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ABSTRACT 

The present manuscript proposes a finite strain phenomenological model applied to the modeling of the viscoelastic 
behavior of biological materials in conjunction with finite element simulations of atomic force microscopy (AFM) 
indentations. The proposed model is formulated within a thermodynamically consistent framework based on a variational 
constitutive approach. In order to assess the applicability of the model, a numerical investigation of the local viscoelastic 
behavior of living cells is performed and compared with experimental data. The numerical procedure developed in this 
study seems to provide an appropriate numerical environment for a better understanding of the viscoelastic behavior of 
biological materials under nanoindentation experiments. 
 
Keywords: Living cells, Finite viscoelasticity, Variational constitutive modeling, AFM nanoindentation. 

 

1 INTRODUCTION 

In many connective tissues, such as tendons, ligaments and cartilage, the mechanical responses 
to external loadings are highly dependent on their hierarchical microstructures, cellular organization 
and interactions between one another [1]. In this context, the biological microstructures play a 
remarkable role in the biomechanical behavior.  

Through the tissues hierarchies, each microstructural phase may be subjected to complex 
mechanical environment, experiencing finite strains and presenting particular nonlinear behaviors, 
including viscoelastic effects. Therefore, the knowledge and correct interpretation of the mechanical 
responses of the microstructural phases certainly constitutes useful information for a better 
understanding of the multiscale mechanics of the tissue. 

Several measurement techniques have been employed to assess the micromechanical responses 
of biological materials, where the atomic force microscopy (AFM) indentation is the most 
comprehensive of them. Also known as nanoindentation tests, the AFM indentation experiments are 
employed to assess the micromechanical responses of a large range of biological materials, e.g.: living 
cells [2–5], collagen fibers [6], collagen fibrils [7], bones [8], skin [9] and others. In a numerical 
perspective, the AFM indentations provide a convenient structure to finite element simulations. For 
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instance, whereas the biological sample is modeled locally as a homogenous medium, the tip of the 
indenter can be considered a rigid body. 

With these motivations in mind, the present work proposes a finite strain viscoelastic model in 
order to represent the micromechanical responses of biological materials in conjunction with finite 
element simulations of nanoindentation tests. The proposed model is formulated in a 
thermodynamically consistent framework based on the variational formalism addressed in [10–13].  

The manuscript is organized as follows. In Section 2 is presented the theoretical background 
related to the variational constitutive modeling of a viscoelastic material subjected to finite strains. 
Aiming at finite element simulations, this section also addresses the discretized version of the 
continuum constitutive equations, leading to the local algorithm of the material model. As a case of 
study, a numerical investigation of the local stiffness and energetic dissipation of fibroblast cells is 
performed. Accordingly, a set of numerical results related to these analyses are shown in Section 3. 
Finally, some particularities of the model and further discussions regarding to the viscoelastic 
behavior of cells are highlighted in Section 4. 

2 CONSTITUTIVE MODELING APPROACH 

2.1 Kinematics and Thermodynamic Potentials 

The classic multiplicative decomposition of the deformation gradient is proposed herein to 
separate de elastic and viscous contributions: 
 

( ) ( )e v e e v v,   : det 0,   : det 0J J= = > = >F F F F F . (2.1)

 
In view of decomposition (2.1), the total, elastic and viscous right Cauchy-Green strain tensors 

are introduced as, 
 

T TT e e e v v v: ,    : ,    := = =C F F C F F C F F . (2.2)

 

The symmetric part of the velocity gradient 1: -=l FF  defines the spatial rate of deformation 

( ): sym=d l . However, in the present modeling approach, the viscous rate of deformation is defined 

by, 
 

( ) ( )1v v v v v v: sym ,     skew
-

= = = =d l l F F l 0 , (2.3)

 
where the assumption of null viscous spin is used [14]. 

The constitutive modeling of dissipative materials can be cast in a thermodynamically 
consistent framework by defining the Helmholtz free energy y , and a so-called dissipation pseudo-
potential f  [15,16].  

