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7 - Conclusions
The MLGFM local scheme has been briefly outlined. This procedure led to: reduced computational
effort; mantained the primitive variable accuracy level; and the secondary variables, referred here as
fluxes, with the same level of precision as the ones computed on the boundaries by the global
procedure. Among the first problems solved, typical one is presented which illustrates the convergence
properties of MLGFM as compared to a mixed FE formulation which is the one in the FEM family
which most resembles the MLGFM,

We have verified that boundary elements increase the accuracy and the rate of convergence, even
by using FEM to compute the Green's function projections. These results suggests its use for other
nonlinear continuum mechanics problems such as fluid flow and plasticity.
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GREEN'S ELEMENT METHOD- PART II: ITERATIVE LOCAL FORM
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ABSTRACT

An iterative procedure is developed for the computations of the secondary variables in the macrocells.
Using a Somigliana's Identity and the Green's function projections computed on a microcell, it is defined
a boundary integral equation involving both principal and secondary variables on its boundary. This
equation, combined with the definition of the apparent fluxes and with a continuity condition across
internal interfaces lead to a classical Fredholm integral of second kind for the apparent fluxes. A
discretized form of this equation is used in an iterative scheme performed on sweeps over all microcells
which define each macrocell. Tests are performed on one standard nonlinear heat transfer problem.

1- INTRODUCTION

In accompanying paper, Part I, we introduced the first variation of the Green's function Method.
The general global method introduced by Silva, 1988, was applied to each cell independently, the cell
amrays were assembled. the compatibility conditions at cell interfaces were imposed and the complete
system was solved. Because the cells can be made of high order single elements as well as multiple
elements and the solution can be obtained only for the tractions or fluxes normal to the boundary of the
cell, it becomes necessary to use some post-processing to determine the fluxes (or stresses) in the interior
of each cell. The first procedure used for this post-processing was presented in Part 1. Each cell, called
macrocell, was considered as an independent problem, with loadings and boundary conditions known
from the first step of processing. It was divided into a new mesh of bilinear cells, called microcells, and
the solution at the new intemal boundaries was found using the same procedure used in the first step.
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In this paper, we present a second scheme which can be used either for post-processing the
stresses in each individual high-order cell. Instead of assembling the arrays of all microcells of the
macrocell being post-processed as before, local problems are defined for each microcell and solved
iteratively in sweeps over the macrocell, giving simultaneously approximations for both the primary
variables and the fluxes. Contrary to the assembled method, here the convergence is dependent on the
choice of the parameter ¢ in the definition of the apparent fluxes.

The iterative procedure for the post-processing present some advantages in accuracy when
compared to both Mixed Finite Element Method and the Assembled Form described in Part I, as seen in
the numerical tests performed. The formulation is developed and tested here for a nonlinear Poisson
problem, although all the steps indicated are intended to be applicable to other similar boundary value
problems, e.g., linear elasticity.

2 - DEFINITION OF THE NONLINEAR PROBLEM IN INTEGRAL FORM.

Let us consider the extension to the linear boundary value problem stated in Eqgn. (1) of Part I:

=V -Z(u)Vu = b(P), PEQ
u(p) =a(p), PET, (1
~n-Zvumf(p)=f(p),  per,.

The matrix Z is the anisotropic nonlinear thermal conductivity of the material, decomposed here
asZ(u), = Z,; +BW),,i,j =1.2. All other necessary definitions in Eqn (1) are the same as those
shown in Part 1. Eqn. (Ic) also defines the normal heat flux leaving the body. The weighted residual
expression derived from (1) is (see Mendonga, 1995):

—Lu V-(Z,Vw)dQ +fru(Z,’, Vw)-ndl —_frw(ZVu)-ndl‘

2
-wadﬁ+LwV-(ﬂVu)dﬂ -!;w(ﬁVu)-ndl‘. &

We consider the system domain Q under consideration to be divided into cells £, with
boundaries I',. Each of the Equations (1) to (2) can be rewritten for an individual cell, although the
conditions at its boundary are @ priori unknown. We can choose the weighting function to satisfy the
Second Auxiliary Problem defined in Eqn. (5) of Part I. Therefore, a modified Somigliana's Identity
similar to (6) in that paper can be found for the generic cell £

M
i (g) - Efr. G'(p.q) F*'dT, [ G(P,qY [b(P)+ V- (BVW)dQ,
:-l U d (3)
- Erfr' G(p.g)[((BVu)-nI™dr,, pgET,, Peq,.

