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ABSTRACT

A Green’s Function Method is used to obtain approximate
solution to viscous incompressible fluid flow. Two
auxiliary differential problems are locally defined in terms of
specially defined Green’s Functions associated to the
problem. A Finite Element approximation is found for the
projections of the Green’s Function onto a finite
dimensional subspace. This approximation is then used to
construct a final algebraic system of equations, in terms of
nodal values of the velocities, pressure and tractions on the
boundary, which simulates the behaviour of the flow. Tests
performed indicates an overall improvement on efficiency
stresses approximations when compared to the Mixed FEM
used.

1. INTRODUCTION

The accurate response prediction for the behaviour of
viscous incompressible fluid flow is a fundamental step in
the design of an immense variety of mechanical systems
present in a chemical plant. It is observed that, in the case of
analysis of solids, in general, the secondary variables, the
stress components and tractions, are the main interest. In
fluid flow analysis the interest mainly on the primary
variables, the velocities and the pressure fields. Since most
of the fluid flow problems require a nonlinear analysis, the
accuracy of the approximations of the secondary variables
plays a fundamental role, whether they are the final goal of
the analyst or not. Whether the nonlinear iterations are
defined by one of the Newton-like methods, by simple
successive iterations or by other methods, the resultant
linear approximate problem will consist of a coefficient
matrix, and a right-hand side "force" vector. The components
of these terms usually depend on several combinations of
the displacements, stresses and its derivatives in each
coordinate, evaluated at a known, previously computed
configuration.

The use of more accurate approximations for the secondary
variables results in fewer nonlinear iterations required to
converge at a given load level. This represents an obvious
improvement in numerical efficiency. In Finite Elements for
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solid analysis a great deal of effort has been made to improve
or extract better values of stresses for a given finite element
space, resulting in some more or less efficient techniques for
displacement-based formulations, like the smoothing
techniques, and the improvements on the basis functions,
coupled with error estimates and automatic adaptivity of the
mesh.

The first developments in the method were performed by
Barcellos & Silva, 1987, Barbieri & Barcellos, 1991 and
1993. Since these early versions of the method ", it has been
applied successifully to a variety of problems like bending
of plates and shells and the solution of the Helmholtz
problem, among others. Mendonca, 1995, developed local
forms for the method and introduced some procedures aimed
to reduce the computational effort involved in the
computations, specializing it to the efficient computation of
secondary variables.

2. NAVIER-STOKES PROBLEM

As a prototype for incompressible problems, we consider
the Navier-Stokes equations in the form

u-vu-L©2u+v2uy)+Lvp=Lp a
p P p

on Q, with the incompressible constraints and boundary
conditions given by

V-U=0 onQ
U=U  onT, @
t=if onTy,

where p denotes the pressure, ¢ the traction vector,
T, and T partitions of the boundary I such that

=T, Ul;andT, NIy =@. Also, Us=(u,u;). As
typically is done with the boundary element techniques, the



nonlinearities will be handled mostly by the method of
simple successive iterations. Therefore we alter Egs.(1) to
the form

-u(V2U+(V2U))+Vp=b onQ, 3)

where p represent the inverse of the Reynolds number Re.
In the remaining of this paper we will follow the main steps
of the global Green's formalism described by Barbieri, 1991
and Mendonca 1995. For simplicity we will restrict the
notation to the two-dimensional problem, but without
implying any restriction to its extension to the full three
dimensions.

First, for purpose of clarity, it is useful to express the system
of equations (3) and (2a) in the operator form Au=b, Where

u= (“lr"‘2’P)1s b= (bl,bz,())' and

-¥(V-VO)+o ©) —Hd15 () () .
A= —H0p () —u(V-VO+d2() 0| @
() d,() 0

We premultiply it by the weighting vector function

v=(v1,v2,w)' , integrate both terms over the domain and
perform an integration by parts on the first term obtaining

% jﬂ(vv+(w)'): (VU+(VU)‘)dQ— §rv- Nudl'

—janVdQ:ij-bdQ
j wV-UdQ=0, Q)
Q

where V =(v;,v,) and

1(2md;()+ 39, ()) Hnyd, () -
N= U9 () B(2m0,(Y+mdi()) -ny | (6)
0 0 0

This operator was formed reordering the definition of the
tractions such that ¢=S'-n=Nu, where the stresses are
given by the Navier-Poisson law of an incompressible
Newtonian ﬂuid:S=—pl+p(VU+(VU)'). Next we

integrate by parts again the first term in both Equations (5)
to get:

-pjnu-(v-vv+v-(VV)‘)dn-jgpv-vm:
§rv-Nudr-§rU-N*Vdr+jgv-bdQ
j u-vwdn=—§ wU-ndrl. 0)
Q T

Now we add two terms to the boundary integrals through
the arbitrary operator N’ which satisfy the condition
v-N'u—u-N'v=0. Here we choose the simplest form for this
operator is N = Diagla(q), B(q), Y(¢)]. That this form
satisfies the necessary condition is clear because v-N'u=
avyu +Pvyuy +Ywp=u-N'v. Therefore Egs.(7) can be
simplified to the following operator form

jn[u-A*v—v-b]d9=§r[v.(N+N1)u-u-(N* +N')W]dL (8)

K(2m0,()+ny0,())+ Hny 9 () ny
(N* +N")= 1m0, H(2md,O)+mAO)+B
0 0 Y
®
and
=p(V-V()+9y1 () —Hd1 () -d;()
A= ~Hd5 () —u(V-VO+050) 0,0 .
-0 () =10) 0

(10)

Consider the third term in (8). The apparent tractions are
defined as

F(q)=Nu(q)+ N'u(g), gerl. a1y

Using the definitions of + and N’ we can put it in the
extended form:

F@| [n@] |al@wmg
F(q) |=|t(q) |+| B(@)uz(q) |- (12)
F(q) 0 y(q) p(q)

As expected, in a boundary point of a two-dimensional
domain only two physical components of tractions apply,
those shown in the second bracket. The defined apparent
tractions, however, contain a third component defined as
shown in (12) in terms of the pressure and the arbitrary pre-
defined functions y(g).

Once the problem is established in the form shown in (8)
with the definitions shown in (12), the procedures
described described by Mendonca, 1995, can be readily
applied. Two auxiliary problems involving projections of
the Green’s Functions onto a finite dimensional subspace
are defined by:

A'G,(P)=[y(P], VPeQ
(N*+N')Gy(p)=0,Vpel'
{A*GC(P) =0, VPeQ

. . (13)
(N"+N')G (p)=[y(pl, 7pel

The domain and the boundary are partitioned into a set of
elements. The fields are approximated byu(Q)=[l//(Q)]ud,
with

¥ (Q)]= Diagl$;(Q), 6,(Q). 65(Q)], (14)

where each §;(Q),i=1,2,3, is a set of nodal basis functions

and u? is the column vector formed by the nodal values, i.e.,
u? =(u{i,ug,u§)'. Replacing the index d by ¢ in Eqn. (14),
analogous expressions are defined for the fields on the
boundary, using suitable basis functions as given by

Mendonca, 1995.

For two vector fields defined by z=(Z,z3)' and v=(V,v)

with Z=(z;,23)" and V=(v;,v,)’, the bilinear form shown
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in the associated weak form associated with the first
Auxiliary problem shown in Eqn. (13) is defined by

B(z.v)=% [o(VZ+@2)):(vv+ v vy')aa- JozV-vdQ+ [ v,V -zda.
(15)

The associated coefficient matrix K, can be obtained in the

form usual in the finite element method. Its partitioned form,
compatible to the ordering of the degrees of freedon used in
Eqn. (14) is:

K g2 g3
K, =k k2 13| (16)
B2 o

The boundary condition in the problem (13) will result in
another coefficient matrix called K,. The addition of K, to
K, provides sufficient restrictions to allow for the solution
of the nodal values of the Green's Functions Projections,

GPP and GF by solving the following algebraic system
derived from (13):

(K, + K, IGPP;GP1=[M;m]. 7

The projections allow the definition of a Modified
Somigliana’s Identity after Eqn. (12), which can be
discretized on the boundary to result in the final algebraic
systems of equations for the problem, in terms of the nodal
values of the velocities, pressure and tractions on the
boundary:

Du® =EF° +Fb4 (18)

where, similarly to the boundary element method, uis the
set of nodal values of velocities and pressure at the
boundary, F°¢ is the set of nodal values of the tractions
defined in Eqn. (16), aand the matrices are given in terms of
the nodal values of the Green’s Function Projections by
(21a):

D=§r, (9@ [9(@)dT,; E=§rp G.(p)' [§(p)1dT;
F=I G.(P)' [y(P)dQp 19)
n’

GelpY' =4, 0PN Gulp.a)' dT,iG(P) =f, (0P Go(P.g)' T,

where G, (p) and G,(P) are the projections of the Green’s
Functions onto finite dimensional spaces, solutions to the
Auxiliary Problems (13). AIl the derivations and
expressions shown so far can be applied to the whole
physical domain, but here we will be using then in the
sense described in Mendonca, 1995, ie, each cell is
modelled individualy, its local projections are computed
from (17) and the matrices in (18),%are assembled to form the
algebraic systems for the complete domain.