The proposed viscoelastic model is formulated in view of the well-known standard solid 

rheological assembly, where further details can be found in [17]. According to this and choosing vF  



VI International Symposium on Solid Mechanics - MecSol 2017 
April 26 - 28, 2017 - Joinville - Brazil 

 

 
3 
 

as an internal variable, the Helmholtz free energy and the dissipation potential are formally introduced 
as 

 

( ) ( ) ( )e e v v: ,    :y y y f f¥= + =C C d , (2.4)

 
where the superscript ¥  represents the time-independent response. Moreover, the arguments of 
potentials (2.4) are objective tensors [18]. 

 
2.2 Variational Constitutive Approach 

The variational constitutive modeling approach proposed herein is guided by the variational 
formalism addressed in [10–13]. In view of the thermodynamic potentials (2.4), one can define a rate 
potential in the form [10,11]:  

 

( ) ( ) ( )v v v v, : ,y f= +F F F F d    . (2.5)

 
The incremental counterpart of potential (2.5) relies on a proper numerical integration scheme. 

Considering an increment of time 
1n n

t t t
+

D = - , a possible general expression for the incremental 

potential is given by 
 

( ) ( ) ( ) ( )1 1 1 1
v v v v v

inc , : , ,n n n n n n
nt

t
J

y y f+ + + +
+

é ù= - + D ê úë ûF F F F F F d


 , (2.6)

 

where the variables ( )v vFd
 

 and vF


 are discrete approximations for the rates vd  and vF , 

respectively. One can note that the dissipation potential vf  is evaluated at an intermediate time 
n
t

J+
 

inside of the time increment, where the parameter 0,1J é ùÎ ë û  is closely related to the discretization 

rule employed in vF


. Therefore, the consistency of the incremental form (2.6) can be verified if 

inc0tD   =  . In view of the incremental potential, the variational updates algorithm is 

composed by two main procedures: 
 

1. The incremental rate of the internal variable is solution of the variational principle 
 

t

1v

op

inc cte
v arg inf

n+ =
=

F F
F 


 . (2.7)

 
2. Once the optimal solution is obtained in (2.7), the incremental stress is updated by 

 

1
ov v pt

1

inc
n

n

+

+ =

¶
=

¶
F F

P
F  


. (2.8)
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The variational principle (2.7) defines a new potential, namely the reduced incremental 

potential red
inc , which is only function of 1n+F . The total derivative of red

inc  with respect to 1n+F  also 

results in the first Piola-Kirchhoff stress tensor, 
 

( ) ( )1 1 1 1

1
v

red
red vinc

inc inc,   where   : ,
d

i
d

nfn n n n

n

+ + + +

+

= =
F

P F F F
F 


  . (2.9)

 
The reduced incremental potential grants remarkable numerical features. For example, the 

constitutive problem presents a hyperelastic behavior inside of the time increment, the consistent 
material tangent modulus keeps major symmetry and also exist the possibility of investigate the 
uniqueness of solution [10,12,13,19]. Accordingly, this variational approach becomes a 
mathematically elegant and numerically robust tool to formulate and solve the constitutive equations. 

 
2.2.1 Internal Variable Updates Algorithm 

In the present work, the continuum rates (2.3) are incrementally approximated by the classical 
Euler scheme: 

 

( )1

1
v v vv v v v v,   

1
n n n

t
J

-

+ +» =
D

» -=d d F F FF F F
 

, (2.10)

 

in which ( ) 1
v v v1n n nJ J J+ += - +F F F  defines a linear interpolation of the internal variable within the 

time increment [20]. Assuming 1J = , that represents a fully implicit rule, one can define from 
equations (2.10)  the following updating rule:  
 

( )1

1v v v
n nt+

-
= -DF I d F 


, (2.11)

 
where I  is the second order identity tensor. Moreover, in the present modeling approach, the viscous 
flow is considered incompressible. Therefore, the minimum principle (2.7) can be rewritten as 

 

 

opt

v 1

v
inc cte

arg inf
nso + =Î

=
Fd

d 



 , (2.12)

 

where ( ){ }1
v v vdet 1nso ym +

é ùÎ =ê úë ûd F d
 

 :=  represents the isochoric viscous space and ym  

the space of symmetric second order tensors. The kinematic constraint ( )1 1
v v: det 1n nJ + += =F  is 

taking into account by means of the Lagrangian functional 
 

( ) ( )11 1

v v
inc, : 1nn n

Jg g ++ +
= + -d


  , (2.13)