The boundary integrals are split for showing the contributions of each interface with the
neighboring cells. T, is the interface between the cell  and a neighbor cell A7, and T, = UT', and

NIy =@ for i =1.M. The apparen: flix shown in the second term is nonlinear and is defined as

F(p)=-n'-@ W'+ du/(p), | @

where the first term is the apparent heat flux through the interface leaving the cell / to the cell m; the
second term is the real nonlinear physical flow which shows on the third term in Eqn. (2).

The continuity conditions of temperature and heat flux through a generic interface I-m is

@) =-~@) = -n'-(ZV')=n" 2"V,
u"(p)=u (p) +R"n' «(Z'Vd) ®)

where n' and n™ are the unit vectors normal to the interface I-m , pointing outward the cells / and m
respectively. The Continuity Condition for the Apparent Fluxes at the interface is:

F=(p)=ci" ' (p)- ¢ F'(p), ©

where ¢" = (c™ +¢'), ¢" = (c"R™ +1) and R™ is the contact resistance at the interface. Now we use
Eqn. (3) to eliminate u'(p) from (6), obtaining an integral equation involving one sole unknown, the

apparent fluxes:
. M
F@- 3, G p.af ¢t SPNFT T, -d" S [ G'(p.a) (GVu-ny"ar,
n < JTx

P, q€r, PEQ,.

Q)
+o" o, G (P b(P)+ V- (BVu)ldQ,,

To enforce uniformity in the formulation, the term F™ appearing in Eqn. (6) was introduced in the first
boundary integral in (7) by means of the delta function. It makes a balance between the apparent flux
coming to the cell { from the cell m, with the net apparent flux through all faces and the source applied
inside the cell. We represent the fields in the cell  by:

F=(q) =[¢" (@) F**~,

[Bw)Vu)-nKg) = (¢S5,
[b(P) + V-(B(u)Vu)] = [y (P)][b, + b, ],

F(@)-[¢@)F',
u(P) = [y (P)u’, ®)

with ¢ €T, and PEQ,. F' is the vector with the nodal values (or generalized coefficients) of the
apparent flux on the boundary of the cell I.. b, and b, are the vectors with the linear and nonlinear nodal
values of the sources indicated in the left hand side of Eqn. (8e). The arrays [¢(q)] and [y (P)] are

properly defined arrays of basis functions, interrelated as described in (Mendonga, 1995). In particular,
we have here that [y (P)] C H'(Q). The index Im indicate the interface I-m, and c and d indicates nodal

values on boundary and domain respectively.

Applying (8) in (7), substituting the summation operator by the standard matrix-vector product,
and using [ ¢(q)] as weighting functions we have;

[f. @1 e, [ - g {1 6= @16 parar wenar,)s:
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+c" {fm [fr. [$" () G'(P.g)' dr'][tp(P)]de} bl @
il [ @re .o -t so.or senar, |

The terms inside each bracket can be identified with matrices defined previously. The iterative
scheme described in the next section will be based on the following two algebraic equations defined for
each cell /:

DF® =[61F1®, + by) + {[GUE) - [c,)IDYF' ~[c)(E) S},
Dy’ = EF° +F[b,+b,] (10)

where the first expression is the matrix form cormresponding to (9) and the second is Eqn. (7b) shown in
Part 1. The arrays [ ] and [c,] are conveniently defined diagonal matrices formed by the constants ¢c*
in each interface of the cell. Matrices D, E and F are defined in Egs. (8) of Part I, and E and F can be
eliminated in terms of D using the relations (13) in that paper. It must be noted with regard to the matrix
form (10a) is that the actual operations must be made face by face of the cell, as shown in (9). The results
obtained in one face are used in the computations of the next faces.

