

Consider the body £ as a beam. The problem

of a beam placed between two rigid surfaces and
subjected to a deformation process, as shown by Figure
(Duvaut and

1, characterizes the Signorini’s problem
Lions [11]).

Figure 1 : Beam undergoing a constrained deformation process.

A point on the top or bottom surface of the beam has the
coordinates (x, y(x)) and under the deformation process
moves to a mew position (x + u_(x, y(x)), y(x) + u_(x,
y(x)) where u_ and u_ are the Components of the
displacement 8f the point on the surface. The beam has
its upper and lower surfaces not allowed to move further
than the rigid surfaces, i.e.,
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¢1(x) +u (x, ¢1(x)) > v (x + ux(x’ ¢1(x))) M
%) +u x, 9,()) <P, (x4 uw &, ¢, x))) (2)

where (x, ¢, (x)) €T  and (x, ¢2(x)) € I'.p. Equations
(1) and. (2)'are the no-penetration conditions.

Consider the beam in the current configuration
being displaced by small increments Au,. These
incremental displacements are introducad in (1) and (2)
and after a linearization process with respect to Au, is
performed, based on a Taylor series expansion, the

incremental contact conditions are written in the form
of the Signorini’s boundary condition as [11]

AuN1 - AgN1Ai 0 on Fc1 (3)
AuN2 - AgN2 <0 on Fc2 (4)
where AuNa = ga' Ag with ga being the inward normal to

the rigid surface z = Wa(x), having the components

_ ¢ 3ya/d
Yox @) =* T Gaparagye G)

- 1
Ny @ R Gya/ay) 2172 (6)

where y = x + u_(x, $h/2) and AgN are the incremental
gap functions “given by o

_-h/2 — u,(x,-h/2) - ¥1(y) (7
A8y = [+ (303 /85)7 T2 )
Y2(y) - h/2 - uz (x, h/2)
= 2 (8)
AgNZ [1 + (30p/0y)2]L 2

Then, the stress contact conditions at the boundaries
Fc1 and 1;2 can be established as

tN1 (Z + Mu) =0 1 Aum—AgN1 <0

tN1 (Z + Ag) 0 if AuN1—AgN1 =0 (9)
and

th(Z + AB) =0 if AuNZ-AgN2 <0

t 2

N2(y + Au) = 0 if AuNZ—AgN2 =0 (10)

with y = x + u and

where t_ (y + Au) are the normal components of the
Cauchy "“'stress vector and its tangential components
are t,. = 0, since the rigid surfaces are frictionless.

THE VARTATIONAL INEQUALITY AND THE PENALTY FORMULATION

In the incremental principle of virtual work the
contact terms are represented by quantities referred Fo
the reference configuration, whereas the contact condi-
tions are given in the current configuration. The prop
er consideration of the contact terms in the incremental
lagrangian formulation is done in a procedure.sim%lar to
the one presented by Kikuchi and Oden [12], yielding to
a variational inequality [15].

This inequality can be solved by using the exterior
penalty method which includes the contact constraints in
an equality that approximates the mentioned inequality.
This idea was first introduced by Courant [13] and is
equivalent to replace the rigid surfaces that produce
the contact conditions by sets of very stiff springs,
i.e., the incremental contact pressure can be written
as

c 1
= - — - 1
Aty T (AuN Agy) on T, (11)

where M is the penalty factor. The existence of the
solution and the convergence to the original problem as
W + o'are given by Kikuchi and Song [14]. The
resulting equality is

[ (85368, + S, buy j6uy ) 49 + & I JF‘{}‘nRjnkAuk
Q T
“Th . tShu, Su.ar. - J JF Tl .S
1 R
QR

B3 SE
1578 EN°

] ik"Rj Nk, Yk, k
=1

GuidI‘R = JFiJ. nRj

F 1
AtRiduid% + m J
R R QR

Agybu,dl. + R (12)

D =

AbRiéuidQR + [
%

where the relations AJ = JAu, ., AFTT = - FTTAu . and
igd ij ik~ k,j

Auy = njlu; were used, J being the determinant of the

deformation gradient I35 9 npj the components of the out

ward normal to the contact surface Fers and R is  the

residue.

THE UPDATED LAGRANGIAN FORMULATION

Consider the case when the current configuration
Ot is taken as the reference configuration . The
relations J =1, F,,~! = 8., and S.. = g.. apply, T
1] 1] 1] 1] 1]
being the components of the Cauchy stress tensor. The
incremental principle of virtual work is written as

] ‘ i
J (ASjidsij + OjiAuk,iauk,i) do + ﬁ-J ninkAukéuidT =

Q I8
[ F 1 .
= J Abiéuidﬁ + J Atiéuidf * I niAgNﬁuidF+ R (13)
Q I Ie

where €.. are the components of the infinitesimal
strain ““tensor. With the consideration of the
incremental constitutive law Asij = Cijkg Agpq, where
Cijkg are the components of the elasticity tensor,

the discretization procedure of (13) is done by consider
ing the beam being divide into E elements, and inside
of each element the incremental and virtual
displacements are interpolated in terms of the
incremental and virtual nodal displacements. Taking
into consideration the arbitrariness of Su, one can
write for each element

B, 14
[Kypas] thug,} = {a€ ) (1)
shere [Kyyail = [Kyio + K o Jbeing (KA. 1 the

incremental stiffness matrix, similar to the stiffness
matrix obtained in the linear analysis, and [KZIBJ] is
the initial stress stiffness matrix.