 



VI International Symposium on Solid Mechanics - MecSol 2017 
April 26 - 28, 2017 - Joinville - Brazil 

 

 
5 
 

where 
1n

g
+

 is a Lagrange multiplier. Consequently, the minimum principle (2.12) can be rewritten 

as an unconstrained problem, such that: 
 

( )
( )1 v 1

1

optv
cte,

sta, arg t 
n

n
ng

g
+

++
=

=
Fd

d 


 . (2.14)

 
The solution of the variational principle (2.14) defines the internal variable updates algorithm. 

Once the optimum solution for the incremental rate vd


 is found, the internal variable is updated by 
equation (2.11). The solution strategy employed in this work to solve the optimization problem (2.14) 
is based on the full Newton-Raphson procedure [21].  

 
2.2.2 Stress Evaluation and Consistent Material Tangent Modulus 

 
Once the solution of (2.14) is obtained, the stress can be updated as follows. In view of (2.8), 

the incremental first Piola-Kirchhoff stress tensor is given by 
 

1
optopt optv vv v v v1 1 1 1

e
inc

n

n n n n

y y y
+

+ + + +

¥

== =

= =
æ ö¶ ¶ ¶ ¶ ÷ç ÷= +ç ÷ç ÷ç¶ ¶ ¶ ¶è ød dd d d d

P
F F F F    


. (2.15)

 
The partial derivatives of the Helmholtz strain energies in relation to 1n+F  result in 
 

1 -T

1 1 1 1 1 11 1

v e v,   :n n n n n nn n

-

+ + + + + ++ +
¥= = +P F S S S F S F , (2.16)

 
where 1n+S  is the second Piola-Kirchhoff stress tensor. In addition, the time-independent and the 
elastic second Piola stresses are defined as, 
 

1 1
1 1

e
e

e
: 2 ,   : 2

n n
n n

y y
+ +

+ +

¥
¥ ¶ ¶

= =
¶ ¶

S S
C C

. (2.17)

 
Within the framework of a conventional nonlinear finite element code, the consistent tangent 

modulus must be provided [22]. Taking into account a total Lagrangian formulation [23], the 
linearization of the equilibrium equations results in the material tangent modulus, 
 

1

1

1 1 1

2 red
incd d

: 2
 

4
d d d

n

n

n n n

+
+

+ + +

= =
S

C C C

 , (2.18)

 

where d  represents the total derivative operator. It is important to notice that if red
inc  is a convex 

potential of 
1n+

C , the major symmetry of the tensor 
1n+

  is guaranteed. 
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2.3 Choice of Viscoelastic Potentials 

As a case of study, a numerical investigation of the local stiffness and energetic dissipation of 
living cells is addressed in the next section. Therefore, to model the viscoelastic behavior of cells, the 
following potentials are proposed: 
 

( ) ( ) ( )

( ) ( )

2

e
e e e e

v
v v v

: tr 3 ln ln
2 2

: tr 3 ln
2

: :
2

J J

J

m k
y m

m
y m

h
f

¥ ¥
¥ ¥

ìïï é ù é ù= - - +ï ë û ë ûïïïïï é ù= - -í ê úë ûïïïïï =ïïïî

C

C

d d

, (2.19)

 

where { }e v, , ,m k m h¥ ¥  are the constitutive parameters. In equation (2.19), the strain energies are 

represented by the Neo-Hookean model [24], and the dissipation potential possesses a simple 
quadratic form in the viscous rate of deformation.  
 

3 RESULTS 

The finite element analysis presented herein aim to simulate cyclic AFM indentation tests. The 
numerical simulations follow the experimental protocol carried out by [4] in fibroblast cells. In Figure 
1 are shown details on the finite element model. The proposed model are composed by a rigid 
1.98 mm  diameter spherical indenter and a numerical sample with diameter of 10 mm  and height of 
4 mm . The cell sample is modeled as a homogeneous medium, discretized by 15, 000  linear 
prismatic elements, where a mesh refinement was performed in the indentation region. Moreover, a 
quarter symmetry of the sample is considered and the frictionless contact was imposed in the interface 
between the sample and the rigid indenter. The simulations were performed under an indentation rate 
of 0.8 m/sm . 

