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ABSTRACT: In this paper, the MLGFM is compared to the FEM for the salution of
selected problems of 3-D elasticity. For this purpose, a FEM code was specially developed,
in which special care was taken in order to use, as much as possible, the same routines
employed in the MLGFM code. This, together with the fact that the same finite elements and
meshes were always chosen when comparing the methods, guarantees reliable conclusions,
The comparisons are done for displacements and stresses. In both, MLGFM and FEM, the
evaluation is performed at the nodal locations, since the MLGFM provides stress results
directly at these points, without using exirapolation techniques. The analysis employs
hexaedric elements of 20 and 27 nodes in the domain and quadratic elements of 8 and 9
nodes on the boundary.

1. INTRODUCTION

The MLGFM is a numerical method which is closely related to the Galerkin
formulation of the Boundary Element Method (BEM). The main difference between these two
techniques is that the former does not require an analytical form of a fundamental solution.in
this sense, the applicability of the MLGFM is broader than the one of the traditional BEM.

The praocedure that the MLGFM employs to overcome the need of a fundamental
solution is to replace it by locally determined Green's functions prajections which are
evaluated with the help of the FEM. The boundary conditions adopted for this purpose are
chosen in such a way that the integral equations that describe the problem get simplified.

The application of the MLGFM to elasticity problems was originally presented by
Barbieri (1992) and Barbieri et al. (1992), where 2-D problems were analysed. Excellent
results were achieved encouraging further research and application to the 3-D case. The
first analysis involving 3-D problems was presented by Meira Jr. (1994). )

In this paper the application of the MLGFM to 3-D elasticity problems is detailed and
some numerical examples are displayed. The resulls are compared to the equivalent FEM
ones.
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2. DERIVATION OF THE MLGFM INTEGRAL EQUATIONS

This section describes the use of the MLGFM to solve the 3-D elasticity problem
defined by the expression

Au=b inQ (§;;
u=T onénN, (2‘3
Nu =T on 8Q, (23)

where u={u, u, u,}' is the generalized displacement vector; A,N,iand T are

i i tor,
ively, the differencial operator of 3-D elasticity, the associated Neumann operator,
::dp?r?:vprZscﬂbed vélues for the generalized displacement vector and generalized forces.

The vector b={b, b, b,}' corresponds to external body loading.
Consider the adjoint operator 4 * and the associated problem

A*G(Q,P)=5(Q,P)I (2.4)
where 5(Q,P) Is the Dirac delta generalized function, I is the identity tensor and G(Q,P) is

a fundamental solution tensor which represents the displacement at a field point Q due to a
unit source applied at point P.

Multiplying equation (2.1) by G(Q,P)' and equation (2.4) by u(Q)' results in

G(Q.P)' 4u(Q)=G(Q.P)'b(Q) 2.5)
and  u(Q)'4*G(Q,P)=u(Q)'5(Q.P) (26)

Subtracting (2.5) from the transpose of (2.6) results in

u(Q)5(Q.P) =[4*G(Q.P)] u(Q) - G(Q.P) 4u(Q) + G(Q,P) b(Q) @27)

Integrating this equation on the domain Q, with point P considered as fixed, one
obtains

u(P)=[[4*G(Q, P)] u(Q)d, - [ G(Q,P)' 4u(Q)dQ, +

(2.8)
+[G(Q.P)'b(Q)n,
Q
Next, applying the Gauss theorem to the first two integrals in (2.8) results in
g u(P) = - [[N *G(q,P)] u(a)dan, + [ G(q, P)' Nu(q)denr, +
“ - (2.9)

+[6(Q.P) ),

where N * is the Neumann operator assoclated to the adjoint operator 4*.
At this point it is convenient to define an operator named N' such that
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G(a.P)' Nu(q) = N'G(q.P)'u(q) (2.10)

The quéntity defined by (2.10) can be added and subtracted from (2.9) resulting in

u(P)= —ﬂ(N * 4N ')G(q,l’)]I u(q)daﬂ‘ + IG(q.P)'(N +N ')u(q)daﬂ. +
x aQ

. (2.11)
+jc(Q,p) bQ)dQ,

It is convenient to define as boundary conditions for the problem (2.4) the expression
(N*+N")G(q,P)=0 (2.12)

so that the first integral in (2.11) vanishes. Adopting this procedure, a Green's function with
Cauchy boundary conditions is defined for problem (2.1). The operator N' is defined as a
diagonal matrix with constant elements k, such that

ku,(p)=0on o, (2.13)

and k, can be chosen as any non-zero value on the part of oQ), that has homogeneous
Dirichlet boundary conditions,

The desired solution for u(P) can then be written as
u(P)= [G(a,P)'F(q)dan, + J6(@.py)'bQ)in, (2.14)
n 2]

where F(q) = (N + N")u(q).

