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Abstract. Determination of the true stress-strain curve for a material available in the form of bars or thick plates can be 
done in two ways. If the interest is in obtaining data until the development of the necking, engineering stress and strain 
are recorded and corrected by using the incompressible condition of uniform plastic flow developed in the specimen. If 
the interest resides in data after necking, the inhomogeneous deformation makes it necessary record load and diameter 
reduction of the specimen. A correction for the true stress for necking is then obtained by using the Bridgman equation.  

In design of parts made of thin plates or sheets, use of material data obtained from round tensile specimens is 
not always adequate, since, either the material is produced only in form of sheet, or shows different properties in its 
sheet or bar forms due to differences in fabrication processes. Until recently there was no consistent method to 
determine true stress-strain curve for a material by rectangular cross-section tensile specimens. The main challenge in 
a experimental procedure is that diffuse necking makes the cross section no longer rectangular, rendering almost 
impossible to measure its dimensions in real time. 

This paper reviews the findings of Z.L. Zhang, who showed that the area reduction could be normalized by the 
uniaxial strain at maximum load and the aspect ratio. A finite element three-dimensional analysis on the diffuse necking 
behavior is performed to develop a simple procedure to obtain the area reduction evolution in terms of measurements 
of the load-thickness reduction curve, which is then used to construct the true stress-logarithmic strain curve. Three 
different materials were tested in laboratory, and the accuracy of the formulation is shown to be good. 
 
Keywords  True stress-strain curve, isotropic materials, sheet tensile specimen, plastic deformation. 

 
1. Introduction  
 

Knowledge of the true stress-strain curve of a material is necessary in applications involving large 
deformations, for example, in the metal forming analysis or in ductile fracture analysis of parts. When it is possible to 
construct round tensile specimens, two situations may arise. First, if the interest is obtaining the material data until the 
development of the necking, a simple experimental procedure is possible, consisting in measuring and recording 
engineering stress and strain (ABNT, NBR-6152, 1980). True stresses and logarithmic stains are next obtained 
correcting the data using the incompressible condition of uniform plastic flow that develops in the specimen (Dieter, 
1986). Second, if the interest resides in data after necking, the inhomogeneous deformation makes it necessary 
recording load and diameter reduction of the specimen. The true stress is next corrected by using the Bridgman 
equation.  

When analyzing parts fabricated from sheets, an ideal procedure would be using material data obtained directly 
from rectangular cross section specimens. However, it is not always possible to machine tool round specimens from a 
thin sheet, which can be easily seen comparing standard diameters for round specimens, of 8 millimeters, with usual 
sheet thickness of 2 millimeters or less. Nevertheless, until recently, there was no consistent experimental method to 
determine true stress-strain curve for a material by rectangular cross-section tensile specimens.  

The most difficult part of experimental procedure is to measure the cross section dimensions, because after 
diffuse necking takes place, the cross section changes its original rectangular format, compromising the necessary 
accuracy to describe the cross section area change. In a ductile rate-independent material, plastic instability, the necking 
begins just after the maximum load, in a similar way as the neck of a round specimen. The deformation continues 
diffuse around a certain extent of the specimen, under falling load, until the development of a localized neck. The range 
of deformation of localized neck is usually short and the process is very short before fracture.  
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 This paper reviews the findings of Zhang et al. (1999), who showed that the area reduction during diffuse 
necking phase could be decomposed in two parts, the proportional area reduction and a non-proportional area reduction 
associated with the shape change of the section. 

 A finite element three-dimensional analysis on the diffuse necking behavior is performed and showed that the 
non-proportional area reduction could be approximately normalized by the uniaxial strain at maximum load and the 
cross section aspect ratio.  This normalization allows the development of a simple procedure to obtain the area reduction 
evolution in terms of measurements of the thickness in the center of the cross section, which is relatively easy to 
perform, and the load history, which allows the determination of true strain and average true stress.  An additional 
difficulty arises from the observation of Aronofsky, (1951), that stresses are not uniformly distributed along the 
rectangular cross section after necking, making necessary a correction of the average true stress before it can be used as 
uniaxial material flow stress. It is shown that the Bridgman equation can be applied for rectangular cross section in the 
same way it is used for circular ones. 