The finite element simulations were run in the software Abaqus, where the proposed 
viscoelastic model was implemented into the user-subroutine UMAT. 
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  (a)           (b) 

Figure 1. Finite element model. (a) Perspective view of the model showing the 
spherical indenter and the cell sample in a quarter symmetry. (b) Top view of the 
numerical sample, where the mesh refinement is noted in the indentation region. 

 
It is a common practice in the biomechanical analysis of living cells to assess the local stiffness 

by fitting the AFM indentation experiments to Hertz contact models [25]. In this case, the cell is 
modeled locally as a linear isotropic (and generally incompressible) material, where the elastic 
parameter E  (Young’s modulus) attempts to represent a measure of stiffness. The Hertzian model 
for a spherical tip is given by, 

 

( )
( )

3/2
2

4

3 1

E r
F d d

n
=

-
, (3.1)

 

where ( )F d  is the force-depth relation of the indenter, r  is the radius of the tip and E  and n  are the 

linear elastic parameters, represented by the Young’s modulus and Poisson’s ratio, respectively. 
It is important to note that although Hertzian expressions have shown to be excellent shape 

functions to reproduce nanoindentation curves subjected to finite strains, these expressions are of 
limited use for modeling the mechanical behavior of cells. The same test performed at different 

indentation depths generally needs different values { },E n  to reproduce the experimental curve. In 

other words, it is in general not possible to find a unique set { },E n  to represent the same material.  

Experimental investigations based on Herzian expressions point out the parameter E  of 
fibroblast cells can range from 50 Pa  up to 150 kPa onto the cell surface [3,5,26]. Moreover, a log-
normal distribution between 10 kPa  up to 100 kPa with a mean value of 46 kPa  was verified 
in [5]. In addition, the hysteresis loops under cyclic AFM indentations present large variations 
depending on the tested point onto the cell surface [27].  

Based on this reasoning and the mentioned experimental data found in [3,5,26], the equation 
(3.1) is employed to retrieve experimental indentation curves with the parameter E  equal to 10 , 50  

XY

Z

X

Y

Z
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and 100 kPa  (see Figure 2(a)). These monotonic curves will provide the experimental basis in order 
to estimate the constitutive parameters of the proposed viscoelastic model considering three levels of 
stiffness and energetic dissipations: upper and lower bounds and a mean value.  

For each stiffness level, the proposed viscoelastic model was used and its constitutive 
parameters were estimated in order to reproduce the monotonic experimental curves with three 
percentages of hystereses: 16%, 33% and 56%. The identification procedure was performed as 

follows. A fixed ratio 210k m¥ ¥=  (compressible response) was defined for the time-independent 

volumetric parameter, and the remaining viscoelastic parameters { }e v,m h  were identified in order 

to reproduce the loading path of the curves for the three percentages of hysteresis. 
The force-displacement curves of the indenter resulting from the finite element simulations are 

displayed in Figure 2(b-d), while the corresponding material parameters are listed in Table 1. 
 

Table 1: Constitutive parameters related to the numerical curves shown in Figure 2. 
 

Model 
Parameters 

y¥  ey   vf  

 [kPa]m¥   [kPa]k¥  e  [kPa]m   v  [kPa s]h ⋅  

Sim. 1 1.1 110  2.4  12.8 

Sim. 2 1.1 110  2.6  4.5 

Sim. 3 1.1 110  3.8  2.2 

Sim. 4 6 600  11  52 

Sim. 5 6 600  13  20 

Sim. 6 6 600  18  10 

Sim. 7 17 1700  17  70 

Sim. 8 17 1700  22  28 

Sim. 9 17 1700  32  12 
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  (a)             (b) 

     
  (c)             (d) 

Figure 2. (a) Experimental data reproduced by the Hertz model. (b-d) Finite 
element predictions for the three levels of energetic dissipation represented by the 

hysteresis loops.  

