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ABSTRACT

A Green's Function Method is used to obtain approximate
solution to viscous incompressible fluid flow. Two
auxiliary differential problema are locally deÊlned in temas of
specially deHined Green's Functions associated to the
problem. A Finito Element approximation is found üor the
prolections of the Green's Function anta a rinite
dimensional subspace. This approximation is then used to
construct a final algebraic system of equations, in temia of
nodal values of the velocities, pressure and tractions on the
boundary, which simulates the behaviour of the flow. Testa
perfomled indicates an overall improvement on efHciency
stresses approximations when compared to the Mixed FEM
usede

solid analysis a great dual of efíort has been made to improve
or extract better values of stresses for a given ãlnite element
space, resulting in some more or less efHicient techniques for
displacement-based fomiulations, like the smoothing
techniques, and the improvements on the basis functions,
coupled with errar estimates and automatic adaptivity of the
mesa.

The Hlrst devêlopments in the method were perfomied by
Barcellos & Silvo, 1987, Barbieri & Barcellos, 1991 and
1993. Sinçe these early versions of tule method= it has been
applied successifülly to a variety of problema like bending
of plates and shells and the solution of the Helmholtz
problem, among others. Mendonca, 1995, developed local
fomes for the method and introduced some procedures aimed
to reduce the computational eHort involved in the
computations, specializing it to the efHicient çomputation of
seçondary variables.

1. 1NTRODUCTION

The accurate responso prediction âor the behaviour of
viscous incompressible fluid flow is a flindamental stop in
the design of an immensa variety of mechanical systems
present in a chelnical plant. It is observed that, in the case of
analysis of solids, in general, the secondary variables, the
stress componente and tractions, are the main interest. In
fluid flow analysis the interest mainly on the primary
variables, the velóçities and the pressure âields. lince most
ofüie fluid flow problems require a nonlinear analysis, the
accuracy of the approximations of the secondary variables
plays a fllndamental role, whether üey are the final goal of
the analyst oí not. Whether the nonlinçar iterations are
deHined by one of the Newton-like methods, by simple
sucçessive iterations or by other methods, the resultant
linear approximate problem will coBsist of a coefHicient
maüix, and a right-hand sido "force" vector. The componente
of these temas usually depend on several combinations of
the displacements, stresses and its derivatives in each
coordinatc, evaluated at a known, previously computed
con6iguration.

2. NAVIER-STOKES PROBLEM

As a prototype üor incompressible problems, we consider
the Navier-Stokes equations in the form

t/ .VU -J!(V2U+ (V2C/y) +lVP = l
P P ' P

(1)

on Q , with the incompressible çonstraints
conditions given by

and boundary

v .u :.o on Q

on n.

on I'/ ,

(2)

where p denotes the pressure, f the traction vector,
ruandr/ partitions of the boundaiy I' suçh that
I'=1'.ur/andrunl'f=É3. Algo, u=(ut,u2). As
typically is dono with üe boundary element techniques, the

The use of mon accurate approximations $or the secondary
variables results in fewer nonlinear iterations required to
converge at a given load levei. leis representa an obvious
improvement in numeriçal efHciency. hi Finite Elemento for

Algo
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nonlinearities will be handled mostly by the method of
simple successive iterations. Therefore we altar Eqs.(1) to
the fome

[P(2niai(')+/z2a2('))+a /u2ai(') nl]

(N'+N') (-) ' P(2«Za2(')+-1al('))+P «21

o o ri
(9).P(V2C/ + (V2U)Í ) + Vp = b on Q , (3)

where p represent the inverso of the Reynolds number Re.
In the remaining of this paper we will follow the main steps
of the global Green's fomialism described by Barbieri, 1 991
and Mendonca 1995. For simplicity we will resüict the
notation to the two-dimensionar problem, büt without
implying any restriction to its extension to the ftlll three
dimensions.

and

..:l '\u?-','
-Pata(.)

-P(V . V(.) +a22 (.))
a2 (')

(10)

First, for purpose of clarity, it is usefül to exi)ress the system
of equations (3) and (2a) in the operator 6oim Au = b, where

u=(ui,u2,py, ó=(bi,b2,0y and

Consider the third term in(8). The ampare/zr frac/ío/zs are
deHlned as

F(q) = ]Vu(q) + Ar u(q), q € 1' (11)

-P(V .VO +ai l 0)

-Pa22 (.)
ai (.)

-Paio(.)
-;z(V . V(.) +a22 ('))

a2 ( )

Using the definitions of f and N" we can put it in the
extended comi:A

:1111:l:! :l*l lWe premultiply it by the weighting vector function
y =(vi,v2,wy, integrate both temia over the domain and
perform an integration by parts on the Hlrst temi obtaining

(12)

As expected, in a boundary point of a two-dimensional
domain only two physical components of traçtions apply,
those shown in the second bracket. The defined apparent
tractions, however, contam a third component deHined as
shown in(12) in temas of the pressure and the arbitrary pre-
deâined functions 7(q).