3 - SOLUTION OF THE LOCAL EQUATIONS

The general outline of the solution scheme is given below, where, to improve clarity we first
consider the linear problem only, i.e., BW)=0,b, = f; =0.

a) Choose initial distributions for the potential &' and flux in the right hand side of Eqn. (8), for all cells;
this defines the nodal vectors F*' which compose F* in Eqn. (10a);

b) Perform a sweep computing the fluxes, i.e., for each cell  do:

bl) Choose the arbitrary constants c** [later we shall discuss this procedure];
b2) Compute the arrays involved in Eqn. (10a), as well as b, ;

b3) Compute F*™ for all faces of the cell;
b4) Use the continuity equation (6) to compute F™ ;

c) Test the exrors by computing the difference between the fluxes obtained in the last two iterations;
d) Perform a sweep computing the temperatures using Eqn. (10b); Test errors in the temperatures;

Clearly, the local arrays can be computed just once and left stored for the subsequent iterations,
The values F** obtained when computing the cell / are used in the same sweep when computing the
next cell in the same sweep. Because the computations are local, the values obtained are discontinuous,
making necessary nodal averaging. In case of nonlinerarity, the local iterations above are performed for
each pair by, f,. After convergence, these vectors are updated and new local iterations are performed.
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The initial distribution in step a) for the Local Iteration can be defined as the converged values of the last
nonlinear iteration,

4.4 ITERATIONS IN THE MACROCELLS

In this section we give an overview of the steps necessary in the complete analysis and the use of
the formulation described above as a post-processor.

system
undary I
local
boun | ¥]

local
ﬁ l:)c:ndary T L_.

macrocellL
= microcell [ .

b) Discretization of the macrocell
L into microcells /.

a) Discretization of the system
domain Q into macrocells L.

Figure 1 - Macro and microcells.

In the first step of the analysis, the system domain and boundary are discretized in macrocells as
depicted in Figure 4.1a. The primary and secondary unknown variables, temperature and normal fluxes
respectively in potential problems, are computed at the local boundaries I . of the macrocells, using the
"Assembled Local Form" presented in Part I. The complete solution will require a second step of
processing, unless the macrocells are composed by single bilinear quadrilaterals or linear triangular
elements. Therefore, each macrocell is taken individually as an isolated problem and discretized in
subcells as shown in Figure 1b. This problem is then solved using the local iterative procedure presented
in the first Sections of this article.

In this secondary analysis, the boundary conditions for each macrocell are known from the

solution of the first step. But we notice that, since the first step of processing produced both temperatures
and normal fluxes on I, in the second step we are in the unusual situation of having available both

magnitudes to use as boundary conditions, Due to the iterative nature of the procedure, this is readily
incorporated into the scheme.

In the case where part of the local boundary T, belongs to the global boundary T,, the
temperature values given there as boundary conditions for the second step of the analysis will be exact,
because they are the exact boundary conditions of the problem; consequently only the fluxes there are

approximate, because they were computed in the first step of the analysis. The second case, where part
of ', belongsto T, the discussion is analogous, except for interchanging of the words "temperature”

and "normal fluxes",
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The third case happens when the macrocell is completely interior to the system domain, i.c.,
I', NT = @. Here temperature and normal fluxes on I, are both approximated. There is no need to
choose arbitrary initial values for the apparent fluxes on the boundary before the first iteration. Instead,
we use Eqn. (4) to compute F*(p) = ¢'u'(p) - £ (p), p ET,, and then, considering absence of contact
resistance, we have that (sce Mendonga, 1995) F*“(p) = F*(p) +2f (p), p €T, , where the right hand
side of both expressions are now entirely known from the results of the first step of processing,

5 - NUMERICAL RESULTS

The test codes developed and the models run have the following characteristics:

- Macrocells are composed by a single Lagrangian element of polynomial order p < 3;

-Each macrocell can be divided in meshes of up to 5x5 bilinear microcells;

-The nonlinear iterative method used was the simple Successive Iteration Method,; it is the method
widely used for Boundary Element Method type of programs for mildly nonlinear problems. Besides, it
does not complicate unnecessarily a test program;

-All results were compared to those obtained by the Mixed Element formulation described in
(Mendonga, 1995) and to the analytical solutions. The same nonlinear iterative technique and
convergence est were used for both Green and Mixed Finite Element test programs. In all models the
value chosen for ¢ was the same for all cells,