 In the following, the numerical procedure described by Zhang is reviewed and implemented. Three different 
materials were tested in laboratory, using rectangular and round cross section specimens. Materials with different 
characteristics of those tested by Zhang were chosen to estimate the range of applicability of the formulation. The 
materials tested were: stainless steel 316, aluminum 6351, cooper CA110 and cooper CA122. Combining the present 
results with those obtained from the materials tested by Zhang, the method seems reliable to determine true stress-strain 
curves until about 50% of thickness deformation, which can represent until about 100% deformation depending on the 
cross section aspect ratio. 
  
2. Area deformation 
 

 It is well known that deformation just after the maximum load marks the beginning of necking. The condition 
of constant volume of plastic deformation allows the Hencky deformation to be expressed as ( )ln / ,oA Aε = where A 
and oA  are the current and initial cross-section areas, respectively. For round specimens of isotropic materials, the cross 
section remains circular in the entire range of deformations until fracture. Thus, the area changes are obtained directly 
by diameter measurements.  In case of rectangular cross section, however, after the onset of necking, the section 
becomes distorted, assuming a shape similar to that depicted in Fig. 1. The exact measurement of the area evolution, in 
general, is beyond the capabilities of regular material testing laboratories in industrial and educational institutions. A 
usual mean to circumvent the problem (ASTM, E-8M, 1997) consists in approximate the thickness variation by a 
polynomial function of second degree, measure the thickness in three different positions, as indicated in Fig.1b, and 
evaluate the effective thickness by ( )1 2 34 / 6et t t t= + + . A similar procedure is used with the width of the minimum 
section, and the effective area is estimated. Numerical simulations shown below indicate that a correct evaluation of the 
profile is essential for an accurate computation of area and, as a consequence, of the true stresses and strains.  

 One of the goals of the procedure discussed in this paper is the possibility of obtaining a good area estimate 
taking with measurements of a single parameter, the thickness 2t  at the center of the cross section. First, it is assumed 
that deformation can be decomposed in proportional and non-proportional parts. In the formed one, the section keeps its 
rectangular form, Fig. 1a, similarly to what happens in the circular section. The non-proportional deformation accounts 
for the shape distortion, as in Fig. 1b.  

.       

 
 

Figure 1. (a) Proportional deformation in round and rectangular cross sections.  (b) Non-proportional of rectangular 
cross section. 

 
 Considering A , oA , pA  and npA  as the current cross-section area, original, proportional and non-proportional 

areas, respectively, one can define the total, proportional and non-proportional area changes as o pA A A∆ = − , 

p o pA A A∆ = −  and np pA A A∆ = − , respectively. In case the bar is loaded in tension, all three area changes must be 

non-negative. Prior to the maximum load, one must have 0npA∆ = , due to the hipothesis of homogeneous deformation. 
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 An expression for the proportional part of deformation in the rectangular cross section can be derived. 
Assuming ,x yε ε=  there is a proportionality constant a such that o oW a t=  and ,W a t=  where W, t etc. are the cross 

section dimensions as shown in Fig. 1a. The original and actual areas are .o o oA W t=  and .A W t=  Thus, 
2

o o o oA W t a t= =  and 2A Wt a t= = . Using ot t t= − ∆ , the proportional area variation is 2(2 )p oA a t t t∆ = ∆ −∆ , and 
 

                                                                      
2

2

o o op

A t t
A t t

⎛ ⎞ ⎛ ⎞∆ ∆ ∆
= −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
                                                                 (1) 

  
3. Finite element analysis 
 

 The entire flow process undertaken by a rectangular specimen in tension test was modeled by finite element 
method. Figure 2 shows the region modeled, mesh, and dimensions C, L and ot  of the model. Cross-section aspect 

ratios / oRF L t≡  2,3, 4,5=  and 8 have been analyzed. Following Zhang et al, the initial length is fixed as 24 oC t= , 
except for RF = 8, when 40 oC t= .  The thickness is ot =1.5 mm in all cases.  

 The analysis was performed using Ansys 7.0 with large deformation and rate-independent incremental 
plasticity, with multi-linear isotropic material hardening and von Mises yield criteria. Following the incremental 
solution from the origin of the graph load x displacement, the stiffness of the bar decreases gradually until the point of 
maximum load, when the stiffness matrix becomes singular. This phenomenon leads to the use of the arc-length method 
in the analysis.  