4 DISCUSSIONS AND FINAL REMARKS 

As can be seen from Figure 2, all the numerical simulations were able to reproduce the 
monotonic loading path of the curves for the three levels of stiffness and for the three percentages of 
the energetic dissipation proposed. Concerning the hysteresis loops, the characteristic nonlinear shape 
of the unloading part of the curves show sound agreement with experimental data (compare the 
numerical results with the experimental curves presented in [4,27]). These numerical results indicate 
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the model is able to predict the force-displacement curves of the proposed indentation test under 
different conditions of stiffness and hysteresis onto the cell surface. 

In the expression (2.19) for the time-independent strain energy y¥  the parameter k¥  controls 

the volume stiffness while m¥  accounts for the distortional one. If incompressibility is to be enforced, 

k¥  takes values of ( )3 410 10 m¥-  [24]. However, under physiological conditions, cells can 

experience large volume changes [28,29]. In the present simulations, a compressible condition was 

used with 210k m¥ ¥=  (see Table 1). Therefore, even though the proposed model was able to 
reproduce the experimental curves, further investigations are recommended regarding to the local 
compressibility behavior of cells.  

It is worth noting the mechanical sensitivity of cells to indentation rate and indenter-cell 
adhesion are issues of research in cell biomechanics [4,27]. In the present case, all simulations were 
performed under the same indentation rate and considering a frictionless contact condition between 
sample and indenter. Accordingly, additional numerical and experimental analysis should be carried 
out in order to investigate these issues.  

Finally, the finite element simulation procedure presented in this work seems to provide an 
appropriate numerical environment for a better understanding of stiffness and energetic dissipation 
of biological materials. In addition, these procedures may be extended to other biological materials 
under different indentation conditions.  

 

ACKNOWLEDGMENTS 

The authors would like to thank the financial support provided by the Brazilian funding 
agencies CAPES - (Coordination for the Improvement of Higher Education Personnel) and CNPq - 
(National Council for Scientific and Technological Development). 
 

REFERENCES 

[1] M. Lavagnino, M.E. Wall, D. Little, A.J. Banes, F. Guilak, S.P. Arnoczky, Tendon 
mechanobiology: Current knowledge and future research opportunities, Journal of 
Orthopaedic Research. 33 (2015) 813–822. 

[2] J. Qi, A.M. Fox, L.G. Alexopoulos, L. Chi, D. Bynum, F. Guilak, A.J. Banes, IL-1beta 
decreases the elastic modulus of human tenocytes., Journal of Applied Physiology (Bethesda, 
Md. : 1985). 101 (2006) 189–195. 

[3] A. Raman, S. Trigueros, A. Cartagena,  a. P.Z. Stevenson, M. Susilo, E. Nauman, S.A. Contera, 
Mapping nanomechanical properties of live cells using multi-harmonic atomic force 
microscopy, Nature Nanotechnology. 6 (2011) 809–814. 

[4] S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, I.A.T. Schaap, Cell Visco-Elasticity 
Measured with AFM and Optical Trapping at Sub-Micrometer Deformations, PLoS ONE. 7 
(2012). 

[5] F.M. Hecht, J. Rheinlaender, N. Schierbaum, W.H. Goldmann, B. Fabry, T.E. Schäffer, 



VI International Symposium on Solid Mechanics - MecSol 2017 
April 26 - 28, 2017 - Joinville - Brazil 

 

 
11 
 

Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale., 
Soft Matter. 11 (2015) 4584–4591. 

[6] K.E. Aifantis, S. Shrivastava, G.M. Odegard, Transverse mechanical properties of collagen 
fibers from nanoindentation, Journal of Materials Science: Materials in Medicine. 22 (2011) 
1375–1381. 

[7] M.P.E. Wenger, L. Bozec, M.A. Horton, P. Mesquida, Mechanical properties of collagen 
fibrils., Biophysical Journal. 93 (2007) 1255–63. 

[8] P.J. Thurner, Atomic force microscopy and indentation force measurement of bone, WIREs 
Nanomedicine and Nanobiotechnology. 1 (2009) 624–649. 

[9] C.A. Grant, P.C. Twigg, D.J. Tobin, Static and dynamic nanomechanical properties of human 
skin tissue using atomic force microscopy: Effect of scarring in the upper dermis, Acta 
Biomaterialia. 8 (2012) 4123–4129. 