APPLICATIONS:

ESSENBURG AND CLASSIC BEAM THEORIES

The formulation presented can be used for any type
of beam theory. The use of higher order theories would
produce a greater number of degrees of freedom in the
finite element equations. Consider the Essenburg beam
theory, which includes the effects of transverse shear
deformation and transverse normal strain with its
displacement field being

ux(k,z) = ulx) + z @X(x)

6,(6,2) 2 W) + 20 (0 zzgéx) (15)
where u_is the axial displacement and u 1is the
displacément of any point of the beam, % uis the axial
displacement and w is the vertical displacement of a
point on the neutral axis of the beam, Oy is the measure
of the rotation of the cross section, and 0, and £, are
kinematic measures related to the deformation along the
thickness.



The discretization procedure of the expression of
the principle of virtual work for the Essenburg beam
theory is done by interpolating the incremental and
virtual displacements for two-node elements of lenght L
by

Au = N*(x)Au Su = N!(x)6u
o a (g. o
bw = Né(x)Awu Sw = Na(x)dwa
AO = N3(x)A® 86 = N3(x)60
X [0 X0 X (o] X0
A = N*(x)A0 80 = N*(x)60
z % zo z Cs! z0
AE, = NPGOAE,  8E = NP(x)SE_ (16)

where N&(x), n =
given by

1,5 are the linear shape functions

NT(X) =1 - % Ng(x) = % (17)
leading to a finite element equation for each element
similar to (14).

Consider now the classic beam theory, where the
Euler - Bernoulli hypothesis is adopted, i.e., the
normals perpendicular to the centroidal axis before the
deformation remain straight and perpendicular to the
neutral axis after the deformation and do not suffer
changes in their lenght. The displacement field is

given by
ux(x,z) = u(x) - z g% (x)
uz(x,z) =w (x) (18)

where again u, is the axial displacement and u, is the
transversal displacement of any point of the beam, u is
the axial displacement and w is the vertical
displacement of a point on the neutral axis, while
dw/dx is the measure of the rotation of the cross-section.

The well-known discretization procedure for the
classic beam theory is done by interpolating the
incremental and the virtual displacements for two-node
elements of lenght L by

_ 5 _
Au = Na(x)Aua Su Nu(x)éua

_ N2 3 _n2 3 .
Aw = Na(x)Awa-kNa(x)AOa (5w-—.\1a(x)<SWa+Nu(x)GOOt (19)

where Ng(x) represents the well-known shape functions
Ni(x) =1 - x/L N;(x) = x/L
N2(x) = 1 - 3x%/L2 +2x°/L® NJ(x) = 3x*/1’- 2x°/U
Ni(x) =x - 2x/L+ x/L N (x) = —x%/L+ /L2 (20)
2
and again a similar expression to (14) is obtained for
each element.
The detailed finite element equations, similar to

(14), for the two particular cases described above can
be found in [15].

EXAMPLES AND DISCUSSION OF RESULTS

Two typical problems of bending and buckling of
beams with unilateral constraints were solved using the
above formulations.

A simply supported beam subjected to concentrated
moments M;, as shown in Figure 2, is bent against a
rigid foundation located at the position z = U(x) = -d.
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Figure 2 : Beom bending against a rigid foundation.

This problem was solved numerically, with the following
characteristics: E = 2.1 x 10% kN/cm?, V= 0.29,
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L=2cm, b=0,2cm, h=0.2cmandd=0.08cmn. The
values of the displacement of the middle point of the
beam as well as the corresponding values of M, are
presented in Table 1. The notations (C*) and (E*)
highlight the values of M, when the initial contact
between the lower surface of the beam and the rigid
foundation ocurred, for the classic and the Essenburg
beam theories, respectively. It should be noted that,
according to analytical solutions provided by Essenburg
b], the expected values of M, when the initial contact
occurs are, for the classic beam theory My = 0.4480

kN cm and for the Essenburg beam theory M, = 0.4493 kN.
cm. The notation (E**) highlight the value of M, for
the beginning of the separation between the lower
surface of the beam and the rigid foundation, inside the
contact region. Theoretically, the classic beam theory
fails to predict this region of separation and this fact
was confirmed by the numerical simulation. The analytic
solution that the Essenburg beam theory |5]| gives for
the value of M; to start developing the region of
separation is My = 3.4874 kN.cm. The deformation
behavior of the beam is illustrated in the sequences
shown in Figures 3 and 4. The sequences were composed
by samples taken form the several incremental steps
applied.
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Figure 3 : Deformation process for
a beam bending agoinst rigid
foundation (Classical beam theory)

(G

Figure 4 : Deformation process for
g beam bending against a rigid
foundation. (Essenburg beam theory)
The appearance of the region of separation is well
described by using the formulation based on the
Essenburg beam theory, while the formulation based on the
classic beam theory does not show it, as expected.
Comparing the values of M, obtained numerically with the
analytical values predicted em [5], one can see a good
agreement of the results obtained with the finite
element formulations and the analytical results.