 The element used is the 20 nodes solid brick, which is able to withstand the mesh distortion observed during 
plastic flow. The mesh configuration was determined from a mesh sensitivity analysis, observing responses of 
maximum load, thickness at specimen center at maximum load and load at 50% thickness reduction; in all cases, model 
with aspect ratio 4 was used. The results in Fig. 3a show maximum loads almost insensitive to mesh sizes above 3520 
nodes. The thickness at maximum load, Fig. 3b also shows a ratio standard deviation/average value of only 0,44%, if 
the mesh with 7865 nodes is discarded. The results of load at 50% thickness reduction in Fig. 4a indicate the adequacy 
of meshes with more than 2620 nodes. 

 As a result, a mesh 2620 nodes was adopted in the analysis. In order to localize the neck, a small notch is 
applied at the center of the specimen. The imperfection is cut along the thickness, at both sides, with depth of 0.004L 
and radius 12 .ot  We observe that larger notches can affect the numerical results, (also Tvergaard, 1991), and smaller 
ones are more difficult to be machined on the specimens. The presence of the notch defines a division of the mesh in 
two regions, one more refined in the vicinity of notch, with 7 elements in the axial direction (Fig.2).  The region is 
modeled by 8 elements of progressively changing lengths. The meshes along the width and thickness directions are 
uniform, with 10 and 3 elements, respectively. 

 

 
 

Figure 2. Finite element mesh of of 1/8th of the specimen, with refinement around the notch. 
 

 The non-linear method of solution used is displacement-controlled due to instability of the specimen at the 
maximum load point. A reference tensile load is applied to the specimen, and load factors are determined, together with 
nodal displacement solutions, along the equilibrium path, according the arc-length method (Owen, 1997). The choice of 
these values has influence on processing time, as shown in Fig. 4b. Based on these results, the numerical experiments 
were conducted with arc-length factor f = 4 and the reference load Fr=2 kN With these parameters and the mesh of 
2620 nodes, a simulation takes about 15 minutes on a personal computer with 1500Mb of RAM and 2000Mz clock. 
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Figure 3. (a) Maximum load. (b) Thickness at the maximum load point. 
 

 
 

Figure 4. (a) load at 50% thickness reduction for different mesh refinements. (b) Processing time.  
 

The numerical analysis were based on materials with isotropic hardening behavior, whose rate independent 
flow curve is described by the following variation of the Ramberg-Osgood equation: 
   

 1
n

p
o

o

εσ σ
ε

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
 (2) 

 
where σ  and pε  are real flow stress and real equivalent plastic strain, oσ  and oε  are stress and strain parameters and 

n is the hardening exponent. Following Zhang, we fixed the values of elastic modulus E and Poisson coefficient to be 
/ 500oE σ =  and 0.3.ν =  However, as it will be seen, expeimental results seems to indicate that the validity of the 

developed model is not restricted to this range of material properties. The only material parameter changed in the 
numerical models was the hardening exponent, which took the values n = 0.05, 0.10, 0.15 and 0.20. It is worth noting 
that this range covers most of the types of steel, from low to high carbon content, and that n is about 0.5 in cooper and 
brass (following typical values from Dieter, 1986, for instance). The material data were applied to the program in the 
form of a multilinear curve. 

 
4. Relation area change versus thickness change 
 

Finite element analyses were performed in 20 models (five aspect ratios RF = 2,3,4,5 and 8 and n = 0.05, 0.10, 
0.15 and 0.20). In each case, the total area change A∆   and thickness change at the center of the specimen, t∆ , were 
computed. The values of the area change showed to be very sensitive to the accuracy of the procedure used in its 
computation. The current area A is obtained adding the deformed areas of the element faces common to the cross-
section of the model. The element used has 8 nodes on the surface. The simple attempt of subdividing the element in 
triangles defined by the nodes, lead to crude results. This, in turn, generated large negative non-proportional area 
changes prior to the maxium load. Therefore, all results shown in this paper were obtained by a separate post-processing 
based on a consistent integration of the current area of the element, using nodal displacements, nodal coordinates and 
the original bi-qudratic shape-functions of the element. 
 For each numerical model, a plot load versus / ot t∆  and ( )/ /np o oA A t t∆ ×∆  are computed. Figures 5a and 5b 
show brute results for stainless steel and cooper. These results are to be processed using the model described next. 
Zhang et al, using numerical simulation similar to the one described in section 3 of this paper, generated curves 
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( )/ /np o oA A t t∆ ×∆  for different hardening constant n and aspect ratios RF. Figure 6b shows part of the results obtained 
in this way, for RF=4.  The similarity between the curves for different RF allows then to be normalized by dividing each 
curve by value of the non-proportional area change at the thickness change / 0.5,ot t∆ =  i.e., ( )