Taking the trace theorem of u(P), that is

u(p)=!j_r3: ulP) pedPeQ, (2.15)
in (2.14) leads to

u(p) = [G(q.p)'F(a)do, +[G(Q.p)'n(Q)aq, (2.16)

The equations (2.14) and (2.16) define the problem completely and are the final
integral expressions of the MLGFM to be discretized.

3. INTEGRAL EQUATIONS DISCRETIZATION

In equations (2.14) and (2. 16) the domain variables are approximated by interpolating
functions [¥], in the same way as in the Finite Element Method. Similarly, the boundary
variables are approximated by boundary interpolating functions [¢] like in the Boundary
Element Method. Due to the application of the trace theorem, the interpolating functions for
boundary displacements must be the trace of the domain ones.

Thus, the approximations can be summarized as

82

u(P)=[¥(P)}{u)” F(a)=[¢(a)]ir) 3.1)
u(p) = [¢(p)]{u)° b(Q)=[¥(Q)](b) (3.2)
The next step is to substitute the expressions above into (2.14) and (2.16).

In the domain system obtained, the resullant residue is made orthogonal to each
domain interpolation function, resulting in

A{u}” = B{r} +C{b} (3.3)

Similarly, in the boundary system obtained, the resultant residue is made orthogonal
to each boundary interpolation function, leading to

D{u)® =E{r}+ F{b) (3.4)

In equations (3.3) and (3.4) the following identities hold

A= [[¥(P)] [¥(P)la, 35)
B } [Gd(@)] [o(a)}a0r, (36) E
C= EEGd(Q)]'[ ¥(Q)lua, (3.7)
D= L [+()] [s(p)an, (3.8)
E= [[Ge(a)] [#(a)}om, (3.9)
F= ﬁct(Q)]'["’(Q)]dﬂo (3.10)
where the Green's function projections involved are

[ca@] = [[¥(P)] [c(a.P)] 402, 3.11)
[ca(Q) =1[“‘(P)l'[G(Q- P 4a, (3.12)

- [6e@)] = [[6()] [¢(a.p)] 20, (3.13)
[64@) - W6 {s(an] o, -

4. APPROXIMATE GREEN'S FUNCTION PROJECTIONS

As it became evident in the last section, the MLGFM depends on the knowledge of
four Green's function projections, given by (3.11) - (3.14). These Green's functions may be
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evaluated approximately, by solving two associate problems with the Finite Element Methoq
as a residual procedure.

Problem 1:
4*[Gd(Q)]=[¥(Q)] (4.)
(N*+NfGd(q)]=0 Vvqein Qen (4.2)
Problem 2:
4*[Ge(Q)]=0 » (4.3)
(N*+N"[Ge(q)]=[4(a)] ¥qeoan Qen (4.4)

5. NUMERICAL RESULTS

Fig. 5.2. Boundary elements used for boundary discretization.

5.1. Bending of Curved Beam with a Load in its End

A curved beam (90 degrees) of thin rectangular transversal section is clamped in its
face A and subjected to a radial load P applied on its face B, as can be seen in Fig. 5.3. The

material of the beam is isotropic, its Poisson coefficient is v = 0.2 and the longitudinal
elasticity modulus is E = 1.0,
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Fig. 5.3. Curved beam with applied load on face B

Two sets of domain and boundary meshes were used to analyse this problem. These
are displayed In Fig. 5.4. Note that in this example, 27 node finite elements were used (o
represent the domain and 9 node boundary elements were used in the boundary. Two
meshes were employed: L10C34P2 - 10 Lagrangian domain elements, 34 Contour

elements, Polinomial of order 2 and L18C58P2 - 18 Lagrangian domain elements, 58
Contour elements, Polinomial of order 2.

l
P

BEM
(a) L10C34P2

FEM BEM
(b) L18C58P2
Fig. 5.4. Domain and boundary discretization.

The resulls for stresses and displacements are shown In Tables 5.1 and 5.2. The
errors referenced to the 2-D solution are displayed in parenthesis.