Dispiscoment of the middie point of the beem Dispiacement of the middle paint of the beem
Classic Essonburg Py Classic Essenburg
{kN.cm) Theory (cm) Theory(cm) (xN) Theorylem) | Theecy(em)
0 4000 -0.0715 -0.0706 0.0000 0.0302 0.0302
0.4475 -0.0799 -0.0790 9:8180 00444 SOMNS
0 4485(C% | -0.0800 TS TR 0 4270 0.1479 0.1472
0.427 .
oivelEMI|| 010800 010800 275(c*) | © 1500 0.1489
0 4280(E™) 0.1300 0.1500
0.5000 -0.0800 -0.0800
0.5000 0 1500 0.1500
2.5000 -0 0800 -0.0800
1 7500 0.1500 0 1500
3 0000 -0.0800 -0.0800 S 0000 1500 9.1500
3 5000(E™ -0 0800 -0.0798 70000 (C™=) 0.14%0 0.1500
5 0000 -0 0800 -0.07TTH 7 1000 0 1374 0.1300
5 1800 -0 0800 -0.0769 7 1300(E™ 0 1256 0 1494
7 5000 -0 0800 -0.0735 7 5000 0 o420 0.0680
10 0000 -0.0800 -0.0703 100000 201500 ~0-1800

Table 1: Displacement of Table 2: Displacement of
the middle point of the the middle point of the
beam (Concentrated moment M) beam (Axial load B.)
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A simply supported beam subjected to axial loads
Py , as shown in Flgure 5, buckles at its critical load;
this phenomenon is simulated by the introduction of a
small imperfection in a way that the beam is deforming
in the transversal direction since the beginning of the
application of the axial load. The usual deformation
mode of the beam for such loading conditions is not
achleved because of the presence of the two walls. At

= U,(x) = -d/2 and z = ,(x) = d/2.
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Figure 5 : Beam oxially loaded constrained by lateral walls

This problem was solved numerically with the following
characteristics: = 2.1 x 104 kN/em?, v = 0.29,
=2cm, b =0.1 cm, h = 0.1 cm and d = 0.3 cm. The
values of the displacement of the middle point of the
beam as well as the corresponding values of the axial
load P are presented in Table 2. The notations (C*)
and E*) highlight the values of the axial load P; when
the initial contact between the upper surface of the

beam and the rigid lateral wall ocurred, for the classic
and the Essenburg beam theories, respectively. The value

of the Euler critical load for the first mode of the
unconstrained beam, using the classic beam theory, is
P, = 0.4318 kN.
Link [4], the expected value of P¢ when the initial
contact occurs, is the Euler critical load. The

contlnously increasing axial load P; produces the
increase in the lenght of the part of the beam leaning

against the rigid wall until this part of the beam snaps

back. The notations (C**) and (E**) highlight the

values, for the classic and the Essenburg beam theories,

respectively, of Pg for the snap—through of the part of
the beam laying against the lateral rigid wall. In the
analytical solutions proposed by Link !4], using the
classic beam theory, the expected value of Py for the
snap-through of the middle part of the beam is Py =
6.9087 kN. The deformation behavior of the beam is
illustrated in the sequences shown in Figures 6 and 7.
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Figure 6 : Deformation process for
the buckling of o beam constrained
by lateral walls (Clossical theory)

Figure 7: Deformation process for
the buckling of o beam constroined
by loteral walls. ( Essenburg theory)

Again, the sequences were composed by samples taken
among the several incremental steps applied. The
ocourence of the secondary bifurcation, due to a limit
point or snap-through instability, predicted by Link[h]
was detected and confirms the capability of the
presented numerical formulationms in represent such
phenomenon. After this load is reached, the beam
reaches the other wall, with the load kept constant. The

In the analytical solutions proposed by

similarity between the solutions obtained using the two
theories, leads to the question of the necessity of
con51der1ng of not the higher order terms for this class
of problems. All the results indicate that the
consideration of the higher order terms is not a
fundamentally important factor in determining the
deformation behavior of the beam axially loaded,
constrained in a channel.

CONCLUSIONS

An incremental lagrangian formulation for local
unilateral contact problems of beams was presented
leading to incremental finite element formulations for
the classic and the Essenburg beam theories. The
results obtained have shown that the deformation
behavior of beams in bending or buckling with unilateral
constraints can be represented by the incremental finite
element formulations presented.
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