/ 0.5
/

o
np o t t

A A
∆ =

∆ . It is 

seen in Fig. 6c that all normalized curves show reasonable coincidence for / 0.5.ot t∆ ≤  For materials with different n  
the behavior is similar. 
 

 
 

Figure 5. (a) Brute results for stainless steel. (b) brute results for cooper CA122. 
 

 The values of  ( )
/ 0.5

/
o

np o t t
A A

∆ =
∆  used to normalize the data have been collected and displayed in the graph of 

Fig.7a for all different aspect ratios RF and n. Again, the curves are all similar in shape, and can be normalized by 
dividing each one by its value at some chosen value of RF. Thus, normalizing by the value at RF = 4, the four curves 
almost coincide, as shown in Fig.7b. A curve fit gives an equation similar to the one by Zhang et al 
( ( )RFf RF 0.1686 0.6 ln RF+! ): 
 

     
( )

/ 0.5, 4

/
( ) 0.1994 0.5831ln

/
o

np o
RF

np o t t RF

A A
f RF RF

A A
∆ = =

∆
≡ +

∆
!    (3) 

 

 
 

Figure 6. Normalizing procedure curves for RF=4 specimens. 
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 A different reorganization of the computed data can be done to obtain a graph like the one in Fig. 6a, showing 
( )/ /np o oA A t t∆ ×∆  for different n, in a fixed aspect ratio RF = 4. It is seen that every curve begins with a plateau, which 
ends at different thickness variation, each end associated with the corresponding maximum load. The parts of each 
curve beyond the plateau are similar, which suggests a correction by a shift in the / ot t∆  axis. Therefore, a shift tD  the 
x-axis is applied such that 
 

                  t
o o

t t D
t t
∆ ∆

→ −            where  
max max, 0.15,t n F n F

o o

t tD
t t =

⎛ ⎞ ⎛ ⎞∆ ∆
= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

       (4) 

 

 
 

Figure 7. (a) The values of  ( )
/ 0.5

/
o

np o t t
A A

∆ =
∆  used to normalize the data. (b) Non-proportional area reduction curves 

due to the respective 50% thickness reduction specimens with aspect ratio RF=4. 
 

In this way, all curves, except the one for n = 0.15, are shifted, such that all of the resulting ( )/ /
T

np o oA A t t∆ ×∆  curves 
have the initial plateaus with the same length. The shifted curves, in turn, are similar in shape, and each one can be 
normalized by its value at / 0.5.ot t∆ =  The resulting curves, ( ) ( )

/ 0.5
/ / / /

o

T T

np o np o ot t
A A A A t t

∆ =
∆ ∆ ×∆ , coincide almost 

perfectly until approximately / 0.6.ot t∆ =  The part of curve beyond the plateau is obtained by a coordinate shift, as 
seen in Fig.6d. A curve fit results in 
 

( )
( )

2 3 4
1 2 3 4

/ 0.5

/
( )

/
o

T

np o
t oT

np o t t

A A
f x c c x c x c x c x

A A
∆ =

∆
≡ + + + +

∆
!  where  

max
o o F

t tx
t t

⎛ ⎞ ⎛ ⎞∆ ∆
= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  (5) 

 
and 0.04306,oc = −  1 0.9912,c =  2 11.249,c =  3 24.818c = −  and 4 15.104.c =  These values are different of those 
obtained by Zhang et al (1999), but the resulting values of the function are similar in the range ( )

max
0.01 / 0.1.o F

t t< ∆ <  

 The values of ( )
/ 0.5

/
o

np o t t
A A

∆ =
∆  necessary to normalize of the shifted curves ( )/ /

T

np o oA A t t∆ ×∆  are obtained 

from figures like the 6b, for RF=4, collecting pairs ( )( )/ 0.5
; / .

o
np o t t

n A A
∆ =

∆  But, since each curve n has its maximum 

load at a different ( )
max

/ ,o F
t t∆  it is also possible to collect pairs ( ) ( )( )max / 0.5

/ ; / .
o

o np oF t t
t t A A

∆ =
∆ ∆  From these sets of 

points, a curve fit gives the relation 
 

 
max max/ 0.5.