[10] M. Ortiz, L. Stainier, The variational formulation of viscoplastic constitutive updates, 
Computer Methods in Applied Mechanics and Engineering. 7825 (1999) 419–444. 

[11] R. Radovitzky, M. Ortiz, Error estimation and adaptive meshing in strongly nonlinear dynamic 
problems, Computer Methods in Applied Mechanics and Engineering. 172 (1999) 203–240. 

[12] E. Fancello, J.-P. Ponthot, L. Stainier, A variational formulation of constitutive models and 
updates in non-linear finite viscoelasticity, International Journal for Numerical Methods in 
Engineering. 65 (2006) 1831–1864. 

[13] J.M. Vassoler, L. Reips, E.A. Fancello, A variational framework for fiber-reinforced 
viscoelastic soft tissues, International Journal for Numerical Methods in Engineering. 89 (2012) 
1691–1706. 

[14] L. Anand, M.E. Gurtin, A theory of amorphous solids undergoing large deformations , with 
applications to polymers and metallic glasses, 40 (2003) 1–29. 

[15] M. Jirásek, Z. Bazant, Inelastic analysis of structures, John Wiley & Sons, Ltd, 2002. 

[16] E.A. de Souza Neto, D. Peric, D.R.J. Owen, Computational Methods for Plasticity: Theory 
and Applications, 2009. 

[17] T.D. Nguyen, R.E. Jones, B.L. Boyce, Modeling the anisotropic finite-deformation 
viscoelastic behavior of soft fiber-reinforced composites, International Journal of Solids and 
Structures. 44 (2007) 8366–8389. 

[18] M. Gurtin, E. Fried, L. Anand, The mechanics and thermodynamics of continua, Cambridge 
University Press, 2010. 

[19] J. Mosler, Variationally consistent modeling of finite strain plasticity theory with non-linear 
kinematic hardening, Computer Methods in Applied Mechanics and Engineering. 199 (2010) 
2753–2764. 

[20] J. Simo, T. Hughes, Computational inelasticity, 7th ed., Springer-Verlag New York. Inc., 1998. 

[21] M. Crisfield, Non-linear Finite Element Analysis of Solids and Structures: Volume 1, John 
Wiley & Sons, Ltd, 1991. 



VI International Symposium on Solid Mechanics - MecSol 2017 
April 26 - 28, 2017 - Joinville - Brazil 

 

 
12 
 

[22] J.C. Simo, R.L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, 
Computer Methods in Applied Mechanics and Engineering. 48 (1985) 101–118. 

[23] T. Belytschko, W. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, John 
Wiley & Sons, Ltd, 2000. 

[24] J. Bonet, R.D. Wood, Nonlinear continuum mechanics for finite element analysis, 2nd Editio, 
Cambridge University Press, 2008. 

[25] A. Vinckier, G. Semenza, Measuring elasticity of biological materials by atomic force 
microscopy, FEBS Letters. 430 (1998) 12–16. 

[26] H. Haga, S. Sasaki, K. Kawabata, E. Ito, T. Ushiki, T. Sambongi, Elasticity mapping of living 
fibroblasts by AFM and immunofluorescence observation of the cytoskeleton, 
Ultramicroscopy. 82 (2000) 253–258. 

[27] L. Sirghi, J. Ponti, F. Broggi, F. Rossi, Probing elasticity and adhesion of live cells by atomic 
force microscopy indentation, European Biophysics Journal. 37 (2008) 935–945. 

[28] S. Hamann, J.F. Kiilgaard, T. Litman, F.J. Alvarez-Leefmans, B.R. Winther, T. Zeuthen, 
Measurement of Cell Volume Changes by Fluorescence Self-Quenching, Journal of 
Fluorescence. 12 (2002) 139–145. 

[29] E. Zlotek-Zlotkiewicz, S. Monnier, G. Cappello, M. Le Berre, M. Piel, Optical volume and 
mass measurements show that mammalian cells swell during mitosis, The Journal of Cell 
Biology. 211 (2015) 765–774. 

 

 RESPONSIBILITY NOTICE 

The authors are the only responsible for the printed material included in this paper. 

 

 

 