In the Figures shown next, the following notation is used:

Ef, Eu - Relative error of the temperature and flux in the domain, defined in Egs. (27) in Part I;
ALG - Assembled Local Green ; Indicates results obtained in the solution of the Problem
lin Part 1;
ILG - lrerative Local Green Method. Indicates results obtained by the procedures described in
the present paper;

mcl, Mcl - microcell and Macrocell respectively;

NITL, NITN - Number of Local Iterations and Number of Nonlinear lterations respectively;

M, p - Mesh parameter. Indicates a regular MxM mesh and p is degree of the polynomial used;
Rr - Relative Residue in the nonlinear iterations, given by Rr = Ry, - Rl /IR -

. The vector R is the residue in the algebraic nonlinear equations. These iterations are performed
until Rr < eps. After each iteration is performed, the solution is used to compute the updated source by
as implicitly defined in Eqn (8) and the residue Rr .

5.1 - PROBLEM |

l'n this test we will evaluate the behavior of the scheme to solve the standard linear problem
definedin (1), with Z =1, b=-1,I, =T andT=0 on a square of sides 2x2,
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Figure 2 shows the ermrors Ef of the flux for a mesh of 4x4 bilinear macrocells, with each one
modeled by a mesh of 2x2 microcells, as a function of NITL for two different values of c. Here we see
also a general tendency: the error first drops quickly in the first or second iterations and then stabilizes in
a nearly flat path.

Figures 3 to 5 show the relative error Ef for the flux in the domain at the Local Iterations 2 and 4
as function of ¢, for meshes of biquadratic and bicubic macrocells. In these Figures we can see some
general tendencies followed by all studied: '

- There is a value of ¢ for which the error for the ILG is minimum;
- The curve Ef x c is relatively shallow, revealing low sensitivity of the results with c;
- The error Ef for ILG is considerably smaller than the errors obtained either by ALG or Mixed FEM;

Observing Figures 2 and 3, we see that the value of ¢ for minimum errors, ¢y changes
considerably with the mesh index M, therefore we make a ﬁrst effort in trying to produce an estimator
Crefto localize at least roughly the region of lower errors. Observing other results (Mendonga, 1995) for
M = 1 to 4 respectively, we see that ¢y is different for each Local Iteration NITL. Therefore, to simplify
the task, we will elect the second Local Iteration as our goal. For the biquadratic macrocells we have
chosen the following estimator

lKa.HI
C", - Z Ku, .

where the matrices K, and K, are defined in (Mendonga, 1995). Figures 3 to 5 show good agreement
for different macromeshes, and for 2x2 and 3x3 microcells per macrocell. Other results also show that
Cres gives good indications not only for the small error zone of the fluxes, but also for the potential. Due
to the small sensitivity and fast rates of convergences, c,.s seems to indicate correctly the beginning of the
low error regions for Iterations 3 and 4 too. This feature seems very convenient, since we do not intend
to use many more than two iterations

(12)

5.2 - PROBLEM 2

In this problem we want to approximate the solution to the nonlinear extension of Problem 1. The
nonlinearity is introduced by using a thermal conductivity in the form k (u) = a, + a,u. The source term
is defined by -a,b(x,y) = 4, (u,} +u,}) +(a, + a, u) V’u, where

a,u, (x,y)=-gxp;"*(p)? -a,)
p,=al+ag(} -y?)

- a‘Z u(xsy) - (P:n w ao)(p;lz —aa)n

13
p.=a}+a g’ -x?), (3

The function u(x,y) in Eqn. (13) not only defines the source term, but it is also the solution for the
problem in a rectangle with sides 2/ x 2/,, with u = 0 at the boundaries. For the computations we have

chosen g = [, = [, =1.0. The material property constant a, was set equal to 1.0. The material constant a;
which gives account of the nonliearity was chosen to assume the values 0.1, 0.5 and 1.0 in the tests.
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Figures 6 and 7 show the relative erors in flux and potential, Ef and Eu, along the number of
nonlinear iterations NITN, for different meshes and values of a; . Al results for the Iterative Local Green
Method were obtained using the reference value for ¢, as defined in Eqn. (12). These values are; ¢ =

4.0, 6.0, 12.0 and 16.0 for M = 1,23 and 4 respectively. Also, in all cases, the maximum number of
Local Iterations NITL was set to 3.