0.2759 0.8643
o

np
m

o o oF t t F

At tf
t A t

∆ =

⎛ ⎞ ∆⎛ ⎞ ⎛ ⎞ ⎛ ⎞∆ ∆⎜ ⎟ ≡ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
!     and  

max

0.002015 1.984
o F

tn
t

⎛ ⎞∆
+ ⎜ ⎟

⎝ ⎠
!        (6) 

 
Both functions are valid for aspect ratio RF=4. 
 A detailed analysis of the results and relations breifly described above leads to the following equation for 
calculating the non-proportional area change for arbitrary n and RF: 
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max max

( )np
RF t m

o o o oF F

A t t tf RF f f
A t t t

⎛ ⎞ ⎛ ⎞∆ ⎛ ⎞ ⎛ ⎞∆ ∆ ∆⎜ ⎟ ⎜ ⎟= − ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
    (7) 

 
where ,RFf  tf  and mf  are given in Eqs.(3), (5) and (6) respectively. Once this model has been verified, it is used as 
follow. The experimental data obtained from an unknown material generates a curve ( )/ oF t t× ∆  such as Fig. 5a or 5b. 

From this curve, the value of ( )/ ot t∆  at maximum load, ( )
max

/ ,o F
t t∆  is determined, the curve ( ) ( )/ /o onp

A A t t∆ × ∆  is 

obtained from Eq.(7) and the total area change ( ) ( )/ /o onp
A A t t∆ × ∆  is computed from the proportional area change 

using Eq.(1). Next, a curve average true stress versus logarithmic strain, ,avσ ε×  is obtained by /av F Aσ =  and 
ln( / ).oA Aε =  Finally, the correction to the stress at neck is done using the Bridgman equation, which, for round tensile 

specimens is 
1

11 ln 1
2

av
av

R
a R

σ
σ σ

−
⎡ ⎤⎛ ⎞⎛ ⎞= + +⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦

      (8) 

 
where a is the current radius of the neck and R is the radius of curvature of the neck in the longitudinal plane of the 
specimen. An empirical expression for a/R is given by Le Roy et al, 1981 as ( )max

/ 1.1 .Fa R ε ε= −  Results obtained by 

this equation for rectangular specimens have also been reasonably good, and are used in the results of this paper. 
 

5. Experimental results and conclusions 
 
 Three materials (stainless steel 316, aluminum 3105-H14 and cooper CA122) were tested using ectangular 
cross-section specimens, following the proposed area change model: for each material, the experimental data is treated 
by Eqs.(7) and (8) and the true stress-strain curve is estimated. Next, this curve is fed to the finite element model and 
the tensile test is simulated. The non-proportional area change and thickness change curves are numerically obtained. 
These data are in turn processed by Eqs. (7) and (8), and a second true stress-strain curve is obtained. Figure 7 show the 
experimental load x thickness curves for the stainless steel and cooper, and Fig. 8 show the stress-strain curves for the 
stainless steel and cooper. In each of the figures 8a, 8b and 9, three curves are shown: (1) the non-corrected curve, 
obtained from the area change model, Eq.(7); (2) a curve obtained by correcting the last curve by the Bridgman 
equation (8); (3) the experimental curve. 
 

 
 

Figure 8. (a) True stress-strain curves for Stainless steel 316. (b) True stress-strain curves for Cooper CA122. 
 
6. Conclusions 
 
 In all three materials tested, the true stress-strain curves obtained by the model correlates well with the 
experimental curve. Zhang et al performed similar comparisons, testing steel D and aluminum M3, and found equally 
good agreement. It is worth noting that none of these five materials reported can be modeled by the single parameter 
exponential equation (2), used to generate the area change model, yet the results are good in all cases. These suggest the 
possibility this method could be used for a larger range of materials. 
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Figure 9. True stress-strain curves for Aluminum 3105-H14. 
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