3 - SPURIOUS PRESSURE MODES

In this section we describe some aspects that, although
- unsatisfactory due to its incompleteness, seems interesting
enough to deserve a record in view of possible future
developments. We notice that the addition ot K, to X,

make the submatrix (3,3) appearing in Eqn. (17) partially
populated when the arbitrary function ¥(g) is not defined
to be identically zero at all points of the boundary. In case
the projections are being computed at a cell composed by a
single element, and if the basis functions are defined in this
element by nodes distributed only on its boundary, like the
elements of the Serendipty family, then the submatrix (3,3)in
Eqs.(17) will be fully populated by a positive-definite
matrix (if y(g)>Oforany geT’).

It is observed that the approximate response obtained is,
within the easily met restrictions, completely independent
of the particular values chosen for the arbitrary functions, in
particular y(g), in the definitions of ks3.

As a consequence, the algebraic system (18) will be
solvable even in some of the cases when the underlying
finite element used presents spurious pressure modes. Some
finite element formulation with forbidden combinations of
basis functions for velocities and pressure were chosen and
tested to identify models where they would fail. A second
effect, however, renders the above observations temporarily
useless: even if the problem (17) was solvable for the
projections, the procedure would fail in the next step. When
using the div-unstable underlying finite elements to
compute K, the obtained set of projections has less than

the required rank. The consequence is that the final
algebraic system, Eqn. (18), will generate a singular final
matrix after the boundary conditions have been applied.

4 - APPLICATIONS

The numerical tests were performed with the Green's
macrocells composed of one single domain element with
biquadratic basis functions for velocities and bilinear
functions for pressure. Three sets of problems were solved.
In the first two the standard Couette and Poiseuille flows
were modeled. Because the exact solutions for these
problems are bilinear and biquadratic polynomials for
velocities and bilinear polynomials for pressure
respectively, the approximate responses obtained were exact
as expected, in all fields of velocities, pressure and stresses.
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Figura 1 - Malhas utilizadas.

Next, we took one of the few problems for which an
analytical solution is available, concentric rotating
cylinders (see Schlichting), and truncated a standard 1x1
domain to be modeled. The analytical solution is:
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R? R?
wy (x,y) = ~Uyklr, —;1;% uy(x,y) = ~UjKlry —;%
2 2 2
p(x.y>=ﬂz‘5)—[[5) -410g(£)-(£2_) 14C, @0
r o) R

where  =1/3, ,=5/3, Uy =1, p; =040, Resﬁ%iw.l d=nln,
k=d/(1-d%) and R* = (x+n)* +y*.The standard domain
Q considered and the position of the frame of reference is
shown in Figure 1. The particular choice of parameters will
render u; =0 along the face y = 0, u(0,0)=U, and
u(1L1)=uy(1,1)=0. The meshes used are displayed in
Figure 1. Figures 2 to 4 show the stress components
S, and S,, along the lines x 0 and x 0.5. The
quantification of the errors is made through the use of a

modified I2-norm of error, defined along a given segment of
line. The relative error E for S, is given by

1
J o820~ S0 O dy

E= i 2
[ oS0 b

) @n

where S, is the analytic solution obtained from (21). The
relative error for S, is defined analogously.
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Figure 2 - Regurar mesh B, 4x4 cells. Error in stress Sx atx
= (0.5.. E=1.37e-4 for ALG and E = 2.19¢-3 for FEM.

ALG stands for Assembled Local Green. The results are
compared against the Mixed FEM and the alnalytical
solution. The Green's meshes will have roughly twice as
many degrees of freedom as the Finite Element mesh of
identical number of nodes. Even though, the ratio of the
relative errors displayed in the figures are very expressive.

5. CONCLUSIONS

The application of the Green’s Function Method has been
briefly outlined. This procedure lead to reduced
computational effort; for meshes of equal sizes it
approximates the stresses more accurately and presents
higher rate of convergence than the mixed FEM, suggesting
further developments towards the use in continuum
mechanics problems
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