In Figures 6 and 7 we see that the number of nonlinear iterations necessary for convergence was
considerably different between the ILG and the Mixed FEM. Looking carefully at the logarithmic scales

we see that not only the convergence was reached carlier for ILG, but the error was smaller, in some
cases by one order of magnitude.

Figures 8 and 9 show the evolution of the Relative Residue Rr along the Nonlinear Iterations
NITN for both methods, for meshes of 2x2 and 4x4 macrocells. We notice an accentuated difference in
the rate of convergence.

6 - CONCLUSION

Tests performed in Chapter 4 for the potential and fluxes computed iteratively by ILG showed
accuracies still better than those obtained by ALG. The results given by the ILG are dependent on the
arbitrary constant chosen on the boundary of the microceils; this is different than the ALG results The
matrices of the cells are not assembled to represent the whole physical system, but instead they are solved
iteratively in sweeps. This process of solution introduces the inconsistency in the which leads to the
dependence of the results with the constants. An empirical formula to obtaina gross estimate for the
optimal value of this constant was given and tests showed acceptable agreement. Tests also showed that
the accuracy dependence of this constant was not strong, making it sufficient to use a value inside an
optimal region of values instead of the optimal point itself. Also, results showed that, for limited number
of microcells and for the constant not 100 far from the optimal region, the number of iterations can be
limited to the range 2 to 4, and can be set by the analyst a prioni, in the definition of the data,
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SUMARIO

Neste trabalho é apresentado um algoritmc:\ para a solugdo numérica dg_problerr;
de escoamento de fluidos incompressiveis'enj sistema de coordgr}adas gurvuhg?a’:an.
ortogonais generalizadas, utilizando a técnica de volumes n'mlosA : prouae i
acoplamento presséo-velocidade é solucionaqo usando uma combmacér_: a; eq "g o
continuidade e da quantidade de movimento linear, gerando duas equagdes de correg
pressdo. Resultados da aplicagdo do método sdo apresentados.

1. INTRODUGAO

id
odos numéricos para a solugdo de problemas envolvendo esgoamento qe flun
em ge':r::;trias regulares F:estao bem desenvolvidos atualmente, porém I;\at mj::;f pc:
aplicagées em engenharia as geometrias encontradas sdo cqr'nplexasl s m;'uslam 2
desenvolvimento de varios métodos de geragéo de malhas curvilineas qu% se ]sando :
formatos dos contornos, novos algoritmos passaram a ser dgsenvolvu os \; A
sistema de coordenadas n&o-ortogonais generalizadas, permntmcjo od usoos !
adaptaveis a geometria do dominio fisico do problema a ser solycut':nagg;1 (Perie 198
trabalhos em coordenadas generalizadas podem ser cu_t.ados: (Maliska, 1 ! 1)§88)' (karki
(Shyy et al.,1985); (Reggio e Camarero, 1986); (Hadpsophocleoys et Zéo- (Yéng ol
Patankar, 1988); (Davidson e Hedberg, 1989); (Thangam e Kpnght, 191 ‘),( iyttt |
1990); (Deng et al, 1991); (Kelkar e Choudhgry, 1991); (Silva, 1'9. t):t (co~|o‘c sisa
diferenciando-se entre si, basicamente, pela configuragéo de malha utiliza adistint;ées .
ou deslocada), e do tipo e local dos com;):onemes da velocidade. Essas

ente discutidas por Shyy e Vu (1991). e
amp'a"l;.ste trabalho dépprosseguimento ao apresentado por Ronzani e Nlec;‘l:gled é 1 :3:2
propde um algoritmo para a solugéo numériqa. de p(oblqmas de .escgamglumes Moot
incompressiveis em coordenadas curvilineas b@mensnonals. A técnica .ée vis
usada, com uma configuragio de malha co-localizada para todas as variaveis.
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Figures 6 and 7 show the rdaﬁve erors in flux and potential, Ef and Eu, along the number of
nonlinear iterations NITN, for different meshes and values of a; . All results for the Iterative Local Green
Method were obtained using the reference value for ¢, as defined in Eqn. (12). These values are; ¢. =

4.0, 6.0, 12.0 and 16.0 for M = 1,2,3 and 4 respectively. Also, in all cases, the maximum number of
Local Iterations NITL was set to 3.