2-D Analytical Solution
(Timoshenko & Goodler,

1970)

MLGFM FEM MLGFM FEM

40520770 £0.91%) | 40519776 (:0.01%) | 400 43063 (0.12%) | 408 41330 (-0.13%) 408.94028
“

=

ble 5.2. No |

L10C34P2 L18cs8P2 2-D Analytical
Solution
(Timoshenko &
r MLGFM FEM MLGFM FEM (3oodhfI 10701

16.0

=4.5084 (0.93%) -5.1220 (12.42%) | -4.5538 (0.05%) | -4.7447 (4.14%) -4.5560

15.0 -2.5484 (5.58%) -3.0096 (24.79%) -2.4585 (1.94%) -2.6135 (8.37%) -24117
14.0 -0.0628 ( -) -0.6814(-) 0.0001(-) 0.1763(-) 0.0018

13.0

12.0

2.6769 (-7.37%) 2.1712 (-21.95%) 2.7239 (-2.08%) 2.6762 (-7.30%) 2.7819

6.1827 (1.78% 5.5214 (-0.11%) 6.0901 (0.25%) 5.9207 (-2.44%) 6.0747
*

It may be observed from the Tables above that both MLGFM and FEM provide similar
results for displacements. On the other hand, the normal stresses in the clamped face are
much more accurately represented using the MLGFM.

5.2. Pure bending of a prismatic beam.

Consider a prismatic beam bent due to the action of two moments of equal magnitude
and opposite directions as displayed in Fig. 5.5. The beam's material is considered isotropic,
and the Young modulus and Poisson coefficient are given by E=2.10x10° and v = 0.3,

respectively. In order to simulate this siluation, face A is clamped and a bending stress
distribution is applied on face B,
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Fig. 6.5. Prismatic beam undergoing pure bending.

For this problem's modelling, 20 node finite elements were used in the domain and '8
node boundary elements were applied in the boundary. The mesh, presented in Fig. 5.6, is

called S05C22P2 - 05 Serendipily domain elements, 22 Contour elements, Polinomial
order 2. '
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Fig. 5.6. Domain and boundary meshes for pure bending analysis (S05C22P2).
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Fig. 5.7. Face A.

The resuts obtained for O,, sltresses and maximum displacements are shown it
Tables 5.3 and 5.4, respactively.

able 5.3. 0,, stresses for pure bending

Mesh S05C22P2
Node MLGFM FEM

25 -20,899.98097 -20,087.53498
26 -30,000.00001 -30,011.22807
27 -20,090.99099 -20,987.63497
28 0.000008 0.000021

29 20,899.08996 29,087.53498
30 30,000.00001 30,011.22807
31 20,880.90909 20,067.53407
32 -0.0000042714 -0.0000021225
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Analytical Solution
(Timoshenko & Goodler,

!970!
%

Sulls are very simil
' '® accurate when calculated v?ar ﬁgs&” and MLGFM. Conversely,

Consider g pegq
SuPPorted in ts gngg :' bor rectanguiar cro !
nd 4088 section i
Ig. 5.8. The beam's malerig?g 1d ue 1o a uniform load of m:fnl:gn ey
are given respectj, y sotropic and he Young's p ogu, :;l: n?:;o?' as displayed
oisson'

el =
IS presented i Tableys. 5y E=21x10 gng v=03

Fig. 58 Beam bending,

— Jable 55 Maximum gj
Lo2c10p2

20 Analyticaj Solution

ML
— — (Timashenko & Goodler,
-0.13236 (-13 04% - |
, -0.1 -
3253 (-12.9294 -0.16225 (0.039 0.15242 (0,149 l
) .14%) -0.15220

6. CONCLUSsION

The numericq)
(00l 1o obtain g o examples presenteq i this
Compared (o ml;p;zuma::;smqum for 3-p elastfci‘l';o proi:?:r:sm?t an b CFM Is & il
* 1@ quality of the regyg given by the MchgA: may ed it when
May display a better

88

.3. The maximum displacement of the beam |

pehaviour. Example 5.1 agrees with the results presented by Mufioz R. & Barcellos (1994)

: nd Barbierl et al. (1994), and shows that belter resulls are normally obtained for tractions,
a . ’

he resuits are usually the same. Nevertheless, in some ocasions
niide ,'3&::?.";'3:?:: t;iﬂt‘emnl boundary conditions when modelled with FEM and MLGFM.
S f case, the property of better representation for tractions may be lost, as in example
|n2m;artlwiarly the belter representation of stress results is foreseen to give a great
g;‘lv.antago to tht; method for dealing with nonlinear problems, in which the quality of stresses

plays a key role in the iterative process of solution.
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