{Ll" -- wn'l: I'«* ("r I'' - f, ,. «'« '''
-L,,."''-L" '''

(5)

Onde the problem is established in the comi shown in (8)
with the definitions shown in (12), the procedures
dêscribed desçribed by Mendonca, 1995, çan be readily
applied. Two auxiliary problems involving projections of
the Green's Functions cinto a Êlnite dimensional subspaçe
are deüined by:

where y= (h,v2) and

[P(2nlai(')+nZaZ(')) /ü2al(') -pzi]

w=1 p«la2(') p(2n2 2(')+ntal(')) :nzl. (ó)
l o o o l

A'Ga(P)=]V(P], VPc(2
(N' + N' )Ga(p) = 0, Vp c I'

IA'c.(p) = o,

l(w' + N )Gc(P) : [W(P], vP E r

This operator was fonned reordering the deHlnition of the
traçtions such that f=Sí .nana, where the stresses are
given by the Navier-Poisson law of an inçompressible
Newtonian fluid:S=-p/+plVC/+(VUyl. Next we
integrate by parta again the Hirst temi in both Equations(5)
to get:

(13)

Tbe domain and the boundary are partitioned into a set of
e[ements. The âie]ds are approximated byzl(Q) =]W(Q)]u" ,
with-«.L«. I' -" -- '. ("r I'' - .L,'. "'' :

fr" " 'lu.W'Va'+.L«. Q
l u.VwdQ = --(b wu.ndl'JQJr

[yr(Q)] = Ofag]õt (e), õ2(Q), õ3(Q)] , (14)

(7)
where eaçh õi(Q), í = 1,2,3 , is a set of nodal bases hnctions
and ud is the column vector fomied by the nodal values, i.e.,
ud = (uld,iqd,ud)í. Replacing the index d by c in Eqn. (14),
analogous expressions are de6lned for the 6ields on the
boundary, using suitable basis fünctions as given by
Mendonça, 1995.

Now we add two temia to the boundary integrais through
the arbitrary operador N' whiçh satisfbr the condition
v. N'u -- u. Àr v = Q. Hera we choose the simplest form for this
operator is N'=1)1ag]a(q), P(ç),r(ç)]. That this comi
satisüies the necessary çondition is çlear because v-lV'ü=
avtui+Pv2uZ+ywp=u.N'v. Therefore Eqs.(7) can be
simplifíed to the following operator fonn For two vector 6ields defined by z = (Z,z3y and v= (y,v3)í

with Z =(zl,z2)l and y = (vi,vZy, the bilinear 6onn shown

Jnlu'A'v-v. blaO: frtv'(X+ N')u-u'(N'+ N')vjd' ,(8)
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in üe associated weak R)nn associated with the
Auxiliary problem shown in Eqn.(13) is deâined by

6irst
make.the .submatrix (3,3) appearing in Eqn. (17) partially
populated when the arbitrary flinction 7(q) is not' de6ined
to be identically zero at all points ofthe boundary. In case
the proüeçtions are being computed at a cell çomposed by a
single element, and if the basis flinctions are deâined in tais
element by nodos distributed only on its boundary, like the
elements of the Serendipty family, then the submatrix(3,3) in
Eqs.(17) will be fülly populated by a positive-definite
maüix (if 7(q)>0for any qcl').

'e. o: {J.I" -- ("rl: I" ,- ("rl'' - J.:,' ' "": -- J.-,' . ' '. .
(15)

The associated coefHlcient maüix Ko can be obtained in the
form usual in the rinite element method. lts partitioned âom\
compatible to the ordering of the degrees of fteedon used in
Eqn. (14) is:

It is observed that the approximate response obtained is,
within the easily met restrictions, completely independent
of the particular values chosen for the arbitrary functions, in
particular 7(q) , in the deHinitions of #33

kt2

k22

k3Z :]. (16)

As a consequente, the algebraic system (18) will be
solvable even in some of the cases when the underlying
rinite element used presents spurious pressure modes. Some
6lnite element fomiulation with /orl)fada/z combinations of
bases functions for velocities and pressure were chosen and
tested to identiíy modems where they would mail. A second
effect, however, renders the above observations temporarily
useless: even if the problem (17) was solvable for the
prqeçtions, the procedure would rali in the next stop. When
using the div-unstable underlying finite elements to
compute Ko, the obtained set ofprojections has lesa than
the required rank. The consequente is that the final
algebraic system, Eqn. (18), will generate a singular final
matriz after the boundary conditions have been applied.