In Figures 6 and 7 we see that the number of nonlinear iterations necessary for convergence was
considerably different between the ILG and the Mixed FEM. Looking carefully at the logarithmic scales
we see that not only the convergence was reached carlier for ILG, but the error was smaller, in some
cases by one order of magnitude.

Figures 8 and 9 show the evolution of the Relative Residue Rr along the Nonlinear Iterations
NITN for both methods, for meshes of 2x2 and 4x4 macrocells. We notice an accentuated difference in
the rate of convergence.

6 - CONCLUSION

Tests performed in Chapter 4 for the potential and fluxes computed iteratively by ILG showed
accuracies still better than those obtained by ALG. The results given by the ILG are dependent on the
arbitrary constant chosen on the boundary of the microcells; this is different than the ALG results The
matrices of the cells are not assembled to represeat the whole physical system, but instead they are solved
iteratively in sweeps. This process of solution introduces the inconsistency in the which leads to the
dependence of the results with the constants. An empirical formula to obtain'a gross estimate for the
optimal value of this constant was given and tests showed acceptable agreement. Tests also showed that
the accuracy dependence of this constant was not strong, making it sufficient to use a value inside an
optimal region of values instead of the optimal point itself. Also, results showed that, for limited number
of microcells and for the constant not 100 far from the optimal region, the number of iterations can be
limited to the range 2 to 4, and can be set by the analyst @ priori, in the definition of the data,
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SUMARIO

Neste trabalho é apresentado um algoritmo para a solugdo numérica de”problenlas
de escoamento de fluidos incompressiveis em sistema de coord_er.\adas curvilineas na(;)-
ortogonais generalizadas, utilizando a técnica de volumes f!nltos:. 0} problenja do
acoplamento pressdo-velocidade é solucionado usando uma comblnag:a? das equagdes da
continuidade e da quantidade de movimento linear, gerando duas equagdes de corregdo da
pressao. Resultados da aplicagdo do método sdo apresentados.

1. INTRODUGAO

Métodos numeéricos para a solugdo de problemas envolvendo esgoamento qe _flundos
em geometrias regulares estdo bem desenvolvidos atualmente, porém na maioria da'\s
aplicagées em engenharia as geometrias encontradas sd@o cqrpplexas. Esumylado pelo
desenvolvimento de varios métodos de geragdo de malhas curvilineas que se ajustam aos
formatos dos contornos, novos algoritmos passaram a ser d9§envolv1dos usando um
sistema de coordenadas n&o-ortogonais generalizadas, permttmc]o o uso de ma_lhas
adaptaveis a geometria do dominio fisico do problema a ser so[ucmnado. Os sggumteg
trabalhos em coordenadas generalizadas podem ser citados: (Maliska, 1984); (Perlc,198‘5),
(Shyy et al.,1985); (Reggio e Camarero, 1986); (Hadjisophocleoys et al, 1988); (Karki ?
Patankar, 1988); (Davidson e Hedberg, 1989);, (Thangam e nght, 1990); (.Yang et ::
1990); (Deng et al, 1991); (Kelkar @ Choudhury, 1991); (Silva, 1.9'91); (Pires, 1.99 )
diferenciando-se entre si, basicamente, pela configuragdo de malha utilizada ('co_-loc_:allzada
ou deslocada), e do tipo e local dos componentes da velocidade. Essas distingées sdo

ente discutidas por Shyy e Vu (1991). -
amplatgs?;elrabalho dépprosszéuimenlo ao apresentado por Ronzani e Nieckele (199"4) e
propde um algoritmo para a solug8o numérica de pfoble_mas de .escoamento de.fl.mdo§
incompressiveis em coordenadas curvilineas bidimensionais. A técnica de volumes finitos &
usada, com uma configurag@o de malha co-localizada para todas as varidveis.
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