Tbe boundary\ condition in the problem (13) will result in
another coefHlcient matrix çalled K2 . The addition of K2 to
Ã:o providos sufHlcient restrictions to allow for the solution

of the nodal values of the Green's Functions Projections,
GoP and GcP by solving the following algebraic system
derived from (13):

[Ko + K2 ]IGOP;GCP ] = [A/;m] (17)

The projections allow the defínition of a Modiâied
Somigliana's Identity ater Eqn. (12), which can be
discretized on the boundary to result in the final algebraic
systems of equations for the problem, in temia of the nodal
values of the velocities, pressure and tractions on the
boundary:

4 - APPLICATIONS

The numerical testa were perfomied with the Green's
macrocells composed of one single domain element with
biquadratic bases flinctions for velocities and bilinear
ftlnctions for pressure. Three sets of problems were solved.
In .the Hirst two the standard Couette and Poiseuille flows
were madeled. Because the exact solutions for these
problema are bilinear and biquadratic polynomials for
velocities and bilinear polynomials âor pressure
respeçtively, the approximate respondes obtained were exact
as expected, in al1 6ields of velocities, pressure and stresses.

Duc = EFc .tFbd (18)

where, similarly to the boundaiy element method, u'is the
set of nodal values of velocities and pressure at the
boundary, /'c is the set of nodal values of the tractions
deüined in Eqn.(16), aand the maüiçes are given in temia of
the nodal values of the Green's Function Projections by
(z la):

o = fr, [P(Ç)]']P(Ç)]w, ; E = fr G.(Py]P(P)]ap ;

F = jn. Gc(Py [V(P)]dQp (19)

G.(Py = ir.[P(p)] ' G.(P,qy (rP ;G.(Py = fr.[P(p)] ' G.(P,gy aP

where Gc(p) and G.(P) are the projections of the Green's
Functions onto finito dimensional spaces, solutions to the
Auxiliary Problema (13). All the derivations and
expressions shown se Em can be applied to the whole
physical domain, but hera we will be using then in the
senso described in Mendonca, 1995, i.e., each cela is
modelled individualy, its local projections are computed
ftom (17) and the matdces in (18Lare assembled to Êoim the
algebraic systems for the complete'domain.

(a) Mesa A (b) Mesh B

(o,o)
(d) Mesh D

(o.o)
(c) Mesh C

l

3 - SPURIOUS PRESSURE MODES Figura 1 - Malhas utilizadas

In tais seçtion we describe .some aspecto that, although
unsatisfactory due to its incompleteness, soem: interesting
enough to deserve a record in view of possible füture
developments. We notice that the addition ot K2 tO Ka

Nexo, we took one of the few problems for which an
analytical SQlution is available, concentric rotating
cyllnders (see Sçhlichting), and üuncated a standard lxl
domain to be modeled. The analytical solution is:

221



ul (x, y)

P(x,y)

-uiklQ -Ç'l-;â ,«2(x,y)

-'7-- l.il -'-.g(-S

-"-*t. -'Çl$
I'21 ]--c, a
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.(:.[S, 0,» - S:. 0,H]2 dy

't3i;,,,'« '
E (21)

where S.. is the analytic solution obtained Êun(21). The
relativo errar for Sx is defined analogously.

0 0.25 0.5 0.75 1
Coordinate y

Figure 3 - Stress SD' at x = 0.0. for 2x2 distorted mesh C. E
= 1.44e-2 for ALG and E = 1.55e-l for FEM.
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Figure 2 - Regular mesh B, 4x4 celas. Enor in süess Sx at r
= 0.5.. E = 1.37e-4 for ALG and E = 2.19e-3 for FEM.
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Figure 4 - Stress Sx atx = 0.i. for 4x2 distorted mesa D. E
1.35e-4 for ALG and E = 2.02e-3 for FEM.ALG stands for ..4ssemb/ed l,oca/ Green. The resulta are

compared against the Mixed FEM and the alnalytical
solution. The Green's meshes will cave roughly twice as
many degrees of acedam as the Finito Element mesa of
identical' number of nodos. Even though, the ratio of the
relativo errors displayed in the figures are very expressivo.

Barbieri, R & Barcellos, C. S., 1993, Non-homogeneous üield
potential problems solution by the modified local Green's
function method (MLGFM), in Engineering Analysis with
Boundary Elemento, 1 1. 9-15.

5. CONCLUSIONS
Mendonca, P.T.R, 1995, "Computation of Secondary
Variables by a ModiHied Local Green's Function Method"
Ph.D. Thesis, University of Minnesota, Minneapolis, MN,
USA

The application of the Green's Function Method has been
briefly' outlined. This procedure lead to: reduçed
computational short; for meshes of equal. dizes it
appmximates the stresses more accurately . and prçsents
higher rate of convergence than the mixed PEM, suggesting
fürther developments towards the use in continuum
mechanics problems

Mendonca. P.T.R. Wamer; W. H. & Barçellos, C. S., 1995,
XVl] BETECH, C. A. Brebbia (Ed.),CML Publications,
Southampton, pp 99-106.
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